
Journal of

Cybersecurity
and Privacy

Article

Secure Remote Storage of Logs with Search Capabilities

Rui Araújo 1 and António Pinto 2,*

����������
�������

Citation: Araújo, R.; Pinto, A. Secure

Remote Storage of Logs with Search

Capabilities. J. Cybersecur. Priv. 2021,

1, 340–364. https://doi.org/10.3390/

jcp1020019

Academic Editor: Carlo Blundo

Received: 19 April 2021

Accepted: 31 May 2021

Published: 8 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CIICESI, ESTG, Politécnico do Porto, 4200-465 Porto, Portugal; 8140414@estg.ipp.pt
2 CIICESI, ESTG, Politécnico do Porto and CRACS & INESC TEC, 4200-465 Porto, Portugal
* Correspondence: apinto@inesctec.pt

Abstract: Along with the use of cloud-based services, infrastructure, and storage, the use of applica-
tion logs in business critical applications is a standard practice. Application logs must be stored in an
accessible manner in order to be used whenever needed. The debugging of these applications is a
common situation where such access is required. Frequently, part of the information contained in logs
records is sensitive. In this paper, we evaluate the possibility of storing critical logs in a remote storage
while maintaining its confidentiality and server-side search capabilities. To the best of our knowledge,
the designed search algorithm is the first to support full Boolean searches combined with field
searching and nested queries. We demonstrate its feasibility and timely operation with a prototype
implementation that never requires access, by the storage provider, to plain text information. Our
solution was able to perform search and decryption operations at a rate of, approximately, 0.05 ms per
line. A comparison with the related work allows us to demonstrate its feasibility and conclude that
our solution is also the fastest one in indexing operations, the most frequent operations performed.

Keywords: logging; cryptography; searchable encryption; privacy; confidentiality

1. Introduction

Business critical applications require monitoring. A frequent pillar of application
monitoring is the use of logs. These produce a time-stamped recording of events relevant to
a particular system and establish a baseline of standard operations for future reference, to
identify erroneous operations, to diagnose performance bottlenecks, to facilitate application
debugging, among other tasks. Frequently, part of the information contained in logs records
is sensitive. On one hand, when considering on-premises deployment of logging solutions,
considerations related to anonymity, confidentiality and integrity of log records may not
be addressed. On the other hand, with the advent of cloud platforms that house both the
applications and their logs, secure remote logging appears as a crucial issue to address.

Depending on the commercial and trust relations established between a client and
a remote log service provider, distinct forms of log storage can be envisioned. If it is
the case of storing anonymous logs, these may be stored without additional processing.
However, if it is the case of storing application or server related logs that might contain
sensitive information on them, these may require encryption to guaranty confidentiality.
The log encryption may be performed at the user’s premises or at the premises of the
service provider. Additional guarantees, such as integrity or search capability, may also be
required. Moreover, if some user related information is comprised in such logs, additional
measures are imposed by regulations, such as the General Data Protection Regulation
(GDPR), Regulation 2016/679 of the European Union [1]. Finally, a business may wish to
deploy its applications with one cloud provider and store the operational logs of those
applications in a distinct cloud provider. We envision a Secure Logging as a Service (SLaS)
to be one that provides the remote storage of logs with confidentiality, integrity, and
searching capability requirements.

When remote log confidentiality is required, the most common solution is to use
cryptography techniques to encrypt all data before transferring it to a remote cloud storage

J. Cybersecur. Priv. 2021, 1, 340–364. https://doi.org/10.3390/jcp1020019 https://www.mdpi.com/journal/jcp

https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://orcid.org/0000-0002-5583-5772
https://doi.org/10.3390/jcp1020019
https://doi.org/10.3390/jcp1020019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcp1020019
https://www.mdpi.com/journal/jcp
https://www.mdpi.com/article/10.3390/jcp1020019?type=check_update&version=2

J. Cybersecur. Priv. 2021, 1 341

service. In some particular cases, the data sent can also be digitally signed to ensure its
source trustworthiness, a cryptographic hash can also be computed to assure data integrity
and to prevent its manipulation while in transit. If searching within these remotely stored
logs is required, the simplest and trivial approach consists of transferring all data back to
the client, so that it can be decrypted, allowing search operations to be performed over the
clear text and at the client side. Despite the data privacy and confidentiality guarantees
offered by this approach and, possibly, data integrity when combined with digital signature
and hash validation techniques, it can rapidly become impractical with the normal growth
of log data. It will also have a negative impact in the latency and performance of the
client-side operations since, every time a search operation is performed, all the log data is
transferred to the client. Moreover, this approach does not make use of the full potential of
cloud computing.

The reference scenario adopted in this work is shown in Figure 1. It describes a
cloud-based secure log storage service. The Client makes use of a web-based Application
Programming Interface (WEB API) to transfer its encrypted operational logs to the cloud,
named SLaS Provider. In parallel, the Client can make use of the same WEB API to
query, in a encrypted form, its logs and retrieve matching records. A SLaS application is
foreseen in order to make use of the cloud’s potential and to enable the transfer of some
CPU-intensive tasks from the Client to the SLaS Provider. The SLaS Provider stores the
client-side encrypted logs in its database and performs search operations on them, without
having access to clear text logs.

SLaS ProviderClient

SLaS Application

Generation

Search

WEB API

Figure 1. Reference scenario.

The use of Searchable Encryption (SE) [2,3] was considered. It is a method that
encrypts data in such a way that enables keyword searching over the encrypted data,
without requiring access to clear text data. To build a more efficient solution, an inverted
index was used [4]. The confidentiality of log records is assured not only at rest but also in
transit with the use of both symmetric and asymmetric encryption algorithms. To preserve
the integrity of the log lines submitted to the remote storage, the use of keyed hashing
algorithms assure that not only the integrity of each log record is preserved but also its
authenticity. Moreover, an hash chain is constructed where the successive computation of
HMACs makes possible to detect any unauthorized modification in the log sequence.

To the best of our knowledge, the proposed solution is the first one to, cumulatively
and efficiently, support:

• confidentiality, integrity and authenticity of the log records;
• efficient log integrity verification; and
• extended search capability by supporting full Boolean searches, plus fielded searching

and nested queries.

Moreover, the performed experiments show that the proposed solution outperforms
the related works.

J. Cybersecur. Priv. 2021, 1 342

This paper is organized in sections. Section 2 introduces SE and overviews its evolu-
tion. Section 3 presents all relevant work from other researchers that is related to the one
discussed herein. Section 4 details the proposed solution, its architecture and main features.
Sections 5–7 are dedicated to the validation of the proposed solution, a comparison with
the related work and its security analysis. Section 8 concludes the work.

2. Secure Remote Storage and Searchable Encryption

The migration of services from on-premises to cloud-based services is becoming a
more frequent one. Such service migration implies that data, even if only a subset, must
also move to remote storage. This as lead researchers to propose novel solutions for the
secure and remote storage of data [5,6]. New research issues appear in this new context,
examples being: assuring data confidentiality, maintaining data access, enforcing access
control, enabling data sharing, and enabling confidential searching of remotely stored data.

In Reference [7], the authors propose a novel secure cloud storage that makes use
of proxy re-encryption to transform remotely stored ciphertexts so that a delegated user
can then access them. Similar work, using proxy re-encryption data sharing by means
of ciphertext transformation, is presented in Reference [8], this time focusing on IoT. In
Reference [9], the authors try to solve the key escrow problem of using a secure remote
storage that requires that trusted central authorities be capable of decrypting ciphertexts
when needed. In the same line of research, Wang et al. proposed a novel use of Attribute
Based Encryption (ABE) to impose fine grained access control to remotely stored data [10].
Other authors pursued the same goal with similar use of ABE [11,12].

The previously described secure remote storage systems focus mainly on protecting
remotely stored data, imposing access control or enabling the controlled sharing of the data.
These do not support secure remote searching over the remotely stored data. Secure remote
searching over encrypted data can then be seen as a different, more specific, research line.

In a clear text remote search operation, the knowledge of both the keywords and
the matching data are known to the server. SE arises as a technique that preserves data
confidentially while enabling server-side searching [3]. Over the years, various types of
constructions have been proposed. In some of them, researchers have focused on the
efficiency of SE techniques, while others focused on the security and privacy [13].

Alongside efficiency and security, the expressiveness of queries is the third main
challenge within this field of research. In an SE scheme, efficiency can be typically measured
by its computational and communication costs. Although there is no common security
model, typically, an SE scheme is considered secure if it can assure that the server learns
nothing about the queries or the matching results. The query expressiveness defines the
types of supported searches, and typically implies some trade-offs, since it generally is
achieved at the expense of some efficiency or security.

SE schemes usually operate based on one of two techniques. Some schemes use an
encryption algorithm over the clear text data that allows search operations to be performed
directly and sequentially on the ciphertext. Thus, the search time is linear to the size of the
data stored on the server. Other schemes generate a searchable encrypted index, based on
the existing keywords. These indexes can significantly increase the search performance
since they allow queries to be performed by the use of trapdoor functions. A trapdoor
function consists of a function that is straightforward to compute in one way, but very
inefficient to inverse without the knowledge of a secret value. In an SE scheme, these
functions are used to generate the search tokens, commonly known as trapdoors, that allow
the search to be securely performed. A searchable index can either be a forward index or an
inverted index. A forward index builds an index of keywords per document. An inverted
index builds an index of documents per keyword [2].

Symmetric Searchable Encryption (SSE) uses symmetric key cryptography and enables
only the secret key owner to produce ciphertexts and search queries. Examples of SSE
can be found in Reference [14–41]. Public key Encryption with Keyword Search, or PEKS,
enable the creation of ciphertexts with a public key, and only the private key owner can

J. Cybersecur. Priv. 2021, 1 343

perform the encrypted search. PEKS has the particularity of supporting multiple user
scenarios due to the fact that anyone can encrypt data with the right public key. Examples
of PEKS can be found in Reference [6,42–58]. More recent example works can be found
in Reference [59,60]. In Reference [59], the authors devise a Lattice-based key-aggregate
encryption mechanism. Their work, while being quantum-resistant, only supports the
encryption of one bit messages and uses a direct index, where each one bit message
will have a associated trapdoor, whereas the work proposed in Reference [60] solves the
forward secrecy problem with public key encryption techniques that ultimately result
slower operation rates, but also in requiring larger storage space, when compared to
symmetric encryption techniques.

3. Related Work

Securing logs is not a new concept since some work can even be found in a pre-cloud
era. Bellere and Yee [61] were the first to propose a solution to enhance the security of logs.
The authors define a forward integrity security property and demonstrate its application
to secure and verifiable logs. Key issues being intrusion detection, accountability and
communications security. A forward secure stream integrity is presented and constructed
by the use of a forward-secure MACs scheme, in which the log entries are indexed based
on time periods. This solution enables a flow integrity of log entries. Based on this work,
multiple research efforts appeared.

