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Abstract: This study intends to evaluate the possible correlation between the correlation dimension
(DC) and the seismic moment rate for different late Quaternary active fault data, shallow crustal
earthquakes, and GPS on the island of Sumatra Probabilistic Seismic Hazard Analysis (PSHA). The
seismicity smoothing was applied to estimate the DC of active faults (DF) and earthquake data
(DE) and then to correlate that with the b-value, which will be used to identify seismic hazard
functions (SHF) along with the Sumatra Fault Zone (SFZ). The seismicity based on GPS data was
calculated by the seismic moment rate that is estimated based on pre-seismic horizontal surface
displacement data. The correlation between DF, DE, and the b-value was analyzed, and a reasonable
correlation between the two seismotectonic parameters, DF-b, and DE-b, respectively, could be found.
The relatively high DC coincides with the high seismic moment rate model derived from the pre-
seismic GPS data. Furthermore, the SHF curve of total probability of exceedance versus the mean of
each observation point’s peak ground acceleration (PGA) shows that the relatively high correlation
dimension coincides with the high SHF. The results of this study might be very beneficial for seismic
mitigation in the future.

Keywords: correlation dimension; active fault; earthquake; b-value; GPS; seismic moment rate;
seismic hazard function

1. Introduction

Sumatra Island, Indonesia, is located in the convergent plate zone. It accounts for the
high concurrent rate and the oblique NE-ward geometry between the subduction of the
Indian–Australian Plates and the overriding southeastern Eurasian Plate [1–3]. This high
convergence rate causes Sumatra Island to have many earthquakes annually, implying a
high-stress level. The five most significant earthquakes support the large historical catalog
of shallow earthquakes along the Sumatran megathrust over the last 250 years, Mw ≥ 8.0.
As explained by references [3,4], the active fault on Sumatra Island has been termed the
1700 km long Sumatran Fault Zone (SFZ). The Sumatran seismotectonic map depicting
the Sumatran Subduction Zone, SFZ, and plot of the historical shallow large earthquake
data can be seen in Figure 1. Consistent with [1,5], the dominant right-lateral shear fault
zone accommodates most of the parallel components of the convergence of the sloping
plate between the Indian-Australian and the Sunda Plates and has an average slip rate of
~15–16 mm per annum along some of its length [6–8]. The Sumatra Fault Zone (SFZ) within
the mainland of Sumatra suggests that the released megathrust strain directly influences it.
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Figure 1. The Sumatran seismotectonic map depicting the Sumatran Subduction Zone and Suma-
tran Fault Zone (SFZ) overlays with the historical shallow large earthquake data of 1925–2014 with 
a magnitude (Mw) larger than or equal to 6.0. Historical earthquake data are based on Ref. [9]. 

McCloskey et al. [10] pointed out the effect of change in stress due to the 2004 Suma-
tra-Andaman earthquake on the adjacent rupture zone in the Nias segment, which was 
eventually quaked in March 2005 northern part of the SFZ, which has not yet produced 
M7 onshore earthquake. Qiu et al. [11] and Cattin et al. [12] suggest that there exists the 
effect of megathrust earthquakes on the SFZ. Sumatra Island was chosen as a master 
model because of the large body of complete historical earthquake and active fault data 
of the Northwestern Sunda Arc that can be found there. 

Based on the previous study [13], late quaternary active faults in seismic hazard as-
sessments allowed us to capture the recurrence of large magnitude events and, therefore, 
increase the reliability of the Probabilistic Seismic Hazard Analysis (PSHA). From a seis-
mic hazard point of view, the first step would be to identify a potentially active fault and 
then evaluate the earthquake rate that each fault might generate. Swan et al. [14] and oth-
ers [15,16] proposed the various features of the potential factors controlling the location 
and length of failure (i.e., rules for segmentation). Meng et al. [17] found that the largest 
strike-slip and intraplate earthquake ever recorded offshore Sumatra has resulted from 
the combination of deep extent, high-stress drop, and rupture of multiple faults. Using 
geometrical constraints to identify persistent segment boundaries (where most or all of a 
propagating rupture is arrested event after event) provided an important framework for 
quantifying fault-based PSHA [18–20]. 

