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Abstract: We present a new perspective on the link between quantum electrodynamics (QED) and
Maxwell’s equations. We demonstrate that the interpretation of the electric displacement vector D = ε0E,
where E is the electric field vector and ε0 is the permittivity of the vacuum, as vacuum polarization
is consistent with QED. A free electromagnetic field polarizes the vacuum, but the polarization and
magnetization currents cancel giving zero source current. The speed of light is a universal constant, while
the fine structure constant, which couples the electromagnetic field to matter runs, as it should.
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1. Introduction

In quantum electrodynamics (QED) the vacuum is a dynamical entity, in the sense that there are a rich
variety of processes that can take place in it [1–3]. There are several observable effects that manifest themselves
when the vacuum is perturbed in specific ways: vacuum fluctuations lead to shifts in the energy level of
atoms (Lamb shift) [4], changes in the boundary conditions produce particles (dynamical Casimir effect) [5],
and accelerated motion and gravitation can create thermal radiation (Unruh [6] and Hawking [7] effects).

Free quantum field theories predict the existence of vacuum fluctuations, which are particle-antiparticle
pairs that appear spontaneously, violating the conservation of energy according to the Heisenberg uncertainty
principle. These fluctuations play a role in the value of the permittivity of the vacuum ε0: a photon will
interact with those pairs much as it would with atoms or molecules in a dielectric. This idea can be traced
back to the time-honored works of Furry and Oppenheimer [8], Weisskopf and Pauli [9,10] and Dicke [11],
who contemplated the prospect of treating the vacuum as a medium with electric and magnetic polarizability.

Such a medium may well consist of particle-antiparticle bound states, as first discussed by Ruark [12] and
further elaborated by Wheeler [13]. This approach has been recently adopted [14–16] to obtain expressions for
the permittivity, leading to ab initio calculations of the value of ε0 and to useful discussions of the significance
of those calculations [17–22]. The main assumption in Refs. [14–16] is to represent the bound states by an
effective spring constant, which is taken as the frequency corresponding to an energy E = mc2 (c being the
speed of light); that is, twice the rest mass m of the pair. On the other hand, Mainland and Mulligan [23–25]
do relate the binding energy of the particle-antiparticle pair to the lowest level of a harmonic oscillator, to give
what might be considered to be a true oscillator model.

In the standard relation D = ε0 E+ P, linking the electric displacement vector D and the electric field
vector E, the first term on the right-hand side is often referred to as the polarization of the bare vacuum.
In QED, however, the polarization due to vacuum fluctuations is added as part of P. Because the new term is
dispersionless (like ε0E), the electric field can be rescaled to formally recover the initial equation. We suggest
that the polarization of the vacuum fluctuations should instead be identified with the first term ε0E. This
is a paradigm shift in our physical picture of the vacuum. One consequence of this is that in a really bare
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vacuum, in absence of vacuum fluctuations, the speed of light becomes undefined. Nonetheless, this is only
an academic consideration without practical relevance.

We will show here that this interpretation of ε0 is consistent with QED. The vacuum has a crucial property
that it does not share with dielectric and magnetic materials: it is Lorentz invariant. Due to this property
Michelson and Morley failed to detect the motion of the Earth through the "ether", which, in the present
context, is the quantum vacuum [26]. Empty spacetime is homogeneous, so variations of the permittivitty ε0

and permeability µ0 can occur only in the presence of charged matter. The linear response of vacuum must be
Lorentz invariant, so in reciprocal space the susceptibility of vacuum must be a function of k2 = ω2/c2− k2,
where ω is the photon frequency and k its wave vector. The condition k2 = 0, describing a freely propagating
photon, is referred to as on-shellness in QED: a real on-shell photon verifies then ω2 = k2c2.