Schneier and Kelsey [62] proposed a protocol, using symmetric cryptographic, focused
on the storage of audit logs. The scheme employs an one-way hash chain [63] used
to create a dependency among the log entries. This dependency enables the detection
of unauthorized modification in the log sequence since any alteration would break the
consistency of the hash chain. An hash chain consists of a successive computation of
cryptographic hash functions, where the input of the current hash also includes the output
of the previous one. The authors also considered the use of evolving cryptography keys [64]
to protect the audit trails and support computer forensics. Evolving cryptography can
be seen as an encryption technique in which symmetric keys evolve over time, with the
goal of limiting the impact of key compromise. Alongside the communication and storage
overhead, since an authentication tag is generated and stored for each individual log entry,
the scheme was proven to be vulnerable to truncation attacks. A truncation attack consists
of the deletion of tail end log entries without being detected, thereby breaking the log
entries integrity.

In 2005, Forte et al. proposed a generic secure logging solution [65] that makes use
of covert channels for log transmission. It aims at addressing the lack of security of the
syslog protocol [66] with problems related to the transmission of data, message integrity
and message authenticity. A covert channel can be used in any communication channel
to transmit information using methods not originally though of. The authors explored
the possibility of transmitting log data using ordinary DNS requests and responses. They
used DNS Security Extensions, asymmetric cryptography, and hash functions, such as the
MD5 [67] and the SHA-1 [68] algorithms, considered safe at the time of their publication,
to assure messages authenticity and integrity.

Holt et al. proposed Logcrypt [69], a secure logging protocol. Logs are initialized
in a known state, stored on an external server, and the integrity of an earlier state can be
used to verify the integrity of a later state. The solution provides two different approaches.
The simpler one is based on MACs, in which an initial secret random value is used to
initialize an hash chain. Each link of the hash chain is then used to derive secret keys
for log data encryption. The use of symmetric encryption requires that any entity, who
desires to verify the integrity of a log entry, must have the secret key used with the MAC
function. Any entity that knows the key can forge log entries and, consequently, break
the system’s security. To address this problem, Holt proposed the second approach that
uses asymmetric encryption combined with identity-based signatures [70]. Replacing
MACs with digital signatures enables the verification of log entries by any entity without

J. Cybersecur. Priv. 2021, 1 344

disclosing private keys. While the use of asymmetric cryptography simplifies the log entry
verification, it creates not only a communication overhead, originated from the constant key
pair exchanges between the parties involved, but also a storage overhead since asymmetric
key signatures are usually larger than MACs.

Ma et al. [71] proposed a new approach to secure logging. They state that, for an
audit logging system to be considered secure, it must assure not only data integrity but
also stream integrity, as no reordering of the log entries should be possible. The author
also enunciates the log truncation attack, a type of attack that prior schemes [61,62,69]
failed to mitigate. The proposed mitigation is based on forward-secure stream integrity.
This property is achieved by the use of Forward-secure sequential Aggregate (FssAgg),
conceived by the same author in Reference [72]. In a FssAgg scheme, signatures or MACs
are combined sequentially into a unique aggregated signature. Based on this scheme, Ma
et al. devised two secure logging schemes, one privately verifiable and another publicly
verifiable. The privately verifiable scheme is based on MACs, in which two FssAgg MACs
are computed over each log file with different keys in order to avoid the dependency of
an always online server. The publicly verifiable scheme bases its operation in asymmetric
cryptography and is envisioned mainly for systems that require public auditing.

The Secure Logging as a Service (SLaS) term was introduced by Ray et al. [73]. They
proposed a novel solution for the storage of log records on a remote server operating
in a cloud-based environment. It starts by generating three master keys: A0 and X0
used for data integrity in hash calculations, and K0 used for confidentiality in encryption
and decryption operations. These keys are stored based on a proactive secret-sharing
scheme [74]. The log records are handled in batches of n, a random value that indicates
how many times the master keys can be used. Each batch starts with a special first entry
that contains a timestamp and the value n. This entry is encrypted with K0 and a MAC
using A0 is calculated over the resulting ciphertext. An aggregated MAC is also calculated
using X0 and having each encrypted log entry MAC as input. The closing of the batch is
marked by a log close entry, which includes a timestamp and the aggregated MAC. Each
log batch is indexed by an upload tag in order to allow for future retrieval of the data.
The upload tag consists of an instance of a hashed Diffie-Hellman [75] key. A delete tag is
also included.

Zawoad et al. apply SLaS to the digital forensics domain in Reference [76], with a
consequent extended version in Reference [77]. They proposed SecLaaS to store logs in a
secure way, preserving its confidentiality and integrity, while providing an API for forensic
investigators to be able to gather their evidence. The logs entries are encrypted using an
asymmetric encryption algorithm. Some of the fields of the entries are kept in clear in
order to allow some search operations. After, the log of that encrypted entry is fed to the
log hash chain, which is used to maintain the right order of log records. Then, a tuple
composed by the encrypted log entry and its matching hash chain link are stored. In order
to generate the Proof of Past Log, a publicly available integrity information, one of three
accumulator schemes can be used: Bloom Filters (BF), one-way accumulators or Bloom
trees. In the BF scheme, a structure is maintained per IP address, per day. The one-way
accumulator is a cryptographic accumulator, based on RSA assumption, which enables the
test of membership of an element in a set, with no false negatives and the possibility of
false positives [78]. Bloom trees arises since BF conceive the possibility of false positives.
To build the Bloom tree, for every m number of logs, a new BF is generated, creating n

m BF
for n logs records, per IP and per day.

For auditing purposes, Waters et al. proposed a solution [79] that maintains the
privacy of the audit logs without losing search capabilities. Each encrypted record is
concatenated with the hash of the previous record, forming an hash chain. They propose
both an asymmetric and symmetric key schemes for public or private integrity validation,
respectively. The symmetric key scheme, inspired by Reference [14,15], indexes each log
entry with the generation of a random symmetric key, that shall be used only for the
encryption of each entry. Then, the set of keywords is extracted from the log record. For

J. Cybersecur. Priv. 2021, 1 345

each keyword ki, a pseudorandom function is applied having as input ki and a secret S.
The result is then used as input for another pseudorandom function, together with r. The
output of this second function is XORed with the key K and a flag, a constant bit string
of length l, which yields the final keyword value ci. The asymmetric scheme is based on
Identity-Based Encryption (IBE) [80].

Ohtaki et al. [81] proposed the use of a partial disclosure scheme. Two key pairs
(P0, S0), (P1, S1) are generated and used to compute a log record for both searching and
disclosure. The scheme signs each keyword with key S0. Then, concatenate the signature
with the log record unique identifier Ii, encrypting those values together with the public
key P1. The log record is also encrypted with a symmetric key algorithm. After some
experiments, Ohtaki noticed that this scheme is inefficient. The use of an encrypted inverted
index was then considered to reduce search time. Ohtaki’s inverted index consists of a
linear list, on which each list item is composed by the log record identifier and a pointer to
the next list item. To assure privacy, these list items are encrypted.

In following work, they proposed an extended solution [82] that supports Boolean
queries based on BF. It starts with the generation of all the possible combinations of all
keywords that exist in each log entry. For instance, for the keywords “A”, “B”, and “C”, the
possible combinations are “A”, “B”, “C”, “A and B”, “A and C”, “B and C”, and “A and B
and C”. Next, a normalization is applied to the patterns, making the order of the keywords
on the query not important (e.g., “A and B” is the same as “B and A”). The normalized
patterns, treated as individual keywords, are encrypted with S0 and concatenated with Ii.
The final value is added to the BF.

Sabbaghi et al. [83] proposed a scheme to build an audit log that should guarantee
tamper resistance, verification capability, logging speed, search speed and correctness of
the search results. They propose the use of a record authenticator generated with hash
functions. The schema is focused on SQL commands and starts with the generation of an
asymmetric key pair (P0, S0) and the sequential publication of the public key P0. Then, the
extraction of keywords from SQL queries is performed. Five groups Gi of distinct types
of keywords are created. The first group is reserved for keywords of the “SELECT” part,
the second for keywords of the “FROM” clause, the third for keywords of the “WHERE”
condition, the fourth group is dedicated to the values of that condition and the fifth, and
last group, is used for metadata, such as the time when the query was executed or by whom.
Following the creation of such groups, the record authenticator is generated with the use
of three hash functions and a dedicated hash space H, which consists on a string of bits, set
initially to zero. In order to enhance the security of the scheme, each keyword, prior to its
hash calculation, is concatenated with key K. This assures that the same keyword, even on
the same group, for two different log records hashes to different places of H.

Accorsi addresses log privacy [84,85] with focus on devices with low resources. His
solution, inspired by Reference [62], starts on the device, which is expected to apply the
necessary cryptographic techniques to safeguard the privacy, integrity and uniqueness of
its log file. Privacy is achieved by encrypting each log entry with a symmetric encryption
algorithm. The encryption algorithm also enables forward integrity, meaning that, if an
attacker can compromise the log data at instant t, all log data stored prior to t will not
be compromised. Integrity is guaranteed by the construction of an hash chain composed
by message authentication codes that are calculated per entry and based on a secret
random value. Uniqueness is ensured by the use of timestamps, which also prevent replay
attacks. Based on Reference [84,85], Accorsi designed BBox [86], a digital black box that
added asymmetric cryptography to guarantee the authenticity of log records. It assures
a reliable data origin by only considering log records from legitimate sources. The log
records, in order to guarantee forward secrecy, are stored in a encrypted state. Each log is
encrypted with a randomly generated key. Tamper-evidence is accomplished through the
maintenance of an hash chain. BBox allows single keyword searches, with the use of log
views, a mechanism similar to views of relational databases.

J. Cybersecur. Priv. 2021, 1 346

Savade et al. [87] proposed a technique to protect log records from tampering based
on a system of linear equations, while still permitting search operations to be conducted
over those records. The scheme is comprised of four functions: KeyGen(s) that returns a
key pair (PU, PR) using a security parameter s; PKE(PU, m) that encrypts a message m,
using PU, and outputs s; Trapdoor(PR, m) that outputs the trapdoor t using m and PR as
input; and a test function that verifies if an encrypted keyword is present in the log records.
This verification is conducted using a generalization of the inverse matrix concept [88].

More recently, Zhao et al. address encrypted log searching while preserving privacy [89]
using access tickets that are computed using an hash function that contains: the identity
and the IP address of the requesting user, the request expiration date, and information
regarding the type of operation desired to be executed over the data. This information
is then used on the construction of the keyword set that is appended to the encrypted
audit log and enables the server to answer each one of the “who/when/where/what” data
owner queries. When the data owner desires to query his encrypted audit logs, it creates a
trapdoor of the keywords of interest by applying the same algorithm used on the audit log
generation. The master keys are used on this generation, assuring that no one besides the
data owner can create search trapdoors. Upon receiving such trapdoors, the server tests
them against each stored log record. All matching results are returned to the data owner,
whom, after assuring the validity and integrity of such results, decrypts them and obtains
the information regarding the kind of access that has been done over his data.