Sieh and Natawidjaja [3] and others [7,8,21] acknowledge that the Sumatran Fault is 
very segmented. The SFZ has often been divided into 12–19 segments separated by a ~3 
to 12 km wide stepover [3], limiting the break area that will break in one event [22,23]. 
Burton and Hall [21] studied clustering by applying k-means analysis along the SFZ using 
shallow earthquake data with a strike-slip mechanism. Burton and Hall [21] suggested 
that about 16 clusters partition the seismicity, and eight significant segments dominate the 
SFZ. The results of Burton and Hall [21] may improve the previous seismic hazard study 
[7,24] from the viewpoint of the probabilistic method. 

Figure 1. The Sumatran seismotectonic map depicting the Sumatran Subduction Zone and Sumatran
Fault Zone (SFZ) overlays with the historical shallow large earthquake data of 1925–2014 with a
magnitude (Mw) larger than or equal to 6.0. Historical earthquake data are based on Ref. [9].

McCloskey et al. [10] pointed out the effect of change in stress due to the 2004 Sumatra-
Andaman earthquake on the adjacent rupture zone in the Nias segment, which was even-
tually quaked in March 2005 northern part of the SFZ, which has not yet produced M7
onshore earthquake. Qiu et al. [11] and Cattin et al. [12] suggest that there exists the effect
of megathrust earthquakes on the SFZ. Sumatra Island was chosen as a master model
because of the large body of complete historical earthquake and active fault data of the
Northwestern Sunda Arc that can be found there.

Based on the previous study [13], late quaternary active faults in seismic hazard
assessments allowed us to capture the recurrence of large magnitude events and, therefore,
increase the reliability of the Probabilistic Seismic Hazard Analysis (PSHA). From a seismic
hazard point of view, the first step would be to identify a potentially active fault and
then evaluate the earthquake rate that each fault might generate. Swan et al. [14] and
others [15,16] proposed the various features of the potential factors controlling the location
and length of failure (i.e., rules for segmentation). Meng et al. [17] found that the largest
strike-slip and intraplate earthquake ever recorded offshore Sumatra has resulted from
the combination of deep extent, high-stress drop, and rupture of multiple faults. Using
geometrical constraints to identify persistent segment boundaries (where most or all of a
propagating rupture is arrested event after event) provided an important framework for
quantifying fault-based PSHA [18–20].

Sieh and Natawidjaja [3] and others [7,8,21] acknowledge that the Sumatran Fault is
very segmented. The SFZ has often been divided into 12–19 segments separated by a ~3 to
12 km wide stepover [3], limiting the break area that will break in one event [22,23]. Burton
and Hall [21] studied clustering by applying k-means analysis along the SFZ using shallow
earthquake data with a strike-slip mechanism. Burton and Hall [21] suggested that about
16 clusters partition the seismicity, and eight significant segments dominate the SFZ. The
results of Burton and Hall [21] may improve the previous seismic hazard study [7,24] from
the viewpoint of the probabilistic method.

According to Mandelbrot [25], fractal analysis can be used to describe the geome-
try of objects naturally. Many shreds of evidence of phenomena in space-time, such as
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seismicity, can be characterized and interpreted by fractal models using power laws (e.g.,
Refs. [26–35]).

Studies on the possible correlation between earthquake seismicity and the distribution
of active faults are limited. Sukmono et al. [30,31] studied the fractal geometry of the
Sumatran active fault system, the data used were active fault data, and the correlation with
the earthquake seismicity was not discussed very clearly. Pailoplee and Choowong [34]
studied the earthquake frequency-magnitude distribution and fractal dimension; however,
they only focused on using the earthquake catalog data. In this study, we use integrated data
of active fault, shallow earthquake catalog, and the GPS to understand better the possible
correlation between an earthquake and active fault seismicity based on the correlation
dimension (DC) and its correlation with the b-value to estimate the seismic hazard.

Based on previous study results, the b-value in time and space can be related to the
phenomenon of stress levels before the occurrence of a large earthquake in a seismotectonic
area [26,28,32,33]. Wyss et al. [36] acknowledge that the application of earthquake statistics,
frequency-magnitude distribution (FMD) [37], and the correlation dimension (DC) may
be a convenient approach for understanding local seismotectonic activities. Both the b-
values of FMD and DC values are significantly and directly associated with the stress
and earthquake phenomena. Pailoplee and Choowong [34] studied the FMD and DC in
mainland Southeast Asia, and their results suggest that the northern part of Sumatra Island
has a high-stress level.