This paper is organized as follows. Section 2 describes vacuum polarization due to creation
of virtual particle-antiparticle pairs in the framework of QED. In Section 3, we show how a
mass-independent response model can be derived from the results in QED and how D can be indeed
interpreted as vacuum polarization. As stressed before, this is a major change in our understanding
of the vacuum: as the off-shellness rises, the charge e is held constant, while only ε0 is allowed to
change. This is in sharp contrast with standard models, such as the one proposed by Gottfried and
Weisskopf [27], which is explored in Section 4. Finally, our conclusions are summarized in Section 5.

2. Vacuum Polarization in QED

As heralded in the Introduction, the vacuum in QED acts as if it were a dielectric medium where
the virtual pairs shield the original point charges. In this Section, the vacuum contribution to the
dielectric permittivity ε0 will be calculated by incorporating it into the electromagnetic Lagrangian.
In QED the bare potentials Aµ

0 and charge e0 are rescaled by a constant factor Z3 to give the physical
four-potential Aµ and the physical electron charge e; that is [28],

Aµ
0 ≡

√
Z3 Aµ , e ≡

√
Z3 e0 . (1)

This rescaling is at the basis of the renormalization program. The renormalized QED Lagrangian
density will be written as

LQED = LMaxwell + LDirac + Lint , (2)

where, LMaxwell describes the electromagnetic free field, LDirac accounts for the Dirac field (details are omitted
because renormalization of the masses will not be discussed here) and the interaction term Lint is

Lint = −jµ Aµ . (3)

Here, jµ is the current due to real charges, while the current density jµv due to the creation of virtual
pairs and the Z3− 1 counterterm are incorporated into LMaxwell. Together, they describe the reduction in
vacuum polarization relative to its maximum value at k2 = 0. The current induced in the vacuum by the
four-potential Aν due to virtual pairs of type s (where s corresponds to the possible different leptons) is

jµ
v,s(k) = c2ε0Πs(k2) (k2gµν − kµkν) Aν(k) . (4)

where gµν is the metric tensor, with diagonal (1,−1,−1,−1), and Πs

(
k2) is the QED vacuum polarization of a

s-type particle. If Aν(k) describes real photons, the on-shell condition k2 = 0 is satisfied. This is a generalization
of the usual textbook treatment of electron-position virtual pairs [28,29], extended to other fermions.

The Feynman diagram in Figure 1 is a pictorial representation of vacuum polarization in the
one-loop approximation. The wavy lines represent an electromagnetic field, while a vertex represents
the interaction of the field with the fermions, which are represented by the internal lines. The loop
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labeled 1 corresponds to a virtual electron-positron pair, the loop 2 the creation of a muon-antimuon
pair, and so on. The total vacuum polarization can then be jotted down as

Π(k2) =
e. p.

∑
s

Πs(k2) . (5)

Henceforth, the sum in s is over all elementary charged particles (e. p.). We stress that vacuum
fluctuations are on-shell once they appear. However, vacuum polarization is a matter of virtual
particles that occur off-shell as part of a perturbative calculation.

In the on-shell counterterm [29]

Z3 =
1

1−Π(0)
' 1 + Π2(0) , (6)

where Π2(k2) is the leading order approximation to Π(k2), which is the one depicted in the second row
of Figure 1.

+

+ +

++

...

...

1

11

2

2 2

Figure 1. Vacuum polarization in the one-loop approximation. All types of virtual pairs in nature
(labeled as 1, 2, . . .) polarize the vacuum. This polarization is maximal for a free electromagnetic field
for which ω = |k|c.

The vacuum polarization Πs(k2) is a divergent sum over fermion momenta and naive introduction
of a cut-off leads to a physically unreasonable result: the photon mass is infinite [28,30]. Since
observations are made near k2 = 0, the change of vacuum polarization relative to its on-shell value,

Π̂(k2) ≡ Π(k2)−Π(0), (7)

is the relevant quantity. Writing Z3 as 1+(Z3−1) to separate it into fully polarized and polarization-reduction
terms and integrating jµv Aµ by parts to get its (E2− c2B2) form [29], the Maxwell Lagrangian density becomes

