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Abstract: Although not common today, communications networks could adjust security postures
based on changing mission security requirements, environmental conditions, or adversarial capability,
through the coordinated use of multiple channels. This will require the ability to measure the security
of communications networks in a meaningful way. To address this need, in this paper, we introduce
the Quality of Secure Service (QoSS) model, a methodology to evaluate how well a system meets its
security requirements. This construct enables a repeatable and quantifiable measure of security in a
single- or multi-channel network under static configurations. In this approach, the quantification of
security is based upon the probabilities that adversarial listeners and disruptors may gain access to
or manipulate transmitted data. The initial model development, albeit a snap-shot of the network
security, provides insights into what may affect end-to-end security and to what degree. The model
was compared against the performance and expected security of several point-to-point networks, and
three simplified architectures are presented as examples. Message fragmentation and duplication
across the available channels provides a security performance trade-space, with an accompanying
comprehensive measurement of the QoSS. The results indicate that security may be improved with
message fragmentation across multiple channels when compared to the number of adversarial
listeners or disruptors. This, in turn, points to the need, in future work, to build a full simulation
environment with specific protocols and networks to validate the initial modeled results.

Keywords: communication model; security; metrics; probability; confidentiality; integrity

1. Introduction

Communication networks rely on a series of wired or wireless channels between inter-
mediate nodes. In addition to noise, these channels may be affected by any combination of
three malicious attack vectors: Denial of Service (DoS), data injection, or eavesdropping. A
DoS attack may involve cutting a wire or overpowering a particular frequency (jamming).
A data injection, or spoofing attack, involves the adversary sending fabricated data that
takes the place of actual data. Finally, and the most difficult to discover, is an eavesdropping
attack, which involves an adversary intercepting and extracting useful information from
the channel. Managing those threats requires an ability to accurately gauge the likelihood
or severity of the threat, and adapt the security features available in the system to meet it.

This paper describes a mathematical model for quantifying the Quality of Secure
Service (QoSS) deployed in static communications networks. Just as Quality of Service
(QoS) metrics describe measurable aspects of the available network, QoSS describes, in
measurable and repeatable terms, the security available to an end-user, facilitating mean-
ingful comparisons.

Even when security is momentarily adequate in a communication system, security
mechanisms tend to be static, implemented at installation or while running [1], and cannot
be adjusted dynamically based on changing environmental conditions or adversarial
capability. This document illustrates the mathematical framework and analysis to define
the design requirements for networks and provides a foundation for subsequent work
analyzing dynamic network security performance in the presence of varied environmental
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characteristics1. The final model demonstrates the probability of data surviving intact
against multiple forms of adversarial actions.

2. Goals and Approach

The current literature suggests three primary characteristics that define the security
of traditional Information Technology (IT) systems. These are confidentiality, integrity,
and availability, i.e., the CIA triad [2,3]. To quantify an overall level of security, we must
have objective metrics to represent each of these individual characteristics. While objective
metrics for availability are well established as QoS metrics, confidentiality and integrity [4]
remain rather subjective and without commonly accepted quantifiable definitions. In
addition, the user requirements for security may change based on changing operational
conditions. Then, what are the appropriate measures for communication security?

To address the need, we propose a model to quantify the security characteristics of
point-to-point communication between two devices2. The model is patterned after existing
quantification models [5,6], and helps to define security requirements that, in the presence
of adversarial actions, would enable communications to be successful. By comparison, this
model does not rely on the application of security controls [7], but rather the analysis of
the system architecture and probabilistic aspects of the network.

3. Components of a Security Model

According to Lundin [1], an equation to describe the tunable security for a communi-
cation system could be

TS : T × Env→ R (1)

where TS is the tunable security, which may be dynamically adjusted based on the user
security requirements. The transmitter capabilities3 are represented by T, the environmen-
tal descriptions are represented by Env, and the overall system security requirements are
represented by R. The goal is to map the tunable security services to the system security
requirements. To achieve this, the tunable security services must first be decomposed
into the constituent parts, such as the available number of channels, the use or disuse
of encryption, and the amount of fragmentation across the network. In many cases, the
environmental descriptions are directly reflected in the traditional QoS measurements
available from the service provider.