Table 1 compares the identified related work. Except Forte et al. [65], whose scheme is
focused on the transmission phase, all identified solutions enable privacy by encrypting the
data prior to its storage. Boolean search refers to the capability of using the “AND”, “OR”,
and “NOT” operators. Almost all solutions enable data integrity and authenticity with the
use of a cryptographic hash chain. Only Ma et al. [71] devises a different approach with
their specific technique named FssAgg. Regarding encrypted log searching, the solution
proposed by Waters et al. [79], although source of inspiration for subsequent solutions, only
supports single keyword search and has both high computational and storage costs. The
solutions proposed by Accorsi et al. [86] and Savade et al. [87], while being more efficient,
only allow for single keyword search. Ohtaki et al. [82] enhances the search capability
with support for the “AND” and “OR” operators. Nevertheless, this Boolean queries are
achieved not by performing Boolean operations but by adding extra searchable indexes.
Ohtaki uses BF that admit the occurrence of false positives, which might disclose more
log records than the ones that are relevant. Sabbaghi et al. [83] also supports the Boolean
queries with the “AND” and “OR” operators; however, their work is fully focused on SQL
commands, hence being only searchable within the SQL clauses. The solution designed
by Zhao et al. [89] only allows searches to be performed over the metadata appended
to each log record and only to answer the “who/when/where/what” questions. None
of the presented solutions supports all the Boolean operators nor support fine-grained
operations, like field search and nested queries. Field search can be used to search for a
value on a specific part of the log record. For instance, if one wants all log entries from
November, fielded search enables the non-occurrence of false positives by not matching
log entries that contains the keyword “November” in any other part of the log, except its
date. Nested queries can be used, for example, to retrieve log records from the month
of November but originating from a specific set of IP addresses. Moreover, none of the
solutions proposed in the related work offer all the desired security properties alongside
an advanced searching capability.

J. Cybersecur. Priv. 2021, 1 347

Table 1. Comparison with related work.

Name Integrity Authenticity Simple Boolean Nested Field
Search Search Search Search

Schneier Yes No No No No No
Forte Yes No No No No No
Accorsi Yes Yes No No No No
Ma Yes Yes No No No No
Ray Yes Yes No No No No
Zawoad Yes No Yes No No No
Waters Yes No Yes No No No
Ohtaki No No Yes Partial No No
Sabbaghi No Yes Yes Partial No No
Zhao No Yes Yes Partial No No

Ours Yes Yes Yes Yes Yes Yes

4. Proposed Solution

The proposed solution aims to enable remote storage of client encrypted log records,
while still permitting search operations to be performed by the remote storage server
without having access to the clear log records. The system is physically divided between
the client side, where the log records generation occur and the consequent search operations
are originated, and the cloud side, where the searchable encrypted log records are stored
and retrieved. The client side contains the business applications from which the logs are
forwarded to the Secure Logging Service (SLS). These logs, after conversion to searchable
encrypted ones, are transferred over to the cloud side. The Secure Logging-as-a-Service
(SLaS) application will securely store them on the cloud side. The search operations are
also originated on the client side, using the SLS, sent over to the SLaS application, which
returns the encrypted matching results to the client side.

The proposed solution is envisioned as a part of a data pipeline, as shown in Figure 2.
This pipeline is initialized by harvesting the log records produced by the client applications.
Typically, these applications write their operational logs to file; thus, the harvesting of
such logs is performed through file watchers. These file watchers serve as plugins for such
applications that watch for changes of the log files, raising events every time a new log
line is added. The events are then handled by the SLS, that receives clear text log records,
transforms them into encrypted searchable data and sends them to the remote storage
server. Although the transferred events include log records in clear text, the communication
between the file watchers and the SLS is performed through encrypted channels, for which
only the two involved parties possess the correct decryption keys and are able to see the
information in transit. We assume that all communications between the involved parties
are also performed over SSL/TLS connections.

Remote Storage
Server

Cloud SideClient Side

SlaS Application

Secure Logging
Service

Application

Log Generation

Watcher

Figure 2. Flow of data within the pipeline.

J. Cybersecur. Priv. 2021, 1 348

4.1. Architecture

The architecture of the proposed solution is depicted in Figure 3. It is comprised of
six components (C1 to C6): the Conf Manager, the Encryption, the Indexing, the Search,
the Internal Connection, and the External Connection component. Figure 3 also illustrates,
through the use of arrows, the interaction between that components. The filled arrows
represent the communication that exists during the two main operations of the solution,
namely the indexing and search. The dashed arrows represent the interactions between
components required during the execution of that two main operations.

Data
Owner

Remote Storage
Server

Data
User

Cloud SideClient Side

SlaS Application
Secure Logging Service

Application

Search

C5 – Internal
Connection

C6 – External
Connection

C1 – Conf
Manager

C2 –
Encryption

C3 –
Indexing

C4 –
Search

Log Generation

Watcher

Figure 3. Architecture of the proposed solution.

The Conf Manager (C1) component is the one responsible for managing all config-
uration properties of the SLS. Moreover, it is in charge of the secure computation and
availability of all cryptographic keys required. We assume that the keys and all the remain-
ing configuration properties are saved on an controlled location, only accessible by the
adjacent components using a secure channel. Moreover, we consider that the cryptographic
keys always remain in the possession of the data owner and are not shared with any entity
external to the described scenario.

The Encryption (C2) component is responsible for all the encryption and decryption
operations performed throughout the normal operation of the SLS. Thus, this component
acts as a dependency of all the remaining ones. In detail, it collaborates with the Indexing
component in order to encrypt all the log records that are sent for storage on the remote
storage server. Furthermore, this component decrypts all the information fetched from the
remote storage server during search operations.

The Indexing (C3) component is in charge of the transformation of the clear text log
records into encrypted and searchable log records. It acts as a proxy, that receives, as input,
clear text log records produced by applications, transforms them into encrypted searchable
data, and outputs it to the remote storage server that will store it. On the cloud side, the
server is not only responsible for the storage of the encrypted log records but also for
updating the encrypted inverted index to include the search terms that are continuously
being submitted by this component.

The Search (C4) component is the one responsible for submitting queries to the remote
storage server and for the retrieval of matching log records. In short, it receives, as input,
search terms that are submitted by the client, applies the required transformations to
convert them into searchable trapdoors, and, then, submits the transformed search terms
to the remote storage server. On the server side, the searched terms are looked up on the
encrypted inverted index and the matching log records are returned.

The Internal Connection (C5) component is the only one open to communication
with other systems on the client side. In detail, it is accountable for assuring a secure and
authenticated communication between the multiple file watchers and the SLS. For every

J. Cybersecur. Priv. 2021, 1 349

log record submitted for storage, this component will verify the source’s trustworthiness
and authenticity. If that validation is successful the Internal Connection component will
forward the log record to the Indexing component. The search requests are also orig-
inated by this component. If such requests are compliant with the proposed solution
security requirements, the Internal Connection will forward the search requests to the
Search component.

The External Connection (C6) component represents the bridge between the client
side and the cloud side. This component acts as a dependency of the Indexing and Search
components since it is the only possible gateway for log records to be stored and search
queries to be performed. The External Connection component deals with the complexity of
the cloud side connection and ensures the establishment of a secure channel between the
two different sides of the proposed solution scenario. Additionally, this component makes
the adoption and integration with different cloud providers more seamless.

The proposed solution considers three main operations: Initialization, Indexing,
and Searching.

4.2. Initialization

The initialization operation is comprised of two distinct actions. The first is the setup
of the SLS itself, and the second is the setup of every source of log records (LS) and its
integration with the SLS. We assumed that a source of log records corresponds to a file
watcher that only forwards data from one client application.

The setup of the SLS starts by the computation of a pair of asymmetric keys (SLSepubK
and SLSeprivK) to assure a confidential and authenticated communication between the
SLS and the SLaS Application. The SLaS Application also computes a set of asymmetric
keys (SLaSpubK and SLaSprivK) and performs an handshake with the SLS. This handshake
consists of the exchange of the public keys of both entities in order to implement an
authentication system between them. Additionally, a symmetric key SLSkK is randomly
generated by the SLS to be used in the trapdoors creation.

The setup of a LS starts by the configuration of its properties. If the log records
follow a fixed structure, thus allowing field searching, a regular expression (LSregex) can
be configured in order to extract specific information from each log record. Alongside, a
mapping of the extracted fields (LSmap) must be added. This mapping includes, for each
field, its name and a unique identifier to be used on the cloud side, thus not revealing
the type of each field. If the log records do not follow a fixed structure, the SLS will split
each log record by a delimiter (e.g., space). Hence, a delimiter (LSdlm) must be configured.
Additionally, a set of blacklist characters (LSblk) is added to allow the SLS to remove
unwanted characters and to sanitize the log records prior to its storage.

The following step of a LS setup is the generation of a unique identifier (LSi). A
pair of asymmetric keys (SLSipubK and SLSiprivK) is generated and will be used to assure
confidentiality between the file watcher and the SLS. Then, three symmetric keys are
computed. The first key, LSaK, is used for the calculation of HMACs that authenticate the
file watcher against the SLS. The second key, LShK, is used to compute each log record
HMAC, creating an hash chain for integrity and authenticity validations. The third key,
LSeK, is used to compute an encryption key KLn for each log record. A random seed value
LSseed is also computed in order to initialize the LS hash chain. LSi, SLSipubK, and LSaK are
shared with the file watcher.

In order to support contextual and temporal privacy, either future privacy and past
privacy, all relevant cryptographic material will compose a session context. The number of
such session contexts and its duration is expected to be specified on a case-by-case basis.
For instance, if its the case of a team of developers, within an organization, that are jointly
working on a project, the session will be shared between them, and for the duration of the
project. If it is the case of a client, a developer and a help-desk technician trying to debug
an online service, a specific session context would be created for that purpose. Another
case could be the one of a non-critical web application that does not log information with

J. Cybersecur. Priv. 2021, 1 350

personal data, where a session context could be maintained for longer periods of time. The
referred session context is comprised of SLSipubK, SLSiprivK, LSaK, LShK, LSeK, and LSseed.

4.3. Indexing

The Indexing operation is carried out by the SLS and per log record sent from the file
watchers. The log data undergoes a series of cryptographic operations which transforms it
into searchable encrypted information, as described in Algorithm 1.

The first instruction of Algorithm 1 is the attainment of LSi properties (step 1). Next, a
unique identifier Lni is generated for log record Ln (step 2). This identifier forms the basis
of the KLn computation (step 3), the key specifically used to encrypt the entire log record Ln
alongside its timestamp TS (step 4). Afterwards, an HMAC HLn of the concatenation of LEn,
LSi, and Lni is calculated (step 5) in order to maintain both the integrity and authenticity of
that specific log record. The obtained HLn is then used to produce the current log record
hash chain link HCLn (step 6). HCLn consists of an HMAC of HLn concatenated with the
previous log record hash chain link HCLn−1. HCLn is set as the HCLn−1 of that LS, which
will be used on the subsequent indexing operations (step 6).