Moreover, Bayrak and Ozturk [38] show that a low b-value is closely related to high
stress and strain loading. Therefore, it implies that we can expect to find a low b-value area
coinciding with a high seismic moment rate; thus, characterizing a correlation between the
DC values and the b-value could help better understand the possible seismic hazards by
identifying earthquake hazard functions (SHF). Furthermore, it might be very beneficial
for earthquake mitigation efforts, as these areas could be interpreted as having high-
stress levels.

Triyoso et al. [39,40] applied the least-square prediction method (LSC) over the entire
gridded area using pre-seismic GPS data. Their purpose was to estimate the horizontal
surface displacement in each grid or cell of the coastal area of Sumatra Island. The hori-
zontal crustal strain was calculated using the horizontal surface displacement estimated
by LSC in the entire study area of each cell. Furthermore, the horizontal crustal strain was
used as the input to calculate the seismic moment rate [41–44]. The stress level could then
be characterized based on the seismic moment rate; thus, it is possible to better correlate
the DC values and the b-values with the seismic moment rate to understand the stress
level [35,45].

This study aims to find the relationship between seismic b-values and the correla-
tion dimension (DC) based on Sumatran Island’s earthquake and active fault data. Since
relatively high Dc is often directly associated with the stress level and earthquake phenom-
ena [34,35,45], finding seismic hazard function (SHF) with high Dc at several observation
points will be interpreted as areas with high-stress levels; thus, characterizing a corre-
lation between the Dc value and the b-value could help better understand the possible
seismic hazard.

The SHF is calculated based on an integrated seismic model of the earthquake catalog,
active fault data, and the estimated seismic moment rate. These are taken into consideration
to understand better the possible hazard that might occur. The analysis of seismic moments
around Sumatra Island refers to references [39,40], in which the approximation made by
reference [41] and others, such as Refs. [42–44], was adopted.

This study evaluated the correlation dimension for data from the late Quaternary
active fault and the shallow crustal earthquakes. First, the correlation between DF, DE, and
the b-value was analyzed using a cross-plot and then compared with the seismic moment
rate to estimate the SHF. In addition, the algorithm of the seismic smoothing based on the
previous study [39,46,47] is used to estimate the correlation dimension, as it is supposed to
obtain a more robust result.
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2. Data and Methods

The data utilized in this study are supported by Natawidjaja and Triyoso [7] and
others [8,9,39,48]. Pre-seismic GPS data refer to Ref. [49] and others [2,6,50–54]. The earth-
quake seismic data used in this study are based on earthquake data with a magnitude of
Mw ≥ 4.7 and a maximum depth of 50 km selected from 1963 to 2020 (Figure 2A). This
study adopts the 5 km starting locking depth and 20 km of the seismogenic thickness or
25 km of the maximum seismogenic depth by referring to Ref. [39]; thus, the maximum
depth of earthquake catalog of 50 km or twice the maximum seismogenic depth is used.
Seismic zoning is based on the modified clustering of Burton and Hall [21]. The active
fault data are based on the newly revised results of the PuSGeN Team [48] for the Updated
Indonesia Seismic Hazard Map with new slip rates from recent geological and geodetical
(GPS) studies [8,48]. Based on previous studies [47], the MATLAB subroutine is used to
realize seismology and geological data modeling. The FORTRAN and MATLAB subroutine
based on Refs. [39,40] is used in the case of the GPS data. Mapping and plotting tools are
developed using MATLAB subroutine based on previous studies [39,40,47]. The summariz-
ing data used in this study can be found in the Supplementary Materials. They are shallow
earthquake catalog data, the boundary zone based on Ref. [20], the grid in MAT file format
LSQR 152 GPS data, and active fault data of SFZ.
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Figure 2. The shallow earthquake catalog data from 1963 to 2020 with the magnitude of Mw ≥ 4.7
and a maximum depth of 50 km [9] of 1963–2016 and the GCMT catalog of 2017–2020, the active fault,
and pre-seismic GPS data (A). The b-value map overlays with the 15 zones area (B). The b-value is
estimated based on the maximum likelihood (2) using a constant number of 50 events on each grid.