This initial version of the QoSS model is a static snap-shot, reflecting the system
security at one point in time. The multiplication operator in Equation (1) does not ad-
equately address the numerous non-linear relationships between system capability and
environmental aspects. Instead, QoSS captures those factors as an array of features or
values and then relates the transmitter capabilities and the environmental description to
the CIA triad, where confidentiality, C, and integrity, I, replace the transmitter capabilities,
and availability, A, replaces the environmental descriptors.

Security measures are typically subjective. To achieve objectivity, we substitute mea-
surements of confidentiality and integrity with the probability of each, designated as P(C)
and P(I), respectively, as discussed in subsequent sections. Although it is unconventional
to consider a DoS attack as impacting data integrity (described in subsequent sections),
doing so has the added benefit of collecting all adversarial influences into the metrics
for confidentiality and integrity, leaving only the system and network capabilities to be
considered as availability. Availability is a specific set of objective performance metrics,
or QoS, provided by the transmitter, e.g., data or bit rate, jitter, bandwidth, transmission
frequency, or power. The resulting QoSS equation is

QoSS : [P(C), P(I), A]→ Security Requirements (2)

representing a snapshot of QoSS metrics mapped to the security requirements. If the
array of metrics does not directly map to the security requirements, then the QoSS for
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that network is inadequate, and the system must be redesigned. The array of metrics also
provides a foundation to perform one-to-one comparisons between two networks.

3.1. Probability of Confidentiality

Numerous researchers have attempted to quantify confidentiality with varying suc-
cess [8,9]. Confidentiality is the aspect of a network that protects against unauthorized
message receipt, i.e., preventing an eavesdropper from either receiving or decoding mes-
sages. One approach to quantifying confidentiality is to redefine it as a probability so that

P(C) = 1− P(l) (3)

where P(C) is the probability of confidentiality and P(l) is the probability of leakage. Leak-
age refers to an untrusted listener having access to an “information flow from secret inputs
to public outputs” [10]. Inspired by Perfectly Secure Message Tranmission (PSMT) [11], the
set of all adversarial listeners, AL, maps to a set of wires (channels), σ, that the listeners have
access to; if one of the members of AL has access to the information, then the probability of
leakage exists.

For leakage to occur, a listener must intercept the message, decrypt it (if applicable),
and then decode the data contained in the message. The probability of interception, P(int),
quantifies the probability that a listener with channel access will receive the message. The
probability of decryption, P(dcr), quantifies the probability that the adversary will decrypt
it4. Finally, the probability of decoding, P(dco), quantifies the probability that an adversary
will decode the message5.

Consider the relationship between the probabilities of interception, decryption, and
decoding. For data leakage to occur, an adversary must be able to achieve all three actions,
i.e., decryption is irrelevant if the adversary is unable to receive any messages. Conversely,
receiving every transmission ever sent is irrelevant if an adversary is unable to decrypt or
decode the messages. The logical binary relationship of how P(l) relates to P(int), P(dcr),
and P(dco) is captured in Table 1. The proposed equation to describe P(l) in terms of
P(int), P(dcr), and P(dco) is

P(l) = P(int)× P(dcr)× P(dco). (4)

Table 1. Logical binary relationship for the probability of leakage.

P(int) P(dcr) P(dco) P(l)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

3.2. Probability of Integrity

Quantifying integrity is equally challenging. Integrity is a measure of the consistency,
accuracy, and trustworthiness of data. Integrity implies that data has not been changed
by unauthorized users in transit. One method of quantifying integrity is the “prevention
of unauthorized modification of information” [10]. Under this assumption, unauthorized
modification is corruption, resulting in

P(I) = 1− P(c) (5)

where P(I) is the probability of integrity and P(c) is the probability of corruption. Corrup-
tion here captures any damage to integrity yielding “two notions of corruption ” where the
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“first leads us to a measure that we call contamination” and the “second leads us to ... suppres-
sion” [10]. Contamination may arise from adversarial action, injection, or non-adversarial
input, noise. Further, an adversary may carefully inject portions of false data (a spoofing
attack), inject massive amounts of false data to disable communications (the traditional
DoS attack), or overtly jam a message with a false signal (traditional RF jamming).