Following, the algorithm moves on to the preparation of the search capability. First,
it creates an empty set of trapdoors TLn for that log record (step 7). TLn is populated
with one of two ways. If the log record follows a fixed structure, and LS has a regular
expression LSregex configured (step 8), the log is parsed by that. If not, the log record is split
by a pre-configured delimiter LSdlm (step 16). More specifically, if LSregex exists, for each
extracted field Ln f ield of the log record, a lookup operation is performed (step 12) in order
to obtain the identifier Ln f ieldId of such field. Then, the trapdoor Lntrapdoor for that specific
field is built by computing an HMAC, enabling its future search (step 13). Finally, a tuple
containing Ln f ieldId and Lntrapdoor is added to TLn (step 14). If no LSregex is configured, the
log record is sanitized by the removal of the characters present in the configured blacklist
LSblk (step 17) and split by LSdlm (step 18). Each part Ln f ield of the split log corresponds
to a keyword (step 20); thus, Lntrapdoor for each of that keywords is built by computing
an HMAC (step 21), which is then added to TLn (step 22), similar to what is done in the
regular expression parsing mode.

This information is, afterwards, transferred to the cloud, being stored by the SLaS
Application in its database. Afterwards, the encrypted inverted index InvIndex, which
forms the basis of the forthcoming search operations, is updated. The content of each
received trapdoor tuple TLn[i] is analyzed. If TLn[i] includes the field identifier Ln f ieldId,
the InvIndex entry for the combination of Ln f ieldId and Lntrapdoor is affected. If TLn[i] is
composed by Lntrapdoor alone, only the InvIndex entry for Lntrapdoor is influenced. In both
situations, a verification is executed to find if TLn[i] already exists on InvIndex. If this
verification is successful, the respective Lni is added to the set of the already existing
identifiers. If not, a new entry for TLn[i] is created and initialized with the respective Lni.

J. Cybersecur. Priv. 2021, 1 351

Algorithm 1: SLS indexing algorithm
Input : Ln, TS, LSi
Output : Lni, LEn, HLn, HCLn, TLn, LSi

1 LS← LogSources.get(LSi)

2 Lni ← generateId()

3 KLn ← HMAC.create(LS.LSeK, Lni)

4 LEn ← KLn.encrypt([Ln, TS])

5 HLn ← HMAC.create(LS.LShK, LEn + LSi + Lni)

6 HCLn ← HMAC.create(LS.LShK, HLn + LS.HCLn−1)

7 LS.HCLn−1 ← HCLn

8 TLn ← []

9 if exists(LS.LSregex) then

10 Lnparsed ← LS.LSregex.parse(Ln)

11 for i← 0 to length(Lnparsed) do

12 Ln f ield ← Lnparsed[i]

13 Ln f ieldId ← LSmap.convert(Ln f ield)

14 Lntrapdoor ← HMAC.create(SLSkK, Ln f ield)

15 TLn.add({Ln f ieldId, Lntrapdoor})
16 else

17 Lnsanitized ← LSblk.sanitize(Ln)

18 Lnparsed ← LSdlm.split(Lnsanitized)

19 for i← 0 to length(Lnparsed) do

20 Ln f ield ← Lnparsed[i]

21 Lntrapdoor ← HMAC.create(SLSkK, Ln f ield)

22 TLn.add({Lntrapdoor})

23 SLaS.index(Lni, LEn, HLn, HCLn, TLn, LSi)

4.4. Searching

The Search operation is assumed to be executed whenever a query over the encrypted
log records is required. From the perspective of the user, he submits a clear text query and
receives matching clear text log records. However, the SLS applies a series of cryptographic
operations to assure that no one besides him has knowledge about the query and matching
results. Algorithm 2 explains the process executed by the SLS to transform a clear text query
into an encrypted query. Algorithm 3 demonstrates how the SLS, using the encrypted
query, retrieves matching log records from the SLaS Application and presents them to
the user.

In order to enable the construction of any query supported by the search algorithm, a
query syntax was envisioned. Algorithm 2 receives as input a clear text query Q comprised
of operators and terms and may be represented like “TERM OPERATOR (TERM OPERA-
TOR TERM)” where the “TERM” represents the keywords to be searched, the “OPERATOR”
represents the Boolean operators and parentheses indicate the existence of a nested query.
Regarding the OPERATOR clause, the algorithm supports the three basic Boolean operators
“AND”, “OR”, or “NOT” that enable conjunctive keyword queries. The TERM clause is
used to indicate what keywords shall be searched within the encrypted log records. Each
term can be composed either by the single keyword value or by the combination of the
keyword value and the identifier of the field where the search should focus. If only the

J. Cybersecur. Priv. 2021, 1 352

keyword value is present, the query will test the presence of such keyword in any part
of the log record, which may return results that are not relevant for the desired search.
Thus, the combination of keyword value and the field identifier enables field search and
consequent more accurate results. To perform a field query, the field identifier and the
keyword value must be combined like “ID=VALUE”. For instance, a query term can be
either “GET” or “method=GET”. The former indicates a search of the keyword “GET” in
all the log records universe, while the latter indicates that the value “GET” should be only
looked up on the field “method”.

Algorithm 2: SLS query builder algorithm
Input : Q
Output : QEterms, QEops

1 QEterms ← []

2 QEoperatos ← []

3 Qparsed ← splitQuery(Q)

4 for i← 0 to length(Qparsed) do

5 Qpart ← Qparsed[i]

6 if isNestedQuery(Qpart then

7 BuildQuery(Qpart)

8 else if isOperator(Qpart) then

9 QEoperatos.add(Qpart)
10 else
11 if exists(Qpart.Qname) then

12 Q f ieldId ← LSmap.convert(Qpart.Qname)

13 Qtrapdoor ← HMAC.create(SLSkK, Qpart.Qvalue)

14 QEterms.add({Q f ieldId, Qtrapdoor})
15 else
16 Qtrapdoor ← HMAC.create(SLSkK, Qpart.Qvalue)
17 QEterms.add({Qtrapdoor})

Algorithm 3: SLS search algorithm
Input : QEterms, QEops
Output : -

1 LE← SLaS.search(QEterms, QEops)

2 for n← 0 to length(LE) do

3 Lni, LEn, HLn, LSi ← LE[n]

4 LS← LogSources.get(LSi)

5 logVerified← HMAC.verify(LS.LShK, LEn + LSi + Lni, HLn)

6 if logVerified then

7 KLn ← HMAC.create(LS.LSeK, Lni)

8 Ln, TS← KLn.decrypt(LEn)

9 SLS.print(Ln, TS)

J. Cybersecur. Priv. 2021, 1 353

5. Validation

A prototype of the proposed solution was implemented using version 12.6.0 of the
NodeJS runtime environment. All cryptographic operations used the crypto native module,
which provided methods to implement the solution with secure cryptographic algorithms.
The tests performed used the AES algorithm in the GCM scheme [90]. The HMAC compu-
tations were based on the SHA-3 algorithm [91]. The asymmetric cryptography applied on
the communication phase used the RSA [92] algorithm. In terms of hardware, the prototype
was executed on a computer running Linux with an Intel Core i7 4700MQ 3.4Ghz processor
and 8GB of DDR3 RAM memory. For storage, both a single instance of a MongoDB and a
PostgreSQL database servers were adopted. Moreover, during the prototype development,
we assume the existence of a single log source.

The performance tests were executed using a real-life access log from a publicly
accessible web server with, about, thirty thousand (30,000) records per day, on average.
Despite the fact that the proposed solution supports any type of log files, this log was select
due to being readily available. The average number of records per day was calculated
from a period of three weeks. The log files were segmented by day and the number of
log records per day was counted and then averaged. The tests were performed using a
combination of different key sizes for the two algorithms used in indexing and searching
operations. Experiments were performed with AES with 128, 192, and 256 bit size keys and
SHA-3 with 256, 384, and 512 bit size keys. For the RSA keys, since it was only applied on
the communication between the SLS and SLaS Application, a unique size of 2048 bits was
used. In particular, tests were carried out with the following combinations: AES 128 and
SHA-3 256; AES 192 and SHA-3 384; AES 256 and SHA-3 512. In each experiment, three
test runs per each key size combination were carried out and the average values presented.

The first set of tests focused on time elapsed for the indexing of the 30,000 log records
and the storage space it required when using multiple combinations of keys sizes of the
AES and SHA-3 algorithms. As illustrated in Figure 4, when using the minimum key sizes
of 128 bits for AES and 256 for SHA-3, the proposed solution can index the required log
entries in 815 s. The medium key sizes of 192 bits for AES and 384 for SHA-3 are the ones
that take longer, demanding 823 s. When using maximum key size of 256 bits for AES and
512 for SHA-3, the proposed solution takes 818 s (roughly 13 min) to do the same operation.
If we consider that a day is comprised of 1440 min, we can conclude that the solution,
when using the maximum key sizes for each algorithm, which at the time of writing is
considered safe, takes about 0.9% of a day to securely store the log entries generated on that
day. Moreover, it is appropriate to notice that the disparity between the elapsed times of
the different key combinations is small, as expected by the use of symmetric cryptography.
Thus, it is possible to use the biggest key sizes for each algorithm, guaranteeing a higher
level of security without compromising the performance of the solution.

Regarding the storage space requirement, without any encryption or keyed hashing
operations, the proposed solution uses an aggregate total of 28 MB. For the minimum
key sizes, the proposed solution uses 38 MB. When using 192 bit size keys for AES and
384 bit size keys for SHA-3, the solution requires a storage space of 43 MB. When using the
maximum key sizes for each algorithm, both the inverted index and the log records occupy
a total of 46 MB. With those values, it is possible to denote a very small discrepancy between
the different tested key sizes combinations. Additionally, it is interesting to see that the
required stored space for the clear text inverted index is very similar to the encrypted ones.
Regarding the database required space, the clear text version occupies less since the log
record is stored without no encryption and with no inclusion of its hash value and hash
chain link. A projection, depicted in Figure 5, of the required space for the storage of log
records generated up to a period of one year was performed. The numbers show that, if
the log records are stored in clear text, roughly 10 GB of storage space is required for one
year. When using the smallest key sizes for both algorithms, roughly 14 GB of storage
space is required for one year. When using medium key sizes, almost 16 GB of storage
space is required for the same period. When using the biggest key sizes, roughly 17 GB of

J. Cybersecur. Priv. 2021, 1 354

storage space is required for the same period. Based on the values projected in Figure 5, it
is possible to conclude that, if 256 bit size keys are used for AES, and 512 bit size keys are
used for SHA-3, an additional 30% of space is required when compared with the clear text
version. Although the percentage achieved is larger than expected, we consider that the
impact on the required storage of using encryption and keyed hashing with the biggest
keys does not outweigh the increase in security.