2.1. Earthquake Frequency-Magnitude Distribution (FMD)

Frequency-magnitude distribution (FMD) is usually parameterized by using the
Gutenberg-Richter (G-R) power-law relationship [37]; such a frequency-magnitude re-
lationship is as follows:

log10 N(M) = a− b(M−Mc) (1)

where N(M) is the number of earthquakes with a magnitude greater than or equal to Mc
(magnitude completeness or minimum magnitude), a is a constant, and b describes the
slope of the size distribution of events. It is proportional to the productivity of the seismic
volume or the rate of earthquake production.
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The b-value is an important statistical parameter and is correlated with the possible
size of the scaling properties of seismicity. Generally, b-values are in the range of 0.3
to 2.0, depending on different regions. According to Ref. [55], the average b-value on a
regional scale is usually equal to 1. Lower b-values are often interpreted as possible regions
that are subjected to higher applied shear stress after the mainshock. In contrast, areas
having higher b-values are areas that have experienced slip. Based on the previous study,
high b-values are often found in areas with increased geological complexity, indicating
multi-fracture areas. The critical findings of an earlier study [38] show that a low b-value is
closely related to the low degree of heterogeneity of the cracked medium, enormous stress
and strain, high deformation rates, large faults, and thus, seismic moment rates. The most
robust method for calculating the b-value is maximum likelihood [56]. The formula can be
written as follows:

b =
log10(e)(

M−Mc + 0.05
) (2)

where M is the average magnitude value greater or equal to Mc, and Mc is the minimum
magnitude or the magnitude completeness. The 0.05 in Equation (2) is a correction con-
stant [38]. The standard deviation of the b-value with 95% of the confidence limit can be
estimated based on the equation suggested by Ref. [56] as ≈ (1.96b/

√
n), where n is the

number of earthquakes used to estimate the b-value of each zone.

2.2. Correlation Dimension (Dc) of Earthquake and Active Fault Data

In the chaos theory [57], the correlation dimension (DC) is a measure of the dimension
of the space occupied by a set of random points. It is often referred to as a type of
fractal dimension. Using a two-point correlation dimension (DC), the spatial and temporal
distribution patterns of fault and earthquake seismicity were shown to be fractal [32–36].
Analysis of the correlation dimension is a powerful tool for quantifying a geometrical object
of self-similarity, following Ref. [57], which defined DC and correlation sum C(r), as follows:

Dc = lim
r→∞

( log C(r)

log(r)

)
(3)

in which C(r) is the correlation function, r is the distance between two epicenters, and
supposing N is the number of pairs of events separated by distance R < r. If the epicenter
distribution has a fractal structure, the following relationship would be obtained:

C(r) =
(

2NR<r

N(N− 1)

)
(4)

C(r) ∼ rDc (5)

where DC is the fractal dimension (more strictly, the correlation dimension). Distance r
between two earthquakes could be calculated (in degrees) using:

r = cos−1(cos θicos θj + sin θi sin θj cos
(
φi − φj

))
(6)

where (θi,φi) and (θj,φj) are the latitudes and longitudes of the ith and jth events, respec-
tively [26]. In this study, the algorithm of the box counting [58] is adopted to estimate
Dc, in which the binary image of the object is successively divided into finer equivalent
sub-regions (4, 16, 64, and more) by the ratio (r = 2, 4, 8, and so on) on both horizontal and
vertical axis, respectively. Following the box counting algorithm, in which the object pixel
value is represented by logical 1 and the background pixel value is represented by logical 0,
then the Equation (3) could be written as follows,

Dc = lim
r→∞

( log N(r)

log(r)

)
(7)
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in which N(r) is the number of the same size squared sub-regions containing one or more
pixels of value 1.

By plotting log r and log N(r), the fractal dimension, DC, could be obtained from the
slope of the graph’s line of least squares (LLS).