LMaxwell =
1
2

ε0(k2)(E2 − c2B2) , (8)

where B is the magnetic field flux density, and

ε0(k2) = ε0[1 + Π̂(k2)] , (9)

and we have used µ−1
0 = c2ε0. For most practical purposes, in (9) we can replace Π̂(k2) by its

second-order approximation Π̂2(k2), which reads [29]

Π̂2(k2) = − 6
12π2h̄cε0

∑
s

q2
s

∫ 1

0
dx x(1− x) ln

[
1− h̄2k2

m2
sc2 x(1− x)

]

' − 1
12π2h̄cε0

∑
s

q2
s ln

(
h̄2k2

Am2
sc2

)
, (10)

where h̄ is the Planck constant and A = exp(5/3). The equation in the second line is valid when
h̄2 ∣∣k2

∣∣� m2
sc2.
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The function Π̂(k2) can be continued in the complex k2 plane. This yields a dispersion relation
linking the real and imaginary parts of this polarization tensor. A lengthy calculation shows that [28]

Im Π̂(k2) = 6
12π2 h̄cε0

∑s q2
s

(
1− 4m2

sc2

h̄2k2

)1/2 (
1 + 2m2

sc2

h̄2k2

)
, (11)

which gives the absorptive part, independently of any regularizing cutoff. Note, however, that this absorption
only happens h̄k > 2msc, which corresponds to the process of pair creation in an electric field.

In classical electromagnetism D = ε0E. This relationship is maintained here except that, with running,
ε0(k2) ≤ ε0. The linear response of the vacuum is then described in reciprocal k space by

D(k) = ε0(k2) E(k) , H(k) = c2ε0(k2)B(k) , (12)

where H is the magnetic field strength.
The Maxwell equations in vacuum can be derived from the Lagrangian (2), following the standard

method. They take the usual form in k-space:

ik ·D(k) = ρ(k) , ik×H(k) + i
ω

c
D(k) = j(k). (13)

The photon two-point correlation function is found by solving (4) for Aν [29]. Using Equation (9),
it can be written as

iDµν
F (k) =

−igµν

ε0(k2) (k2 + iη)
. (14)

This DF is the response to a δ-function source in real space and hence to a constant driving force
in k-space. Equation (14) is then a Green function satisfying Maxwell’s wave equation. In the Lorenz
gauge, and in k-space this is

c2ε0(k2)k2 Aµ(k) = −jµ (15)

where jµ is k independent. The matter-field coupling constant is

α(k2) =
1

4π ε0(k2)

e2

h̄c
. (16)

Since ε0(k2)−1 contains all powers of e2, it incorporates summation over all numbers of pairs
as sketched in Figure 1 and used in the calculation of (14). When restricted to an energy scale Emax,
the sum is over all fermions of mass less than Emax/c2 [31–33].

Note that, according to (16), the coupling constant runs with k2. However, α(k2) contains
both the charge e and the permittivity ε0(k2). It is usual to keep ε0 fixed, and let e run, as in the
Gottfried-Weisskopf model we shall examine in Section 4. The present paper keeps e fixed, and lets ε0

run. This is in most ways equivalent to running the effective charge, but the physical interpretation is
different. In a dielectric it is possible to have ε0 < 0, but e2

eff < 0 makes no physical sense.
The dielectric properties of vacuum differ from those of a material medium in two important

ways: ln(k2) dependence replaces the usual ω dependence and Lorentz invariance requires that
ε0(k2)µ0(k2) = 1/c2. Lorentz invariance is not only a symmetry of the laws of physics, but also of
the quantum vacuum. Actually, the principle of relativity of uniform motion can be identified with
the Lorentz invariance of Maxwell equations [34]. The speed c is a universal constant (Interestingly,
even without imposing this requirement and when using the dielectric model in the next section
to independently calculate µ0, the resulting speed of light is independent of how many types of
elementary particles contribute, as long as there is at least one type, and agrees with the limiting speed
in Lorentz’s equations [15]), whereas the coupling constant α(k2) runs. On the photon mass shell k2 = 0,
so a free photon always sees ε0 and there is no running. Both the polarization D and the magnetization
H are nonzero; however, jv = 0 as it must for propagation in free space. A free electromagnetic wave
polarizes and magnetizes the vacuum but the polarization current exactly cancels the magnetization
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current (This bears some resemblance with the interference between the emitted electric and magnetic
dipole waves leading to forward scattering only and no back scattering, the property of Huygens
waves which typically appear in materials with comparably strong electric and magnetic interaction,
which holds for the vacuum [35] and was recently rediscovered for metamaterials [36].).