Therefore, we choose to classify DoS attacks as being an attack on the integrity of the
data or message, not as an attack on the availability of the network. Again, inspired by
PSMT [11], the set of all adversarial disruptors, AD, maps to a number of wires, ρ, that the
disruptors have access to; if one of the members of AD has access to the information, then
the probability of corruption exists.

We, therefore, posit that corruption has three components: noise, data suppression,
and data injection. The probability of noise occurring in a message, P(n), is the probability
that a message will be adversely affected by noise. Noise is a natural phenomenon that
happens regardless of the transmitter’s capability. The probability of suppression, P(s),
quantifies the probability that an adversary will suppress or jam the message, thus, prevent-
ing the receiver from obtaining the message6. Finally, the probability of injection, P(inj),
quantifies the probability that an adversary will inject false data into the message. P(inj)
requires the ability to insert malicious data into a data stream, a much more sophisticated
activity than that of jamming7. Since noise is a natural phenomenon, it is consistently
present and may influence P(s) and P(inj). Noise works cooperatively with P(s) since both
cause the receiver to incorrectly receive the intended message. Based on these probabilities,
the logical binary relationship for P(c) is shown in Table 2 and reflected as

1− P(c) =
(
1− P(n)

)
×
(
1− P(s)

)
×
(
1− P(inj)

)
. (6)

Equation (6) does not adequately capture the behavior of the system. Noise may
be detrimental to data injection, making the injected data unusable. Due to the inter-
action between P(n) and P(inj), namely that noise affects both intended and malicious
transmissions, a more comprehensive equation is

P(c) =
((

1− P(n)
)
× P(inj)

)
+
(

P(n) + P(s)
)
−
(

P(n)× P(s)
)

−
((

1− P(n)
)
× P(inj)×

(
P(n) + P(s)

))
.

(7)

While less elegant than Equation (6), Equation (7) provides realistic results that account
for all probabilities between 0 and 1 for each of the factors.

Table 2. Logical binary relationship for the probability of corruption.

P(n) P(s) P(inj) P(c)

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

3.3. Availability

Methods exist for assessing and improving the performance of a system based on QoS
measures [12]. For the QoSS model, the metrics used to describe availability are already
conveyed in the QoS metrics. This is reflected as A = QoS, where QoS is the set of metrics
that include cost, jitter, latency, bandwidth, and bit rate, which already provide a repeatable
method of measuring availability.
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3.4. Multiple Channels

Using multiple channels can improve the performance of data-in-transit in diverse
ways. A straightforward example is directly increasing the data rate, such that additional
channels provide more bandwidth, e.g., channel bonding within IEEE 802.11 [13–16].
Another example is frequency hopping through multiple channels, which is one of several
techniques known as the spread spectrum and which provides protection from noise or
jamming as the signal is “spread across a channel greater than that necessary to transmit
the information” [17]. This technique is currently used in Bluetooth, and such transmission
diversity is also a key element of 5G wireless [18,19].

An example of data-at-rest performance improvement through multiple channels is
found in the Redundant Array of Inexpensive Disks (RAID) architecture. Developed in
1987, RAID demonstrated that by utilizing redundancy, an array could be more reliable
than any one disk drive while allowing greater data throughput (In a RAID array, data is
split across various disks so that if one disk should fail, the data may be fully recovered
despite not having all the original blocks of data. Various combinations of nested RAID
levels may be used to reduce the vulnerabilities of simultaneous disk failures [20]. The
data may also be encrypted before or after splitting, or both, as a manner of increasing
confidentiality.). Despite significant overhead, the ability to survive disk failures has made
it very attractive in critical server environments.