2.3. Seismicity Smoothing

In keeping with the previous study, the seismicity smoothing algorithm using the
Gaussian function approach, for example, was implemented [23,39,46,47]. To realize the
seismic smoothing algorithm, we first gridded the study area, then counted the number (ni)
of earthquake events with a magnitude greater than or equal to the reference (Mref) in each
cell or grid. The counting result of ni represents the maximum likelihood estimate of 10a

or A-value for earthquakes with a magnitude larger than or equal to Mref in each cell [59].
The ni values in each cell were then smoothed spatially by applying a Gaussian function.
The correlation distance c was used during smoothing. The following equation obtained
the smoothed value in each cell:

ñi =
∑j nie

−∆2
ij

c2

∑j e
−∆2

ij
c2

(8)

in which ñi is normalized and addressed to preserve the total number of events, ∆ij is the
distance between the i-th and j-th cells, and c is the correlation distance. In Equation (7),
the sum is taken from cell j within a distance of 3c from cell i. When applying seismicity
smoothing in this study, a correlation distance of 50 km was used to estimate the A-value.

To derive the correlation dimension based on shallow earthquake data, denoted by
DE, in this study, we first apply the seismicity algorithm using a distance correlation of
25 km. The DE is then estimated by application of the box-counting algorithm using (7).

2.4. Active Fault Modeling

To derive the correlation dimension based on active fault data, denoted by DF, in
this study, we first create the synthetic epicenter of an earthquake using fault distribution
data. The synthetic catalog algorithm is based on Refs. [47,60]. First, the fault earthquake
epicenter positions were distributed uniformly along with the active fault positions, with
each interval at a distance range of about 5 to 10 km. Subsequent synthetic epicenter
distribution data were smoothed with a distance correlation of 10 km. The DF is then
estimated by application of the box counting algorithm using (7).

Furthermore, fault seismicity, or the A-values for active fault data, were modeled
by integrating shallow earthquake data from Ref. [9] of the (Mw ≥ 4.7, H ≤ 50 km from
1963 to 2016) and GCMT catalog from 2017 to 2020 around the active fault zone and
the synthetic catalog data model. For shallow earthquake data around the active fault
zone and the synthetic catalog data model, we followed Ref. [60] by applying the seismic
smoothing algorithm based on [46] and using a correlation distance of 50 km and 25 km.
The integration between the two models was done by weighting the A-value model from the
earthquake catalog with normalized smoothed seismicity obtained from active fault data.

2.5. Geodetic Modeling

To obtain the geodetic modeling data, we assumed that the horizontal displacement
field of each observation point over the entire seismogenic depth is homogeneous and
isotropic. Furthermore, the horizontal displacement components of u and v are in E-W N-S
directions. Therefore, an assumption is needed to determine which signals of u and v are
not correlated [61,62]. The study area was gridded into 10 km × 10 km cell sizes to estimate
the surface strain rate based on GPS data. Basing our procedures on previous studies [39,40],
we calculated the horizontal crustal strain rate of each cell by applying the LSC method.
In keeping with previous studies around the Sumatra Islands [39,40], we applied the
least-square prediction method, which uses the horizontal surface displacement data to
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estimate the horizontal surface displacement of each cell in the study area. Furthermore,
the horizontal crustal strain was used as the input to estimate the seismic moments around
Sumatra Island. The following equation to calculate the scalar moment was adopted using
the formulation done by Refs. [41–44]:

.
M0 = 2µHA max(|e1|, |e2| ) (9)

where µ is the rigidity, H is the seismogenic thickness, A is the unit area, and e1 and e2 are
the principal strain rates.

Finally, the annual seismicity rate model around the SFZ is estimated based on the
integrated annual A-value of the earthquake and active fault data as described in Section 2.4
and is weighted by the normalized seismic moment rate based on GPS data. This annual
seismicity rate model is then used to estimate seismic hazards.

2.6. Seismicity Rate Model: Earthquake Rate Formulation

In reference to Refs. [39,40,60], the rate of earthquake occurrence with a magnitude
above or equal to magnitude completeness as the magnitude reference (Mref) could be
expressed as:

vi(≥ Mref) ≈
Ni

T
(10)

where Ni is the number of earthquakes with a magnitude greater than or equal to magnitude
completeness (≥Mc), T is the period of observation, and vi, based on Ref. [60]’s research,
represents the likelihood of the A-value (10a) of the earthquake with a magnitude greater
than or equal to the reference magnitude (Mref). The Mref could be greater than or equal
to Mc.