3. Connection with a Dielectric Model

An individual loop in Figure 1 is analogous to a single polarizable atom with center of mass
momentum h̄k. If, for simplicity, we set k = 0, the computation of the Feynmann diagrams involve
integrals of the form

∫
d4q

[
q2 +

(msc
h̄
)]−2, which entail an exponential decay, exp [− (msc/h̄) |x|],

in real space. Therefore, the "radius" of a virtual atom is of order h̄/msc. All in all, this suggests that
one might model the particle-antiparticle vacuum fluctuations as two-level atoms with level spacing
msc2 and occupying a volume of the order of (h̄/msc)3.

When a virtual pair is created from a photon of frequency ω [37] its excess energy is, according the
Heisenberg uncertainty principle, ∆E ≥ 2mc2 − h̄ω, so it can exist only for a time τ ≤ h̄/∆E. (While a
real pair cannot be created by absorbing a photon due to simultaneous conservation of energy and
momentum, this restriction does not apply to the ephemeral creation of virtual pairs.)

Based on the uncertainty principle and this simple dielectric model, one can readily find that the
permittivity of vacuum can be expressed as [14,15]

ε0 = f
1
h̄c

e. p.

∑
s

q2
s , (17)

where f is a geometrical factor of order unity, qs is charge and the sum is over all elementary
charged particles.

This is consistent with QED, as discussed in the previous Section. Indeed, at large k2 and to
second order in perturbation theory as in Equation (10), we have that

ε0(k2) ' ε0 −
1

12π2h̄c

e. p.

∑
s

q2
s ln

(
h̄2k2

Am2
sc2

)
. (18)

We know that at high momentum (or energy) scale, the coupling constant α(k2) in QED becomes
infinity [38,39]. If Λ is the value of that momentum (which is usually called the Landau pole [40]), then

ε0 =
1

12π2h̄c

e. p.

∑
s

q2
s ln

(
h̄2Λ2

Am2
sc2

)
, (19)

and hence the fudge factor f in the dielectric model is given by

f = 1
12π2

e. p.

∑
s

q2
s ln

(
h̄2Λ2

Am2
sc2

)
e. p.

∑
s

q2
s

. (20)

For the standard model ∑ q2
s/e2 = 9 and with two additional charged Higgs particles of mc2 '

5× 1011 eV, f ' 1 and all of ε0 is vacuum polarization if log(h̄Λ/c) = 35.
If running is neglected, the on-shell Maxwell equations in a medium with charges and current

sources are

∇ · B(r, t) = 0, ∇× E(r, t) + ∂B(r, t)/∂t = 0, (21)

∇ ·D(r, t) = ρ(r, t), ∇×H(r, t)− ∂D(r, t)/∂t = j(r, t), (22)
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as in classical electromagnetic theory. Equation (21) allow us to define the four-vector potential that
drives the creation of the pairs. Equation (22) simply say that charge density is the divergence of
polarization and the current is the sum of its polarization and magnetization parts.

Our results support the conclusion of Zeldovich, who considered a Lagrangian in which all of
the electromagnetic term comes from the interaction of the particle with the field and came to an
interesting interpretation [41]: in the absence of vacuum polarization, electric and magnetic fields
act on Dirac fermions, but there is no field energy and no electromagnetic wave propagation. In an
absolute void it makes no sense to talk about Maxwell’s equations or light propagation. In QED,
the connection between vacuum fluctuations and field propagation ensures that the electromagnetic
vacuum also satisfies invariance under Lorentz transformations [42]. Only after vacuum polarization is
introduced does the effective Lagrangian give Maxwell’s equations, electromagnetic waves travelling
at the speed of light and photons.