Many applications in control systems maintain separate channels for data and control.
For example, in SS78, the signaling path is separate and distinct from the voice channels
that carry the telephone conversation. Having different channels, at different frequencies
and differing bandwidths, allows for greater flexibility and higher-speed communications
between network assets without the need to rely upon the availability or limitations of
analog voice channels (In reality, these two channels are not entirely separated. The dual-
tone, multi-frequency (DTMF) digits dialed by a caller begin within the voice channel,
but are recognized by the control channel and are an example of the signaling messages,
including dialing a phone number, entering control functions like call-forwarding, or
advanced billing information [21,22]).

An abstract form of multi-channel communication is two-factor authentication (2FA),
a subset of multi-factor authentication. This is an authentication methodology that requires
a user to present two or more pieces of evidence to confirm the user’s identity via separate
delivery paths9 [23]. By using multiple authentication factors sent via divergent paths, the
likelihood that both messages are intercepted decreases. Even if a malicious actor intercepts
one factor, full authentication by the malicious actor cannot occur without intercepting the
other. Numerous other forms of 2FA also exist [24].

Central to the theme of this paper, multiple channel architecture may also be used to
improve security through data fragmentation across heterogeneous channels [25–28]. This
security focused capability, in concert with the performance advantages of multi-channel
communications, is the motivation for creating a tunable multi-channel communication
protocol and associated analysis techniques to determine the appropriate trade-offs under
varying security and performance requirements.

4. The Quality of Secure Service Model

Although a communication network typically uses only one network channel between
two given nodes, the possibility exists to utilize multiple paths between nodes, as shown
in Figure 1. This figure shows an arbitrary network with eight individual channels, any of
which may be used to transport data. A message sent through the network in Figure 1 may
travel across one of the channels influenced by the set of adversarial listeners, AL, or the
set of adversarial disruptors, AD.
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Figure 1. A network configuration with multiple possible channels.

The relationship between listeners, disruptors, and the total number of needed chan-
nels is described by PSMT, which “abstract[s] away the network entirely and concentrate[s]
on solving the Secure Message Transmission Problem” for a single transmitter and receiver
pair [11]. Additional articles explore multi-channel architectures [29,30], while others strive
to prove the general case and optimize the statistical reliability and secrecy [31,32].

In our model, σ represents the number of wires (channels) between the transmitter
and receiver available to the adversarial listener set, AL, and ρ is the number of channels
between the transmitter and receiver available to the adversarial disruptor set, AD

10.
Communication is two-way between the transmitter and receiver and, following PSMT,
the number of channels that must exist between transmitter and receiver is given by

n ≥ max{σ + ρ + 1; 2ρ + 1}. (8)

With this equation, we know how many channels must be used to maintain secure
and reliable communication. If a channel is unavailable, then it must not be counted as
part of n. If we assume the number of channels accessible to a listener or disruptor, then
we can arrive at a specific quantification of n. For example, when n = 8 and σ = 3, the
probability that any one channel of the eight could be listened to is 0.375. The probability
of leakage for each channel within a multi-channel architecture becomes

P(l) = P(int) · P(dcr) · P(dco) · σ
n

. (9)

Similarly, the probability of corruption for each channel within multi-channel architec-
ture becomes

P(c)=

((
1−P(n)

)
P(inj)+

(
P(n)+P(s)

)
−
(

P(n)P(s)
)

−
(
1−P(n)

)(
P(n)+P(s)

)
P(inj)

)
ρ

n
. (10)

Therefore, the more channels there are in a network, the lower the probability of
adversarial interference of the data11. This, then, follows the premise of PSMT: to have
more channels than the combined set of listeners and disruptors AL∪AD.