Furthermore, by substituting 10a of Equation (9) in the frequency-magnitude of the
Guttenberg–Richter equation [37], the following equation is obtained:

vi(≥ m) ≈ ñi(≥ Mref)

Tbln(10)
10−bm

(
1− 10−b(m−Mmax)

)
(11)

where ni(≥Mref) is the estimated number of earthquakes above or equal to magnitude
completeness, T is a period of observation, and b is the b-value.

The annual seismic rate model around the SFZ is used to estimate seismic hazards
based on the result as described in Section 2.5.

2.7. Seismic Hazard Function (SHF) Estimation: Ground Motion Prediction Equation (GMPE)
and Probability Exceedance (PE)

In reference to Refs. [39,40,60], the probability of exceedance (PE) of the annual earth-
quake rate with magnitudes greater than or equal to Mc, which can be converted into the
estimated ground motion (PGA) using Ground Motion Prediction Equation (GMPE) at
point of observation, can be expressed as:

P(a ≥ ao) = Pk(m ≥ m(ao, Rk)) = 1− e(−vi(≥m(ao,Rk))) (12)

where Pk (m ≥m(ao, Rk)) is the annual PE of earthquakes in the kth cell, m(ao, Rk) is the
magnitude in the kth source cell that could produce an estimated PGA of ao or larger at
the observation point, and Rk is the distance between the site and the source cell. The
calculation of the SHF parameter is based on [60]. The function m(ao, Rk) is estimated
based on the GMPE relation. The GMPE used is based on the results of [7], in which the
GMPE of Ref. [63] is used. In this study, the GMPE of Ref. [63] is updated with the GMPE
of [64]. The total PE distribution of PGA at the site was estimated based on a given radius
of the influences of the surrounding source cells, which can be expressed as:

P(a ≥ ao) = 1−∏ Pk(m ≥ m(ao, Rk)) (13)
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By substituting the GMPE in (13), we can obtain the annual PE of the particular PGA
or PGV as follows:

P(a ≥ ao) = 1−∏ e(−vi(≥m(ao,Rk))) = 1− e−Σvi(≥m(ao,Rk)) (14)

Furthermore, for a given time duration T, the PE could be estimated as follows:

P(a ≥ ao) = 1−∏ e(−Tvi(≥m(ao,Rk))) = 1− e−ΣTvi(≥m(ao,Rk)) (15)

Thus, each grid’s annual PE of specified ground motion is calculated using (14). Then,
for a given time duration of T, the PE of a given value of the ground motion is computed
using Equation (15).

3. Result and Discussion

The motivation of this study is to determine the relationship between seismic b-values
and the correlation dimension (DC) based on earthquake and active fault data in the
Sumatra Islands. The purpose of using both the shallow earthquake catalog data and the
active faults to estimate the correlation dimension (DE and DF) is to find a better correlation
with the b-value, which will be used to identify earthquake hazard functions (SHF) as a
function of DC along with SFZ. The SHF is calculated based on an integrated seismic model
of the earthquake catalog, active fault data, and the estimated seismic moment rate. These
are addressed to produce an annual seismic rate model based on the combined data sources
for probabilistic seismic hazard analysis. In addition, the pre-seismic GPS data are used to
estimate the seismic moment rate model based on the estimated horizontal crustal strain.
The estimation of the seismic moment around the Sumatra Islands refers to Refs. [39,40], in
which the approximation made by Ref. [41] and others, such as Refs. [42–44], was adopted.

The shallow earthquake catalog data from 1963 to 2020 with Mw ≥ 4.7 and a maximum
depth of 50 km [9] of 1963–2016 and GCMT catalog of 2017–2020, the active fault and
pre-seismic GPS data are used in this study (Figure 2A). The active fault data are based
on the newly revised [9] and recent studies [8,48]. The pre-seismic GPS data are based
on [2,6,49–54]. The zonation based on the clustering study of [21] is adopted for estimating
DC and the b-value. In this study, about 15 zones around SFZ are used by following their
suggestion [21] to merge the zonations 15th and 16th.

First, to estimate the b-value, we grid the study area based on 15 zones around the
SFZ by 10 km × 10 km. Furthermore, the b-value is calculated based on the maximum
likelihood (2) using a constant number of 50 events on each grid. The result can be found
in Figure 2B.