810

812

814

816

818

820

822

824

AES 128/SHA3 256 AES 192/SHA3 384 AES 256/SHA3 512

Ti
m

e
(in

 se
co

nd
s)

Figure 4. Time required to index 30,000 records, per key size.

0

2000

4000

6000

8000

10,000

12,000

14,000

16,000

18,000

1 Day 7 Days 30 Days 91 Days 183 Days 365 Days

St
or

ag
e

(in
 M

B)

Cleartext AES 128/SHA3 256 AES 192/SHA3 384 AES 256/SHA3 512

Figure 5. Storage requirements per key size.

Performance tests of the search operations were also executed. The tests were executed
with the same combination of algorithms, key sizes and techniques used on the indexing
of the sample 30,000 log entries. For each key size, several search terms were tested.
These search terms would return different numbers of matching log lines. The times
shown in Figure 6 are the sum of both the time elapsed for the search conducted by the
SLaS Application and the consequent data decryption executed by the SLS. Analyzing
the results, we can conclude that the different keys sizes do not influence the speed of the
search and decryption operations, being possible to achieve similar results in all the tested
combinations. This behavior was somewhat expected since the symmetric cryptographic
algorithms performance is not heavily influenced by the used key sizes.

J. Cybersecur. Priv. 2021, 1 355

0

200

400

600

800

1000

1200

1400

1 Match 7 Matches 90 Matches 101
Matches

184
Matches

214
Matches

473
Matches

861
Matches

1833
Matches

3045
Matches

26,084
Matches

Ti
m

e
(in

 m
ill

is
ec

on
ds

)

AES 128/SHA3 256 AES 192/SHA3 384 AES 256/SHA3 512

Figure 6. Searching times per key size and matches.

Then, we can denote that the time used in search operations does not grow linearly
to the number of matching results. For instance, to obtain the clear text result of a search
operation that returned 3045 encrypted log lines, representing roughly 10% of all log
records, the proposed solution took about 200 ms. Other search operations, such as the
ones returning 3000 or less matches, were executed with an approximate average time
of the same 200 ms. Lastly, it is important to consider the values achieved on the search
operations that returned 26,084 matches, representing roughly 87% of all the log records.
The proposed solution was able to process this result in a time below 1.2 s. Based on that, it
is possible to estimate that, in order to search and decrypt all the 30,000 log records, the
solution would take less than 1.5 s.

6. Comparisons with Related Work

A comparison with the solutions identified as related work is interesting in order
to validate where our solution fits in terms of performance and storage requirements.
Moreover, only the solutions that have the ability to search within the encrypted data were
analyzed since these were the ones that were deemed equivalent, with respect to their basic
functionality, to the one proposed herein.

The first conducted observation is related to the number of cryptographic operations
required for the index and search operations, which is useful to measure the distance
between the computational cost of our solution and the ones in the related work. Table 2
depicts the number of cryptographic operations for both indexing and searching, where
Es represents a symmetric encryption operation, Ea represents an asymmetric encryption
operation, Ds represents a symmetric decryption operation, Da represents an asymmet-
ric decryption operation, H represents an hash operation, K represents the number of
keywords, and N represents the number of matching results in a search operation. The
formulas presented in Table 2 represent the computational cost to index one log record and
to perform one search operation.

J. Cybersecur. Priv. 2021, 1 356

Table 2. Comparison of indexing and search operations.

Name Indexing Search

Waters Es + 2KEa 2KEa + NDs
Ohtaki Ea + (2K + 1)Es Ea + K(2NDs)
Sabbaghi Es + Ea + 3KH Ea + 3KNH + NDs
Accorsi Es + 3H + KH H + KH + NDs
Savade Ea + KEa KEa + NDa
Zhao Ea + 3KH KH + NDa

Our Solution Es + 3H + KH KH + NH + NDs

Analyzing Table 2, it is possible to denote that the solutions of Waters, Ohtaki, and
Savade only require encryption operations on indexing. The first uses 1 symmetric en-
cryption plus 2 asymmetric encryption operations for each keyword K, the second uses
1 asymmetric encryption alongside 2(K + 1) symmetric encryption operations, and the
third uses 1 asymmetric encryption plus an additional asymmetric encryption for each
K. Our solution only requires 1 symmetric encryption operation to index a log record.
Additionally, our solution needs 3 hash operations plus a new hash operation for each K.
The remaining solutions that also use hash operations for indexing are Sabbaghi, Accorsi,
and Zhao. The first and the third use 3 hash operations per each K, and the second uses the
same number of hash operations as our solution.

Based on those values, a projection of the time required to index various numbers of log
lines on the multiple identified solutions was made. In order to perform it, average values of
times elapsed for the cryptographic operations were necessary. Such values were obtained
by running 50 tests for each operation and then calculating the average elapsed time for
each one. Based on that, it is possible to assume that an hash operation takes 0.88 ms, a
symmetric encryption operation takes 1.08 ms, a symmetric decryption operations takes
1.50 ms, an asymmetric encryption operation takes 1.30 ms, and a symmetric decryption
operations takes 1.75 ms. Figure 7 depicts the indexing projection from 1 to 100,000 lines. A
value of K = 10 for the number of keywords present in each log line was assumed. This is,
each log line is comprised of 10 keywords that must be indexed. Figure 7 uses a logarithmic
scale. Based on the values presented, it is possible to conclude that the computational cost
of the indexing operation our solution is equal to the lowest one (Accorsi).

Regarding the number operations required in search operations, our solution does
not require any encryption operation, unlike the solutions of Waters, Ohtaki, Sabbaghi,
and Savade. The first uses 2 asymmetric encryption operations per keyword K, the second
and the third use a single asymmetric encryption operation, and third uses 1 asymmetric
encryption operation per keyword K. Hash operations are used by Sabbaghi, Accorsi, and
Zhao. The first uses 3 hashes per each keyword K and number N of matched log records,
and the second and the third use K hash operations. Decryption operations exist on all
solutions. Except Ohtaki, which requires 2NDs operations per each K, all solutions use a
single decryption operation per N number of returned log records. Waters, Sabbaghi, and
Accorsi use symmetric encryption, while Savade and Zhao use asymmetric encryption.
The proposed solution requires 1 hash operation per each keyword K, plus an hash and
symmetric decryption operation per each number N of matches log records.

J. Cybersecur. Priv. 2021, 1 357

1

10

100

1000

10,000

100,000

1,000,000

10,000,000

1 Line 10 Lines 100 Lines 1000 Lines 5000 Lines 10,000 Lines 50,000 Lines 100,000 Lines

Ti
m

e
 (

in
 m

ill
is

ec
o

n
d

s)

Waters Ohtaki Sabbaghi Accorsi Savade Zhao Our Solution

Figure 7. Comparison of indexing times.

A projection of the time required to search and decrypt various numbers (N) of
matching results was also done (see Figure 8). This projection uses the same time values
for the different cryptographic operations as the ones used in the indexing projection.
Additionally, a value K = 1 is assumed for the number of keywords comprised in the search
query. Figure 8 uses a logarithmic scale. It shows that solutions with lesser computational
cost, compared to the proposed solution, exist. Nonetheless, the performance of the
proposed solution was deemed acceptable since the level of search enhancement achieved
outweigh the differential computational cost of the search operation. We denote that the
search operation is the least frequent one and that our solution still obtains an average
performance on these operations.

1

10

100

1000

10,000

100,000

1,000,000

1 Match 10 Matches 100 Matches 1000 Matches 5000 Matches 10,000 Matches 50,000 Matches 100,000
Matches

Ti
m

e
 (

in
 m

ill
is

e
co

n
d

s)

Waters Ohtaki Sabbaghi Accorsi Savade Zhao Our Solution

Figure 8. Comparison of searching times.

J. Cybersecur. Priv. 2021, 1 358

A second comparison motivated by the analysis of the validation sections of the
related work was also performed. This comparison is focused on the storage and time
requirements for both index and search operations present on the validation sections of
the related work. Nevertheless, not every author whose work supports search is referred
to in this comparison due to the lack of information regarding that type of testing on
their solutions.

The solution proposed by Waters [79] presents some information regarding the storage
space requirements. The author states that a 100 MB storage is capable of storing 800,000
public keys that correspond to 800,000 keywords. The space needed to store the encrypted
log records is not addressed. Our solution requires, for the maximum key sizes (256 bits
for AES, 512 bits for SHA-3), a storage space of 23 MB for the inverted index. Regarding
the indexing elapsed times, Waters states that, for each keyword, his solution requires 180
ms to compute its trapdoor, if that trapdoor is not already in a cache. If it is present on a
cache, this operation takes 5 ms. If we consider the 30,000 sample log records used on the
performance tests and that only one keyword exists per log record, Waters solution would
require roughly 25 min to index the keywords, considering a 5 ms time per keyword. Our
solution was capable of indexing the 30,000 sample log records, which contained more that
one keyword per log record, in under 15 min.

In terms of searching, the solution proposed by Waters demands a time of 81 ms to
execute the required search operations for each entry. Although, when searching for one
singular entry, Waters solution is faster than our solution, when searching for multiple
entries, our solution becomes faster since it does not follow a linear growth of the time
elapsed for searching operations.

Ohtaki’s first solution [81] only presents details regarding searching times. His solu-
tion depends on the number of records in the entire log sample and presents a search time
almost linear to the number of matching records. Thus, although Ohtaki’s solution presents
faster search times for smaller number of matching records. Our solution is not affected
by the size of the entire log record and presents faster search times for bigger numbers of
matching records. For instance, our solution requires an average value of 200 ms to retrieve
3045 matching records and Ohtaki’s solution takes 742 ms to obtain 1007 matching records
in a universe of 100,000 log records. In Ohtaki’s second work [82], which uses Bloom filters,
the author states that, for each log record entry, a 2.6 MB storage is required for a set of
twenty keywords. If such scheme was applied to the sample 30,000 log records, a 78 GB
storage space would be needed, in contrast to the 23 MB required by our solution, to store
the inverted index. Times used in indexing and searching operations were not detailed by
the authors in their work.

Sabbaghi [83] presents tests for various numbers of stored log records, which indicate
that his solution is affected by the existing total number of logs. For instance, in order to
perform a search within 400,000 log lines his solution would take roughly 20 s (0.05 ms
per line) with a fixed length hash space and roughly 40 s (0.1 ms per line) with a variable
length hash space. Our solution was able to perform a search and decryption operation of
26,084 sample log lines in about 1.2 s (0.046 ms per line). If we assume an expected linear
growth of the proposed solution on the time consumed to perform the search, it is possible
to estimate that, for the 400,000 log lines, the proposed solution would require 18.4 s to
search through and decrypt all lines. Regarding the storage size required, Sabbaghi’s
solution needs roughly 20 MB to store the searchable record authenticator when using a
fixed length hash space, and about 50 MB when using a variable length hash space. Our
solution requires 20 MB to store the encrypted inverted index using 128 bit size keys for
AES and 256 for SHA-3 and 23 MB using 256 bit size keys for AES and 512 for SHA-3.