In the same manner that multiple channels may thwart adversarial interference, mes-
sage fragmentation may also thwart eavesdropping. Message fragmentation is the splitting
of data across the available channels, effectively parallelizing the data. Fragmentation
describes how many portions the original message is divided into. Various methods of
fragmentation are possible, including uniform or non-uniform fragmentation from 1-bit to
the total m-bits in message M. Research has been published on particular approaches to
fragmentation [28,33]; however, in this paper,we focuse on the security effects and apply
the assumption that fragments are of equal size across the network. If Cn is the set of n
channels, and FM is the set of k fragments of 1 ≤ | fi| ≤ m-bits of the message M, then

FM = { f(M,1), f(M,2), f(M,3), . . . , f(M,k)} (11)
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f(M,i) ⊆ M f or 1 ≤ i ≤ k (12)

where each fragment is unique. The channel load, L, is the percentage of M on a particular
channel j, such that

L(j,M) =
∑n

i=1| fi | f or fi ∈ C(j,M)

|M| (13)

and the Average Loading (AL) for the set of channels is

ALM =
∑n

i=1 L(j,M)

n
. (14)

For example, FM ={ f1, f2, f3, f4, f5, f6, f7, f8} is the set of eight fragments of message M
on a network that has n = 8 channels, and each channel transmits two fragments. Therefore,
AL = 0.25. Message fragmentation also allows for duplicating data across channels.
The Duplication Factor (DF) measures the average number of times a given fragment is
transmitted, indicating the network redundancy. The DF may increase as compensatory
tuning for known adversarial interactions. For the previous example, DF = 2, since each
fragment is sent across two channels and, thus, duplicated twice. For these calculations of
DF and AL, the fragment sizes are uniform.

The AL and DF directly affect P(C) and P(I). Of the constituent parts of P(C),
P(int) is only affected by DF in aggregation across all channels because the probability of
interception of a single channel is not necessarily improved by duplication or fragmentation.
However, P(int) may be increased by the message M being duplicated across multiple
channels, offering an adversary more opportunities to intercept portions of the message.

Therefore, DF is only multiplied by P(int) when averaging all the channels into a
composite probability of leakage. For the constituent parts of P(I), duplication directly
affects P(s) because sending fragments multiple times decreases the probability of lost data
through suppression. P(n) and P(inj) are not directly influenced by duplication. Thus,
P(s) is divided by DF for each channel, giving

P(c)=

((
1−P(n)

)
P(inj)+

(
P(n)+ P(s)

DF
)
−
(

P(n) P(s)
DF
)

−
(
1−P(n)

)(
P(n)+ P(s)

DF
)

P(inj)

)
ρ

n
. (15)

Fragmentation does not necessarily increase or decrease P(s) except that it allows
for duplication. However, fragmentation does directly affect P(inj) since each fragment
sent needs to be modified by the adversary in order to have malicious data accepted at the
receiver. Thus, P(inj) is multiplied by AL for each channel, giving

P(c)=

((
1−P(n)

)
P(inj)AL+

(
P(n)+ P(s)

DF
)
−
(

P(n) P(s)
DF
)

−
(
1−P(n)

)(
P(n)+ P(s)

DF
)

P(inj)AL

)
ρ

n
. (16)

Applying the PSMT and decomposing the network into constituent channels yields

QoSS :


P1(C), P1(I), QoS1
P2(C), P2(I), QoS2

...
...

...
Pn(C), Pn(I), QoSn

→ Sec Reqs, (17)

which highlights that each channel has its own characteristics. From the end-user per-
spective, only the aggregated QoSS for the entire network is apparent. With insight into
each channel’s QoSS, an analyst may suggest a different quantity of channels, different
fragmentation or duplication, or a different encoding or encryption algorithm if adversarial
actors attempt to influence communications.
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5. Case Studies of Multi-Channel QoSS

The three example networks presented here are used to highlight the initial estimates
and are intended to be refined as the network understanding is increased. For simplicity,
the probabilities used in the following examples are discrete values; however, any value
between 0 and 1 is possible. In developing the QoSS model, estimating the intermediate
values is a challenge. As a starting point, 0 may be used for a network that has absolutely
no encryption, 0.5 may be used for a system that has minimal or sub-standard encryption,
and 1 may be used for a system that employs strong encryption.