Based on the result of Figure 2B, the mean b-value of each zone is calculated, and the
DE and DF are estimated using (7) based on the box-counting algorithm. Furthermore, the
cross plotting between DE or DF with the mean b-value is constructed. The result can be
seen in Figure 3A. In this study, the purpose of evaluating both DE and DF is to find a better
correlation between the correlation dimension and the b-value utilized to estimate the SHF
of the SFZ or the sites in the SFZ selected zone.

The correlation between DF, DE, and the b-value was then evaluated by referring to the
previous studies [34,35,38] in which linear regression was applied. Based on Figure 3A, a
reasonable correlation between two seismotectonic parameters, DF-b, and DE-b, for Sumatra
Island can be found. It appears that the relationship of DF-b seems better compared to DE-b.
It is probably related to the certainty of the distribution of the geometry data. The surface
break of the late quaternary active fault is better than the distribution of the epicenter of the
earthquake data. Next, to better understand the focal mechanism of the GCMT earthquake
catalog in the depth range of 10 to 50 km around the SFZ depicts the strike-slip with a right
lateral mechanism, as shown in Figure 3B.
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Figure 3. The cross-plot DF, DE, and the mean b-values are estimated based on the 15 zones (A). The
focal mechanism plot is based on the GCMT catalog of shallow earthquake data for earthquakes at
depths less than or equal to 50 km with a magnitude larger than or equal to 4.7 in the earthquake
period between January 1976 to December 2020 [65,66] (B).

The next step calculates the DF over the entire area of the 15 zones using the equation
DF = 2.851 – 1.272b with the input of the b-value map of Figure 2B. The result can be found
in Figure 4A. Figure 4A shows the map of the estimated DF overlay with the historical large
earthquake catalog around the SFZ. The relatively high DC coincides with the historical
data of the large earthquakes with a maximum depth of less than 50 km from 1925 to 2014.
To enhance the contrast of DF, we then constructed the map of DF subtracted by the mean
of DF over the entire area of the 15 zones. Furthermore, we selected about ten sites to
evaluate the SHF. The result can be found in Figure 4B. Referring to Figure 4B, relatively
high DC (DC > the mean of DF) is distributed along zone 1, zone 5, zone 6, zone 8, zone 10,
and part of zone 11; most of the previous historical large earthquakes are found.

The reliable annual seismicity rate model needs to be constructed to estimate the SHF
on each site we selected. To assess the reliability of the annual seismicity rate model in
this study is developed by integrating shallow earthquake catalog, active fault, and the
pre-seismic GPS data. The summarized workflow in this study based on Sections 2.3–2.6
could be described as follows. First, we smoothed the shallow earthquake catalog data
around the study area using a 50 km correlation distance. Next, the synthetic catalog
data model based on active fault data are smoothed using a correlation distance of 25 km.
The integration between the two models was done by weighting the A-value model from
the earthquake catalog with normalized smoothed seismicity obtained from active fault
data. Furthermore, the shallow crustal dynamic data are incorporated in this study by
following [39]; it is used GPS data.
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Figure 4. The map of DF overlay with the historical earthquake catalog with the Mw ≥ 6.0 around
the SFZ (A). DF is calculated using equation DF = 2.851 – 1.272b with the input of the b-value map
of Figure 2B. The map of (DF—mean of DF) over the entire clustered zone boundary of Burton and
Hall [21] and selected about ten sites to evaluate the SHF starting from the North-West to South-East
(B). The relatively high DC coincides with the historical shallow large earthquakes data of Ref. [9]
from 1925 to 2014.

The algorithm for constructing the model using the GPS data are as follows. First, we
developed the seismic moment rate is based on Sumatran Island’s horizontal crustal strain
model. In this step, the least-square prediction method [39,40,47,61,62,67] was applied to
calculate the horizontal crustal strain based on each cell’s horizontal surface displacement
estimation over the entire study area. Furthermore, each cell’s seismic moment could be
calculated using Equation (8) [41–44]. We assumed the rigidity (µ) and the seismogenic
thickness (H) to be 3.4 × 1011 dyne·cm−2 and 20 km, respectively [39,40]. The result of the
seismic moment rate model can be found in Figure 4A. Figure 4A shows that the areas with
relatively high correlation dimensions (DF) coincide with high seismic moment loading
rates, implying high tectonic stress loading that could pose the risk of producing significant
earthquake hazards. The result of this study is aligned with the previous study [34,35];
however, the advantage result of this study is that we could understand the correlation
between the high DC with the possible present-day strain loading since we incorporate the
present-day shallow crustal movement data. It is suggested that the algorithm of this study
is applicable in the other active tectonic area as far as the data are available.