Accorsi, in Reference [86], presents information regarding the times elapsed for the
validation of the log records forward integrity. The author presents different values for
multiple numbers of log entries. For instance, in order to verify 3000 log records, his
solutions requires roughly 950 ms. Our solution achieved an average value of 300 ms to
verify the forward integrity of the 30,000 sample log records.

J. Cybersecur. Priv. 2021, 1 359

This comparison shows that the proposed solution is feasible. Regarding the times
elapsed in indexing, searching and verification, our solution outperforms all related work
that presented performance results in their work. Regarding storage size, our proposed
solution also achieves the lowest storage requirements.

7. Security Analysis

Our proposed solution has to accomplish security. In general, this requirement is
comprised of: indexing and query confidentiality and privacy. Moreover, it is necessary to
prevent leakage due to index information, leakage due to search patterns, and leakage due
to access patterns.

Index information leakage refers to the keywords that comprise the encrypted search-
able index. Search pattern leakage consists of the information that can be derived from
knowledge of whether two search results are from the same keyword, revealing that the
same search was already performed in the past or not. The use of deterministic techniques
for trapdoor generation directly leaks the search pattern since the remote storage server
may use statistical analysis and infer information about the query keywords. This require-
ment is known as predicate privacy [28]. Access patterns can be described as the set of
search results (i.e., the collection of documents) that were obtained for a given keyword.
This type of information might aid an attacker to learn information about the keywords
since the remote storage server will always return the same set of encrypted documents for
the same encrypted keywords. In practice, the leakage of search and access patterns can be
reduced but not totally eliminated [13].

7.1. Threat Model

In scientific literature, there is no standard security model regarding solutions based
on searchable encryption [93]. The adopted threat model assumes an honest-but-curious
server that faithfully follows the protocol, but it is eager to learn confidential information
by analyzing the received encrypted log records, search queries and matching results in
order to obtain information about the content of those log records. Moreover, we assume
the existence of external threats. Respectively, we consider that an attacking agent may
read, alter or delete data, not only at rest but also in transit. Based on that, we focus on the
protection against violation of privacy and integrity, data leakage, replay attacks, unau-
thorized access and spoofing. Additionally, the proposed solution must offer protection
against two of the most common referred attacks in the searchable encryption field, these
being the Chosen-Keyword Attack (CKA) and the Known Keyword Attack (KGA).

A CKA attack occurs when an attacker gathers knowledge about the stored infor-
mation by obtaining the decryption of chosen keyword ciphertexts. In other words, the
attacker chooses an encrypted keyword and is handed the corresponding keyword in clear
text. To assure the confidentiality of the keywords, the searchable encryption scheme must
be Semantically Secure under CKA (SS-CKA) [57]. In an SS-CKA scheme, an attacker
cannot learn information about the keywords that are present on the stored ciphertexts, if
that keyword is not known to the server. A KGA attack can be performed on a searchable
encryption scheme if the ciphertexts of all keywords were produced by the attacker. By
knowing one trapdoor, an attacker can search the remaining ciphertexts for corresponding
results. If the ciphertext that contains the keyword is found once, an attacker can guess
the keyword that is correlated to the trapdoor. This type of attack is more frequent when
the keyword space is small since the attacker can rapidly generate ciphertexts for of all
keywords [94].

It also important to assert that this security analysis was inspired by the security
definitions brought by Curtmola [17]. He pointed out that the security of both the indexes
and the trapdoors are inherently linked, introducing two security notions, Non-adaptive
security against CKA (IND-CKA1) and Adaptive security against CKA (IND-CKA2). This
two definitions state that nothing should be leaked from the remotely stored documents
and searchable index except the outcome of previously searched queries, providing security

J. Cybersecur. Priv. 2021, 1 360

for trapdoors and assuring that the trapdoors do not leak information about the keywords,
except for what can be inferred from the search and access patterns [2].

7.2. Analysis

Prior to the analysis itself, it is important to denote that we assume that all crypto-
graphic keys are saved on controlled locations, always remain is the possession of their
owners and are not shared with any unauthorized entity.

The indexing operation of the proposed solution must assure privacy and integrity of
the data at rest, but also index confidentiality and data leakage prevention due to index
information must be accomplished. The data privacy at rest is given by the symmetric
encryption of each log record prior to its transmission to the SLaS Application. Integrity
comes from the computation of an HMAC HLn based on the encrypted log record LEn, its
identifier Lni, and its log source identifier LSi. Additionally, each log record HLn is used on
the construction of an hash chain. This hash chain links the log records in such way that
makes it possible to detect any unauthorized modification or deletion.

The index confidentiality is assured since every keyword trapdoor that is to be added
to the searchable index is computed, at the client side, through an HMAC, using a secret
key that is only known by the SLS; hence, no entity other than itself is able to generate
trapdoors. Moreover, since an HMAC is a one-way function, it is unfeasible to an attacker
to obtain the original keywords even if he has access to the trapdoors. Additionally, in
order to enable field searching, alongside the keyword trapdoor, the SLS might include
the type of each field. Each field name is mapped to a unique identifier and the unique
identifier is then used, which hides the type of each field to the SLaS Application. Lastly,
since every cryptographic operation necessary is performed at the client side, the possibility
of data leakage due to index information is eliminated.

At the search phase, the proposed solution must assure prevention against leakage
due to search patterns and leakage due to access patterns. Moreover, it must be resilient
against CKA and KGA attacks. Since the creation of the search capability uses deterministic
techniques for trapdoor generation and the SLaS Application has knowledge about the
search results obtained for a given keyword, our solution is in part vulnerable to search
and access patterns leakage. However, that leakage is only made to the SLaS Application
since the confidentiality of the search queries and consequent matching results is assured
in transit by the TLS/SSL tunnel. Additionally, based on that leakage, the SLaS Application
is only able to produce statistical information about the search activity since the plaintext
content of both the search queries and the matching log records is preserved. In detail,
search queries are built by one-way functions; thus, only a brute-force attack would be
able to obtain the plaintext of that queries. The matching log records are symmetrically
encrypted and decrypted at client side; thus, only the SLS is able to see the plaintext of
such log records. Moreover, while designing the proposed solution, we assumed that the
benefits of constructing a more advanced and expressive query engine outweigh the search
and access patterns leakage to an honest SLaS Application. In practical terms, we assumed
that entities contract cloud services with providers that they have established some degree
of trust.

Regarding CKA attacks, the proposed solution is not vulnerable since, in order to
be able to perform such action, an attacker must gather knowledge about the stored
information by obtaining the decryption of chosen keywords. Our solution makes use of
HMACs to build the query trapdoors. Since HMACs are one-way functions produced with
a secret key, always in possession of the SLS, it is unfeasible for an attacker to obtain the
original content of chosen trapdoors. KGA attacks are only possible if all the ciphertexts
of all keywords were produced by the attacker. Since the SLS is the only entity able to
generate keyword trapdoors, the proposed solution is also secure against KGA attacks.
Regarding the IND-CKA1 and IND-CKA2 security definitions, the proposed solution is
compliant with both since the security of trapdoors is assured, and the only conceivable
leakage is of the search and access patterns to the SLaS Application.

J. Cybersecur. Priv. 2021, 1 361

8. Conclusions

In this work, we present a novel solution that enables a secure, confidential, and off-
premises storage of encrypted log records. The solution allows searches to be performed
by the remote storage server without it having access to the clear log records. To do so,
we leverage the use of searchable encryption and of an encrypted inverted index. The
implemented prototype and the obtained results demonstrate that the proposed solution is
feasible, using off-the-shelf hardware, and that it outperforms related work and includes
searching capabilities, such as full Boolean queries, field searching, and nested queries,
which are not present in related work. In the future, we plan to extend this work into a
platform to enable the debugging and execution of web/cloud applications with privacy
and confidentiality requirements that are developed by cooperating teams in real time.

Author Contributions: Conceptualization: A.P. and R.A.; methodology: A.P.; software: R.A.; valida-
tion: A.P. and R.A.; data curation: R.A.; original draft preparation: R.A.; review and editing: A.P.;
supervision: A.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Norte Portugal Regional Operational Programme
(NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional
Development Fund (ERDF), within project “Cybers SeC IP” (NORTE-01-0145-FEDER-000044).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Voigt, P.; Von dem Bussche, A. The EU General Data Protection Regulation (GDPR). In A Practical Guide, 1st ed.; Springer

International Publishing: Cham, Switzerland, 2017.
2. Bösch, C.; Hartel, P.; Jonker, W.; Peter, A. A survey of provably secure searchable encryption. ACM Comput. Surv. (CSUR) 2015,

47, 18.
3. Wang, Y.; Wang, J.; Chen, X. Secure searchable encryption: A survey. J. Commun. Inf. Netw. 2016, 1, 52–65.
4. Zobel, J.; Moffat, A. Inverted files for text search engines. ACM Comput. Surv. (CSUR) 2006, 38, 6.
5. Wang, C.; Wang, Q.; Ren, K.; Cao, N.; Lou, W. Toward secure and dependable storage services in cloud computing. IEEE Trans.

Serv. Comput. 2011, 5, 220–232.
6. Abdalla, M.; Bellare, M.; Catalano, D.; Kiltz, E.; Kohno, T.; Lange, T.; Malone-Lee, J.; Neven, G.; Paillier, P.; Shi, H. Searchable

encryption revisited: Consistency properties, relation to anonymous IBE, and extensions. In Proceedings of the Annual International
Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2005; pp. 205–222.

7. Zeng, P.; Choo, K.K.R. A new kind of conditional proxy re-encryption for secure cloud storage. IEEE Access 2018, 6, 70017–70024.
8. Manzoor, A.; Liyanage, M.; Braeke, A.; Kanhere, S.S.; Ylianttila, M. Blockchain based Proxy Re-Encryption Scheme for Secure IoT

Data Sharing. In Proceedings of the 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Seoul, Korea,
14–17 May 2019; pp. 99–103. doi:10.1109/BLOC.2019.8751336.

9. Arthur Sandor, V.K.; Lin, Y.; Li, X.; Lin, F.; Zhang, S. Efficient decentralized multi-authority attribute based encryption for mobile
cloud data storage. J. Netw. Comput. Appl. 2019, 129, 25–36. doi:10.1016/j.jnca.2019.01.003.

10. Wang, J.; Huang, C.; Xiong, N.N.; Wang, J. Blocked linear secret sharing scheme for scalable attribute based encryption in
manageable cloud storage system. Inf. Sci. 2018, 424, 1–26. doi:10.1016/j.ins.2017.09.032.