Incremental changes may be employed as desired or as needed after a baseline un-
derstanding is developed, much like understanding the incremental difference between
AES-128 and AES-256, or the difference between DES, triple-DES, and AES. The primary
goal of the initial model development is to apply estimates for each of the constituent
elements as implied by [34]. Further refinement of those estimates may be applied after
more thorough system analyses.

During the early stages of analysis, the difference between a probability of 0.76 and
0.77 remains undefined and the numbers tend to be more arbitrary. This serves to assign a
starting point for analysis, thus, establishing a baseline. Given the three example networks
that follow and some initial probabilistic estimates for the various characteristics, the
QoSS model is applied. Each case has a realistic configuration that allows for one-to-
one comparison.

5.1. Single-Channel Network

The first example is a network that utilizes a single wireless channel to provide a
realistic baseline. With n = 1, there is σ = 1 listener, and ρ = 1 disruptor. AL = 1 because
the message cannot be split, and DF = 1 since, for this architecture, the message is only sent
once. Table 3 shows notional probabilities for a network that has no encryption, standard
data encoding, and a moderate probability of interception because it uses a standard
broadcast frequency and a moderately strong broadcast signal, which also results in a low
probability of noise.

We assign a high probability of suppression under the assumption of an omnidirec-
tional receiver, susceptible to jamming. The probability for injection is moderately high,
though not as high as the probability of suppression, because injection is more challenging
than suppression. These values serve as a baseline to demonstrate the effects of multiple
channels in the subsequent examples.

Table 3. Input and output values for a single-channel network.

Channel P(int) P(dcr) P(dco) P(l) P(C) P(n) P(s) P(inj) P(c) P(I)

1 0.5 1 1 0.5 0.5 0.25 1 0.33 0.9381 0.0619

Based on these constraints, the single-channel network has a high probability of
leakage, with a corresponding probability of confidentiality. The probability of corruption is
also very high, with a correspondingly low probability of integrity. These probabilities may
be improved by using encryption and by using directional receivers or a wired connection.

5.2. Three-Channel Network

The second example applies PSMT to the communication architecture, and demon-
strates the initial application of multiple channels. In this example, the communication
network uses three discrete, heterogeneous channels to communicate between the trans-
mitter and the receiver. For this example, n = 3, σ = 1 listener, and ρ = 1 disruptor.
One difference between the single channel case and the three-channel case is the AL. The
original message is fragmented into three equal portions, f1, f2, and f3, which are each
transmitted twice as follows: { f1, f2} on Channel 1, { f2, f3} on Channel 2, and { f3, f1} on
Channel 3. For this case AL = 0.66, and DF = 2 (because each fragment is sent twice).
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Table 4 shows the theorized characteristics for a network with various probability of
interception and fixed values for probability of decryption and decoding. Additionally,
Table 4 shows that the network has various probabilities of injection with fixed values for
probability of noise and suppression.

Channel 1 has identical input factors to the single-channel network as demonstrated
in Table 3; however, the message is fragmented across multiple channels, which causes the
probability of confidentiality and probability of integrity to increase, not only for Channel
1, but for each channel in the network12. The average probability of confidentiality is
0.83 even without encryption, indicating that fracturing data across the multiple channels
improves the probability of confidentiality and over-all QoSS, partially mitigating the lack
of encryption.

Table 4. Input and output values for a three-channel network.

Channel (n) Pn(int) Pn(dcr) Pn(dco) Pn(l) Pn(C) Pn(n) Pn(s) Pn(inj) Pn(c) Pn(I)

1 0.5 1 1 0.1667 0.8333 0.25 1 0.33 0.2219 0.7781
2 0.75 1 1 0.2500 0.7500 0.25 1 0.4 0.2248 0.7752
3 0.25 1 1 0.0833 0.9167 0.25 1 0.26 0.2191 0.7809

Avg 0.5 1 1 0.1667 0.8333 0.25 1 0.33 0.2219 0.7781

5.3. Eight-Channel Network

The third example presents a communication network with eight discrete, heteroge-
neous channels. In this example, n = 8, σ = 3 listeners, and ρ = 3 disruptors. The original
message is fragmented into eight equal portions, { f1, f2, ..., f8}, of which { f1, f2} are transmit-
ted on Channel 1, { f2, f3} on Channel 2, { f3, f4} on Channel 3, and so on. Here, AL = 0.25,
and DF = 2 because each fragment is sent twice. Table 5 shows the theorized input for the
eight-channel network.