Since our dielectric model is compatible with QED, one would expect the same kind of dispersion
relations. Therefore, as discussed before, the absorptive behavior only appears at momenta h̄k > 2msc.

4. Gottfried-Weisskopf Dielectric Model

Gottfried and Weisskopf [27] introduced a toy model to understand the physical mechanisms
involved in vacuum polarization. In this simple picture, one assumes that the bare charge e0 is
uniformly distributed in a small sphere of radius a [a� h̄/(mec)]. When this charge distribution is
surrounded by a spherical shell of inner radius r > a, filled with a dielectric medium permittivity
ε, an induced charge of opposite sign appears on the inner surface of the shell at radius r, canceling
part of the charge e0 for an observer at a distance larger than r. Obviously, at the outer surface of the
dielectric medium, an equal charge of opposite sign appears. However, if the charge is measured from
within the medium it will appear to be reduced, precisely by the permittivity ε [43].

When one considers the vacuum, one has to take into account that it extends to infinity. Now,
the permittivity depends on the distance r to the charge. This is so because at r only those virtual pairs
having Compton wavelengths λ . r contribute. We can interpret this model from a QED viewpoint.
To this end, we define the relationship between D and E at charge separations r � h̄/(mec) where the
coupling strength can be measured; that is, ε0(r � h̄/(mec)) ≡ ε0 at large distances or, equivalently,
small momenta, where the vacuum is maximally polarized. With polarization included the dielectric
permittivity is ε0 at the physical scale. In consequence, Π̂ is the reduction in polarization.

Since ε0(k2) is not a constant, the exact relationship between D and E is nonlocal in r-space. It is
not, in general, correct to write the potential as Φ = e/4πε0(r)r. The simplest example in which
running coupling can be expressed as an explicit local function of r is a static charge, say +e. In the
Coulomb gauge E(k2) = −kΦ(k2) and ω = 0. Equation (13), with k2 = −k2, then gives

Φ(k2) =
e

k2ε0(k2)
, (23)

which in r-space reads

Φ(r) =
∫ d3k

(2π)3
e

k2ε0(k2)
exp(ik · r) , (24)

equivalent to Equation (7.93) in [29].
For electron-positron pairs alone the magnitude of Π̂ is very much less that 1 so that ε−1

0 (k2) is
approximately [1 + Π̂(k2)]/ε0 and [44]

Φ(r) ' e
4πε0r ×


1 +

2α

3π
ln
(

h̄
mecr

)
− γ− 5

6
r � h̄/(mec),

1 +
α

4
√

π

e−2mecr/h̄

(mecr/h̄)3/2 r � h̄/(mec),

(25)



Physics 2020, 2 20

where α is the fine structure constant, me is the mass of the electron, r is the distance from the fixed charge
and γ = 0.577 is Euler’s constant. The dielectric constant ε0 decreases with increasing k2 or decreasing r.
For r < h̄/(mec) the Coulomb interaction becomes stronger as the charges approach each other.

5. Conclusions

We have verified that QED vacuum is a polarizable medium with dielectric constant ε0(k2) ≤ ε0.
Lorentz invariance requires µ0(k2)ε0(k2) = 1/c2, where the speed of light is a universal constant,
which is also implied by the dielectric/diamagnetic model of the vacuum [15]. For a free photon k2 = 0
so there is no change in ε0(k2) with photon energy; it does not run. Since E = B/c 6= 0 for any free EM
wave it will polarize and magnetize the vacuum but their contributions to the electric current cancel.

This dielectric model predicts no new observable results but it suggests a paradigm shift in
our physical picture of the vacuum. Any electromagnetic field creates virtual pairs of all charged
elementary particle types in Nature. At the scale of classical electromagnetism and quantum optics
ε0 = ε0(0) and the vacuum is maximally polarized.
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