11. Mante, R.V.; Bajad, N.R. A Study of Searchable and Auditable Attribute Based Encryption in Cloud. In Proceedings of the
2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020;
pp. 1411–1415.doi:10.1109/ICCES48766.2020.9137860.

12. Li, J.; Wang, S.; Li, Y.; Wang, H.; Wang, H.; Wang, H.; Chen, J.; You, Z. An Efficient Attribute-Based Encryption Scheme With
Policy Update and File Update in Cloud Computing. IEEE Trans. Ind. Inform. 2019, 15, 6500–6509. doi:10.1109/TII.2019.2931156.

13. Zhang, R.; Xue, R.; Liu, L. Searchable encryption for healthcare clouds: A survey. IEEE Trans. Serv. Comput. 2017, 11, 978–996.
14. Song, D.X.; Wagner, D.; Perrig, A. Practical techniques for searches on encrypted data. In Proceedings of the IEEE Symposium on

Security and Privacy, Berkeley, CA, USA, 14–17 May 2000; pp. 44–55.
15. Goh, E.J. Secure indexes. IACR Cryptol. ePrint Arch. 2003, 2003, 216.
16. Chang, Y.C.; Mitzenmacher, M. Privacy preserving keyword searches on remote encrypted data. In Proceedings of the International

Conference on Applied Cryptography and Network Security; Springer: Berlin/Heidelberg, Germany, 2005, pp. 442–455.

https://doi.org/10.1109/BLOC.2019.8751336
https://doi.org/https://doi.org/10.1016/j.jnca.2019.01.003
https://doi.org/https://doi.org/10.1016/j.ins.2017.09.032
https://doi.org/10.1109/ICCES48766.2020.9137860
https://doi.org/10.1109/TII.2019.2931156

J. Cybersecur. Priv. 2021, 1 362

17. Curtmola, R.; Garay, J.; Kamara, S.; Ostrovsky, R. Searchable symmetric encryption: improved definitions and efficient
constructions. J. Comput. Secur. 2011, 19, 895–934.

18. Amanatidis, G.; Boldyreva, A.; O’Neill, A. Provably-secure schemes for basic query support in outsourced databases. In Proceed-
ings of the IFIP Annual Conference on Data and Applications Security and Privacy, Redondo Beach, CA, USA, 8–11 July 2007;
pp. 14–30.

19. Van Liesdonk, P.; Sedghi, S.; Doumen, J.; Hartel, P.; Jonker, W. Computationally efficient searchable symmetric encryption.
In Proceedings of the Workshop on Secure Data Management; Springer: Berlin/Heidelberg, Germany, 2010, pp. 87–100.

20. Kurosawa, K.; Ohtaki, Y. UC-secure searchable symmetric encryption. In Proceedings of the International Conference on
Financial Cryptography and Data Security, Kralendijk, Bonaire, 27 Februray–2 March 2012; pp. 285–298.

21. Kamara, S.; Papamanthou, C.; Roeder, T. Dynamic searchable symmetric encryption. In Proceedings of the 2012 ACM Conference
on Computer and communications Security, Raleigh, NC, USA, 16–18 October 2012; pp. 965–976.

22. Golle, P.; Staddon, J.; Waters, B. Secure conjunctive keyword search over encrypted data. In Proceedings of the International
Conference on Applied Cryptography and Network Security, Yellow Mountain, China, 8–11 June 2004; pp. 31–45.

23. Ballard, L.; Kamara, S.; Monrose, F. Achieving efficient conjunctive keyword searches over encrypted data. In Proceedings of the
International Conference on Information and Communications Security, Beijing, China, 10–14 December 2005; pp. 414–426.

24. Wang, P.; Wang, H.; Pieprzyk, J. Keyword field-free conjunctive keyword searches on encrypted data and extension for dynamic
groups. In Proceedings of the International Conference on Cryptology and Network Security, Hong Kong, China, 2–4 December
2008; pp. 178–195.

25. Cash, D.; Jarecki, S.; Jutla, C.; Krawczyk, H.; Roşu, M.C.; Steiner, M. Highly-scalable searchable symmetric encryption with
support for boolean queries. In Proceedings of the Annual Cryptology Conference, Santa Barbara, CA, USA, 18–22 August 2013;
pp. 353–373.

26. Faber, S.; Jarecki, S.; Krawczyk, H.; Nguyen, Q.; Rosu, M.; Steiner, M. Rich queries on encrypted data: Beyond exact matches.
In Proceedings of the European Symposium on Research in Computer Security, Vienna, Austria, 21–25 September 2015;
pp. 123–145.

27. Park, H.A.; Kim, B.H.; Lee, D.H.; Chung, Y.D.; Zhan, J. Secure similarity search. In Proceedings of the 2007 IEEE International
Conference on Granular Computing (GRC 2007), Silicon Valley, CA, USA, 2–4 November 2007; pp. 598–598.

28. Shen, E.; Shi, E.; Waters, B. Predicate privacy in encryption systems. In Proceedings of the Theory of Cryptography Conference,
San Francisco, CA, USA, 15–17 March 2009; pp. 457–473.

29. Bösch, C.; Tang, Q.; Hartel, P.; Jonker, W. Selective document retrieval from encrypted database. In Proceedings of the
International Conference on Information Security, Passau, Germany, 19–21 September 2012; pp. 224–241.

30. Li, J.; Wang, Q.; Wang, C.; Cao, N.; Ren, K.; Lou, W. Fuzzy keyword search over encrypted data in cloud computing. In Proceedings
of the 2010 Proceedings IEEE INFOCOM, San Diego, CA, USA, 15-19 March ; pp. 1–5.

31. Li, J.; Chen, X. Efficient multi-user keyword search over encrypted data in cloud computing. Comput. Inform. 2013, 32, 723–738.
32. Wang, B.; Yu, S.; Lou, W.; Hou, Y.T. Privacy-preserving multi-keyword fuzzy search over encrypted data in the cloud. In

Proceedings of the IEEE INFOCOM 2014-IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 May
2014; pp. 2112–2120.

33. Wang, C.; Cao, N.; Li, J.; Ren, K.; Lou, W. Secure ranked keyword search over encrypted cloud data. In Proceedings of the 2010
IEEE 30th International Conference on Distributed Computing Systems, Genova, Italy, 21–25 June 2010; pp. 253–262.

34. Wang, C.; Cao, N.; Ren, K.; Lou, W. Enabling secure and efficient ranked keyword search over outsourced cloud data. IEEE Trans.
Parallel Distrib. Syst. 2011, 23, 1467–1479.

35. Cao, N.; Wang, C.; Li, M.; Ren, K.; Lou, W. Privacy-preserving multi-keyword ranked search over encrypted cloud data. IEEE
Trans. Parallel Distrib. Syst. 2013, 25, 222–233.

36. Sun, W.; Wang, B.; Cao, N.; Li, M.; Lou, W.; Hou, Y.T.; Li, H. Privacy-preserving multi-keyword text search in the cloud supporting
similarity-based ranking. In Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications
Security, Hangzhou, China, 8–10 May 2013; pp. 71–82.

37. Sun, W.; Wang, B.; Cao, N.; Li, M.; Lou, W.; Hou, Y.T.; Li, H. Verifiable privacy-preserving multi-keyword text search in the cloud
supporting similarity-based ranking. IEEE Trans. Parallel Distrib. Syst. 2013, 25, 3025–3035.

38. Khan, N.S.; Krishna, C.R.; Khurana, A. Secure ranked fuzzy multi-keyword search over outsourced encrypted cloud data.
In Proceedings of the 2014 International Conference on Computer and Communication Technology (ICCCT), Allahabad, India,
26–28 September 2014; pp. 241–249.

39. Xia, Z.; Wang, X.; Sun, X.; Wang, Q. A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data.
IEEE Trans. Parallel Distrib. Syst. 2015, 27, 340–352.

40. Chen, C.; Zhu, X.; Shen, P.; Hu, J.; Guo, S.; Tari, Z.; Zomaya, A.Y. An efficient privacy-preserving ranked keyword search method.
IEEE Trans. Parallel Distrib. Syst. 2015, 27, 951–963.

41. Guo, C.; Zhuang, R.; Chang, C.C.; Yuan, Q. Dynamic Multi-Keyword Ranked Search Based on Bloom Filter Over Encrypted
Cloud Data. IEEE Access 2019, 7, 35826–35837.

42. Boneh, D.; Di Crescenzo, G.; Ostrovsky, R.; Persiano, G. Public key encryption with keyword search. In Proceedings of the
International Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, 2–6 May 2004;
pp. 506–522.

J. Cybersecur. Priv. 2021, 1 363

43. Baek, J.; Safavi-Naini, R.; Susilo, W. Public key encryption with keyword search revisited. In Proceedings of the International
Conference on Computational Science and Its Applications, Perugia, Italy, 30 June–3 July 2008; pp. 1249–1259.

44. Bellare, M.; Boldyreva, A.; O’Neill, A. Deterministic and efficiently searchable encryption. In Proceedings of the Annual
International Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2007; pp. 535–552.

45. Khader, D. Public key encryption with keyword search based on K-resilient IBE. In Proceedings of the International Conference
on Computational Science and Its Applications, Kuala Lumpur, Malaysia, 26–29 August 2007; pp. 1086–1095.

46. Rhee, H.S.; Park, J.H.; Susilo, W.; Lee, D.H. Trapdoor security in a searchable public-key encryption scheme with a designated
tester. J. Syst. Softw. 2010, 83, 763–771.

47. Camenisch, J.; Kohlweiss, M.; Rial, A.; Sheedy, C. Blind and anonymous identity-based encryption and authorised private
searches on public key encrypted data. In Proceedings of the International Workshop on Public Key Cryptography, Irvine, CA,
USA, 18–20 March 2009; pp. 196–214.

48. Liu, Q.; Wang, G.; Wu, J. An efficient privacy preserving keyword search scheme in cloud computing. In Proceedings of the 2009
International Conference on Computational Science and Engineering, Vancouver, BC, Canada, 29–31 August 2009; Volume 2,
pp. 715–720.

49. Tang, Q.; Chen, L. Public-key encryption with registered keyword search. In Proceedings of the European Public Key
Infrastructure Workshop, Pisa, Italy, 10–11 September 2009; pp. 163–178.

50. Ibraimi, L.; Nikova, S.; Hartel, P.; Jonker, W. Public-key encryption with delegated search. In Proceedings of the International
Conference on Applied Cryptography and Network Security, Nerja, Spain, 7–10 June 2011; pp. 532–549.

51. Park, D.J.; Kim, K.; Lee, P.J. Public key encryption with conjunctive field keyword search. In Proceedings of the International
Workshop on Information Security Applications, Jeju Island, Korea, 23–25 August 2004; pp. 73–86.

52. Hwang, Y.H.; Lee, P.J. Public key encryption with conjunctive keyword search and its extension to a multi-user system.
In Proceedings of the International Conference on Pairing-Based Cryptography, Tokyo, Japan, 2–4 July 2007; pp. 2–22.