Of particular note, Table 5 has the same input as Table 4 for Channels 1–3, and other
values for Channels 4–8, although with different results13. The only difference from the three-
channel case is that, with eight channels, the message is fragmented across more channels,
causing the confidentiality and integrity to increase. The average values for P(int), P(dcr),
and P(dco) are the same for the single-channel, three-channel, and eight-channel networks,
although the average P(l) and P(C) are notably different.

Table 5. Input and output values for an eight-channel network.

Channel (n) Pn(int) Pn(dcr) Pn(dco) Pn(l) Pn(C) Pn(n) Pn(s) Pn(inj) Pn(c) Pn(I)

1 0.5 1 1 0.1875 0.8125 0.25 1 0.33 0.2402 0.7598
2 0.75 1 1 0.2813 0.7188 0.25 1 0.4 0.2414 0.7586
3 0.25 1 1 0.0938 0.9063 0.25 1 0.26 0.2389 0.7611
4 0.2 1 1 0.0750 0.9250 0.25 1 0.05 0.2353 0.7647
5 0.35 1 1 0.1313 0.8688 0.25 1 0.1 0.2361 0.7639
6 0.4 1 1 0.1500 0.8500 0.25 1 0.2 0.2379 0.7621
7 0.7 1 1 0.2625 0.7375 0.25 1 0.6 0.2449 0.7551
8 0.85 1 1 0.3188 0.6813 0.25 1 0.7 0.2467 0.7533

Avg 0.5 1 1 0.1875 0.8125 0.25 1 0.33 0.2402 0.7598

As expected, the single-channel network has the lowest theorized QoSS values. With a
slightly higher percentage of listeners, the eight-channel network has a slightly higher P(l)
and correspondingly lower P(C) than the three-channel network14. Similarly, the average
values for P(n), P(s), and P(inj) are the same for the single-channel, three-channel, and
eight-channel networks, yet the P(c) and P(I) are significantly different.
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5.4. Implications of Results

The most difficult aspect of developing the QoSS metrics is making assumptions
about the network characteristics. For these examples, we began with an assumption that
P(dcr) = 1 was a baseline value that an adversary would be able to access all critical
data. What does this mean for P(dcr) = 1? Perhaps the assumption implies that no
encryption is used, despite the fact that the use of encryption is strongly encouraged for all
communications systems.

Similarly, is this possible for P(dcr) = 0? This assumption implies that the encryption
is unbreakable at this time and under these communication and environmental conditions.
The fact that we do not know the adversary’s fullest capabilities, nor do we know the
adversary’s intentions, are considerations that must be included, within a range, in the
estimate for the probabilistic aspect of our metrics. More accurately, we estimate what is
possible within the current state-of-the-art and under a set of operational characteristics.

Adversarial intention is much more difficult to estimate; intentions may change
rapidly or may vary on a case-by-case basis. In light of that, we have attempted to reflect
all the adversarial intentions, whether it is jamming, spoofing, or eavesdropping, within
the generalized probability of confidentiality and probability of integrity. With these
estimations, both adversarial capability and intention are difficult to concretely quantify in
the initial pass, and they are, thus, cast in probabilistic terms.

This version of the QoSS model is a single snap-shot in time; a time-varying QoSS
model is in development in which the model estimations may be updated based on new
research, information, or changing environmental and systemic conditions. As the QoSS
model becomes more mature and broadly adopted, future iterations will benefit from
increased understanding of these probabilistic approaches and an initial coarse estimate
for design requirements may converge to refined security requirements if applied in an
iterative manner.