Finally, the annual seismicity rate model around the SFZ is estimated based on the
integrated annual A-value of an earthquake and active fault data as described in Section 2.4
and is weighted by the normalized seismic moment rate based on GPS data as is shown in
Figure 5A. The result can be found in Figure 5B. Figure 5B shows the annual seismicity rate
model that we propose as the most reliable model to estimate seismic hazards along SFZ.
In addition, the model is suggested to have a better certainty in geometrical source and
rate distribution.
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Figure 5. The estimated seismic moment rate is based on the horizontal crustal strain model around
Sumatra Island (A). The annual seismic rate model for the SHF calculation was constructed based on
the seismic smoothing of the earthquake catalog weighted by the normalized fault seismic model
and the normalized seismic moment rate model based on the GPS data (B).

Furthermore, the SHF curve of the total probability of exceedance versus the mean of
the peak ground acceleration of each observation point (sites #1 to #10) was constructed
using the maximum radius distance of about 100 km with a magnitude range of 6.0–8.0.
Since seismicity smoothing was used, the point source model was applied, and the source
depth was placed at about half of the seismogenic thickness (about 20 km), with the starting
locking depth being 5 km [39]; thus, a source depth of 15 km was used. The period of
the SHF evaluation was set at about 50 years. The result of the SHF curve can be seen in
Figure 6A,B. Another critical finding in this study is that the relatively high correlation
dimension coincides with a high SHF curve, and it could be summarized that the areas with
a relatively high correlation dimension (DF) overlap with high seismic moment loading
rates, which may imply high tectonic stress loading that could pose the risk of producing
significant earthquake hazards in the future.
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Figure 6. The graphs show the SHF curve of each observation point (A,B). The SHF curve of total
probability of exceedance versus the mean of the peak ground acceleration of each observation
point (sites #1 to #10) was constructed using the maximum radius distance of about 100 km with a
magnitude range of 6.0–8.0. The source depth was set at half of the seismogenic thickness, which was
about 20 km, and the starting locking depth of 5 km was used; thus, 15 km of the source depth was
used. The period of the SHF evaluation was set at about 50 years.

4. Conclusions

This study could characterize a reasonable correlation between two seismotectonic
parameters, DF-b and DE-b, for Sumatra Island, especially around SFZ. The relationships
are DF-b and DE-b, respectively (DF = 2.851 − 1.272b) and (DE = 2.5242 − 1.0702b). It is
found that the relationship of DF-b seems better compared to DE-b. The result leads to the
fundamental understanding that the certainty of the source geometry distribution based
on the surface break of the late quaternary active fault is better than the distribution of the
epicenter of the earthquake data.

The correlation dimension map in this study concludes that the relatively high DC
coincides with the historical data of large earthquakes from 1925 to 2014. The most critical
finding in this study is that the areas with relatively high DC coincide with high seismic
moment loading rates, implying high tectonic stress loading that could pose the risk
of producing significant earthquake hazards in the future. The advantage of this study
compared to the previous research is that we could understand the correlation between the
high DC with the possible present-day strain loading since we incorporate the present-day
shallow crustal dynamic data.

In this study, we have proposed the algorithm to construct the most reliable annual
seismicity rate model along the SFZ. The model is estimated based on the integrated annual
A-value of the shallow earthquake, active fault, and seismic moment rate derived from the
GPS data. We suggest that the annual seismicity rate model tends to have better certainty
in geometrical source and rate distribution.

Another critical finding of this study leads us to conclude that the relatively high corre-
lation dimension coincides with a high SHF curve. Therefore, it could be summarized that
the areas with relatively high DC overlap with high seismic moment loading rates, which
may imply high tectonic stress loading that could pose the risk of producing significant
earthquake hazards in the future. This study also led us to the understanding that the
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high correlation dimension is closely related to the possibility of high seismic hazards in
the future.
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