53. Boneh, D.; Waters, B. Conjunctive, subset, and range queries on encrypted data. In Proceedings of the Theory of Cryptography
Conference, Amsterdam, The Netherlands, 21–24 February 2007; pp. 535–554.

54. Sedghi, S.; Van Liesdonk, P.; Nikova, S.; Hartel, P.; Jonker, W. Searching keywords with wildcards on encrypted data. In Pro-
ceedings of the International Conference on Security and Cryptography for Networks, Amalfi, Italy, 13–15 September 2010;
pp. 138–153.

55. Yang, Y.; Liu, X.; Deng, R.H.; Weng, J. Flexible wildcard searchable encryption system. IEEE Trans. Serv. Comput. 2017, 13,
464–477.

56. Bringer, J.; Chabanne, H.; Kindarji, B. Error-tolerant searchable encryption. In Proceedings of the 2009 IEEE International
Conference on Communications, Dresden, Germany, 14–18 June 2009; pp. 1–6.

57. Xu, P.; Jin, H.; Wu, Q.; Wang, W. Public-key encryption with fuzzy keyword search: A provably secure scheme under keyword
guessing attack. IEEE Trans. Comput. 2012, 62, 2266–2277.

58. Fu, Z.; Wu, X.; Guan, C.; Sun, X.; Ren, K. Toward efficient multi-keyword fuzzy search over encrypted outsourced data with
accuracy improvement. IEEE Trans. Inf. Forensics Secur. 2016, 11, 2706–2716.

59. Yao, Y.; Zhai, Z.; Liu, J.; Li, Z. Lattice-Based Key-Aggregate (Searchable) Encryption in Cloud Storage. IEEE Access 2019,
7, 164544–164555. doi:10.1109/ACCESS.2019.2952163.

60. Zeng, M.; Qian, H.F.; Chen, J.; Zhang, K. Forward Secure Public Key Encryption with Keyword Search for Outsourced Cloud
Storage. IEEE Trans. Cloud Comput. 2019, doi:10.1109/TCC.2019.2944367.

61. Bellare, M.; Yee, B. Forward Integrity for Secure Audit Logs; Technical Report; Computer Science and Engineering Department,
University of California: San Diego, CA, USA, 1997.

62. Schneier, B.; Kelsey, J. Secure audit logs to support computer forensics. ACM Trans. Inf. Syst. Secur. (TISSEC) 1999, 2, 159–176.
63. Hu, Y.C.; Jakobsson, M.; Perrig, A. Efficient constructions for one-way hash chains. In Proceedings of the International Conference

on Applied Cryptography and Network Security, New York, NY, USA, 7–10 June 2005; pp. 423–441.
64. Franklin, M. A survey of key evolving cryptosystems. Int. J. Secur. Netw. 2006, 1, 46–53.
65. Forte, D.V.; Maruti, C.; Vetturi, M.R.; Zambelli, M. SecSyslog: An approach to secure logging based on covert channels.

In Proceedings of the First International Workshop on Systematic Approaches to Digital Forensic Engineering, Taipei, Taiwan,
7–9 November 2005; pp. 248–263.

66. Gerhards, R. RFC 5424: The syslog protocol. In Request for Comments; IETF: Fremont, CA, USA, 2009.
67. Rivest, R.L. The MD5 Message-Digest Algorithm; RFC 1321; RFC: Marina del Rey, CA, USA, 1992.doi:10.17487/RFC1321.
68. Eastlake, D., 3rd.; Jones, P. US Secure Hash Algorithm 1 (SHA1); RFC 3174; RFC: Marina del Rey, CA, USA, 2001.

doi:10.17487/RFC3174.
69. Holt, J.E. Logcrypt: forward security and public verification for secure audit logs. In Proceedings of the Fourth Australasian

Symposium on Grid Computing and e-Research (AusGrid 2006), Hobart, Australia, 16–19 January 2006; Volume 167, pp. 203–211.
70. Shamir, A. Identity-based cryptosystems and signature schemes. In Proceedings of the Workshop on the Theory and Application

of Cryptographic Techniques, Santa Barbara, CA, USA, 19–22 August 1984; pp. 47–53.
71. Ma, D.; Tsudik, G. A new approach to secure logging. ACM Trans. Storage (TOS) 2009, 5, 2.
72. Ma, D. Practical forward secure sequential aggregate signatures. In Proceedings of the 2008 ACM Symposium on INFORMATION,

Computer and Communications Security, Tokyo, Japan, 18–20 March 2008; pp. 341–352.

https://doi.org/10.1109/ACCESS.2019.2952163
https://doi.org/10.1109/TCC.2019.2944367
https://doi.org/10.17487/RFC1321
https://doi.org/10.17487/RFC3174

J. Cybersecur. Priv. 2021, 1 364

73. Ray, I.; Belyaev, K.; Strizhov, M.; Mulamba, D.; Rajaram, M. Secure logging as a service—Delegating log management to the
cloud. IEEE Syst. J. 2013, 7, 323–334.

74. Herzberg, A.; Jarecki, S.; Krawczyk, H.; Yung, M. Proactive secret sharing or: How to cope with perpetual leakage. In Proceedings
of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 27–31 August 1995; pp. 339–352.

75. Diffie, W.; Hellman, M.E. Multiuser cryptographic techniques. In Proceedings of the National Computer Conference and
Exposition, New York, NY, USA, 7–10 June 1976; pp. 109–112.

76. Zawoad, S.; Dutta, A.K.; Hasan, R. SecLaaS: Secure logging-as-a-service for cloud forensics. In Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communications Security, Hangzhou, China, 8–10 May 2013; pp. 219–230.

77. Zawoad, S.; Dutta, A.; Hasan, R. Towards building forensics enabled cloud through secure logging-as-a-service. IEEE Trans.
Dependable Secur. Comput. 2016, 13, 148–162.

78. Benaloh, J.; De Mare, M. One-way accumulators: A decentralized alternative to digital signatures. In Proceedings of the
Workshop on the Theory and Application of of Cryptographic Techniques, Lofthus, Norway, 23–27 May 1993; pp. 274–285.

79. Waters, B.R.; Balfanz, D.; Durfee, G.; Smetters, D.K. Building an Encrypted and Searchable Audit Log. NDSS 2004, 4, 5–6.
80. Boneh, D.; Franklin, M. Identity-based encryption from the Weil pairing. In Proceedings of the Annual International Cryptology

Conference, Santa Barbara, CA, USA, 19–23 August 2001; pp. 213–229.
81. Ohtaki, Y. Constructing a searchable encrypted log using encrypted inverted indexes. In Proceedings of the International

Conference on Cyberworlds, Singapore, 23–25 November 2005; pp. 7–pp.
82. Ohtaki, Y. Partial disclosure of searchable encrypted data with support for boolean queries. In Proceedings of the ARES 08, Third

International Conference on Availability, Reliability and Security, Barcelona, Spain, 4–7 March 2008; pp. 1083–1090.
83. Sabbaghi, A.; Mahmoudi, F. Establishing an Efficient and Searchable Encrypted Log Using Record Authenticator. In Proceedings

of the ICCTD’09, International Conference on Computer Technology and Development, Kota Kinabalu, Malaysia, 13–15 November
2009; Volume 2, pp. 206–211.

84. Accorsi, R. On the relationship of privacy and secure remote logging in dynamic systems. In Proceedings of the IFIP International
Information Security Conference, Karlstad, Sweden, 22–24 May 2006; pp. 329–339.

85. Accorsi, R.; Hohl, A. Delegating secure logging in pervasive computing systems. In Proceedings of the International Conference
on Security in Pervasive Computing, York, UK, 18–21 April 2006; pp. 58–72.

86. Accorsi, R. BBox: A distributed secure log architecture. In Proceedings of the European Public Key Infrastructure Workshop,
Athens, Greece, 23–24 September 2010; pp. 109–124.

87. Savade, L.C.; Chavan, S. A technique to search log records using system of linear equations. In Proceedings of the 2012 CSI Sixth
International Conference on Software Engineering (CONSEG), Indore, India, 5–7 September 2012; pp. 1–4.

88. Sabes, P.N. Linear Algebraic Equations, SVD, and the Pseudo-Inverse. 2001. Available online: https://www.researchgate.net/
profile/Philip-Sabes/publication/228944317_Linear_algebraic_equations_svd_and_the_pseudo-inverse/links/584fa4e108ae4
bc8993b2f47/Linear-algebraic-equations-svd-and-the-pseudo-inverse.pdf (accessed on 15 November 2020).

89. Zhao, W.; Qiang, L.; Zou, H.; Zhang, A.; Li, J. Privacy-Preserving and Unforgeable Searchable Encrypted Audit Logs for Cloud
Storage. In Proceedings of the 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/4th
IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), Shanghai, China, 22–24 June 2018; pp. 29–34.

90. Dworkin, M.J. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC. NIST Special
Publication 800-38D. Available online: https://csrc.nist.gov/publications/detail/sp/800-38d/final (accessed on 20 May 2021).

91. Dang, Q.H. Secure Hash Standard. FIPS PUB 180-4. Available online: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.
pdf (accessed on 20 May 2021).

92. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM
1978, 21, 120–126.

93. Zhang, J. Semantic-based searchable encryption in cloud: Issues and challenges. In Proceedings of the 2015 First International
Conference on Computational Intelligence Theory, Systems and Applications (CCITSA), Ilan, Taiwan, 10–12 December 2015;
pp. 163–165.

94. Byun, J.W.; Rhee, H.S.; Park, H.A.; Lee, D.H. Off-line keyword guessing attacks on recent keyword search schemes over encrypted
data. In Proceedings of the Workshop on Secure Data Management, Seoul, Korea, 10–11 September 2006; pp. 75–83.

https://www.researchgate.net/profile/Philip-Sabes/publication/228944317_Linear_algebraic_equations_svd_and_the_pseudo-inverse/links/584fa4e108ae4bc8993b2f47/Linear-algebraic-equations-svd-and-the-pseudo-inverse.pdf
https://www.researchgate.net/profile/Philip-Sabes/publication/228944317_Linear_algebraic_equations_svd_and_the_pseudo-inverse/links/584fa4e108ae4bc8993b2f47/Linear-algebraic-equations-svd-and-the-pseudo-inverse.pdf
https://www.researchgate.net/profile/Philip-Sabes/publication/228944317_Linear_algebraic_equations_svd_and_the_pseudo-inverse/links/584fa4e108ae4bc8993b2f47/Linear-algebraic-equations-svd-and-the-pseudo-inverse.pdf
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

	Introduction
	Secure Remote Storage and Searchable Encryption
	Related Work
	Proposed Solution
	Architecture
	Initialization
	Indexing
	Searching

	Validation
	Comparisons with Related Work
	Security Analysis
	Threat Model
	Analysis

	Conclusions
	References