These iterations point directly to the eventual need for a simulation environment and
all the supporting protocols that allow for the verification and validation of the security
metrics. To achieve that end, the network performance will need to be influenced by a
simulated adversarial actor, and the amount of data leakage or corruption will be directly
quantified based on the amount of transmitted data. Only with that final step of validation
will we be certain that the model portrays a realistic version of a communication network.

6. Conclusions and Future Work

This manuscript represents an initial model intended to be used in developing an
understanding of how real-world networks function in the presence of adversarial influence.
The current analysis does not address the nuances of specific communication scenarios,
and there is no existing network to validate our model. Quantifying security in real-
world communication networks is difficult and mostly subjective. Without a metric for
confidentiality and integrity, it is nearly impossible to state how secure one network is
compared to another.

Using a probabilistic model that considers data leakage and data corruption in place
of confidentiality and integrity, a set of metrics may be used to quantify the QoSS. This
model allows the direct and repeatable quantification of the security available in a single-
or multi-channel network under static configurations. The quantification of security is
based directly upon the probabilities that adversarial listeners and disruptors are able to
gain access to or change the original message.

Traditional measurements of QoS provide a foundation, and message fragmentation
and duplication across the available channels provide demonstrably improved theoretical
performance. A fully developed simulation would be useful in validating the modeled
results. However, at this time, there is no existing network or simulation of a real network
to validate the theoretical QoSS model. A simulation environment is in the process of
development in order to include the ability to estimate an adversary’s influence, as are the
experiments and the network prototype that will be used to test the theoretical QoSS model.
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Two additional manuscripts are nearing completion that will address two of the many
thorny issues contained within real networks—in particular, multi-hop networks and the
changes to the QoSS metrics that occur over time. This future work may require building
specific data-handling protocols, and would monitor how the network end-points respond.
With the simulation environment developed, the modeled results may be verified and the
QoSS model may be validated or improved with additional data and insight.
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Notes
1 Analysis of the dynamic aspects of mobile networks or tunable security mechanisms is left for a subsequent paper,

as are changing environmental conditions and temporal adversarial intrusions.
2 Multi-hop architectures are outside the scope of this paper but are a straightforward extension of the model that will

be addressed in a subsequent paper.
3 Wired and wireless networks have different characteristic values based on the specific technologies and protocols

used.
4 This value reflects the quality of the encryption used, be it no encryption, a simple ROT13 algorithm, or a sophisticated

encryption algorithm.
5 This value highlights the differences in binary strings, and if the adversary has the ability to recognize those

differences. For example, an adversary with a .mp3 file who mistakenly believes it is a .txt file, will not be able to
derive useful information from that particular file.

6 To clarify, P(s) is the active jamming by an adversary as quantified at the receiver, whereas availability is quantified
by the transmitter’s capabilities.

7 As the adversarial intent of suppression is counter to that of injection, it is unlikely, although not impossible, to have
high P(s) and high P(inj). This would be akin to an adversary steering a receiving channel to a compromised channel
by jamming the intended channel. Neither of these speaks directly to the intent of an adversary but rather to the
requirements and built-in capabilities of the transmitter and receiver.

8 Signaling System Number 7 (SS7) was developed in 1975 as a set of protocols used to set up and tear down public
switched telephone network (PSTN) communication connections.

9 The user’s identity is verified by using a combination of two or more factors: something they know, something they
have, or something they are.

10 In the general case, AL or AD may be subsets of or intersect with each other; i.e., AL⊆AD, or AD⊆AL or AL∩AD.
11 One potential implication is that each channel may carry both a portion of the data and be used as a method to check

for errors on the others channels
12 In a real communication architecture, all three channels would likely have more similar characteristics.
13 As in the Three-Channel example, a real communication system would likely have channels with similar characteris-

tics.
14 Note the number of channels with respect to Equation (8) for this multi-channel space. For the eight-channel network,

n = 8 even though seven channels would be sufficient based on σ = 3 listeners, ρ = 3 disruptors, and Equation (8).
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