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Abstract: This is a digest of the main achievements in the wide area, called the Dynamical Casimir
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1. Introduction

Fifty years ago, in June 1969, G.T. Moore finished his PhD thesis (prepared under the guidance of
H.N. Pendleton III and submitted to the Brandeis University), part of which was published in the next
year as [1]. Using a simplified one-dimensional model, Moore showed that motions of ideal boundaries
of a one-dimensional cavity could result in a generation of quanta of the electromagnetic field from
the initial vacuum quantum state. A few years later, DeWitt [2] demonstrated that moving boundaries
could induce particle creation from a vacuum in a single-mirror set-up. A more detailed study was
performed by Fulling and Davies [3,4]. Thus, step by step, year by year, more and more authors
followed this direction of research. In 1989, two names were suggested for such kinds of phenomena:
dynamic (or non-adiabatic) Casimir effect [5] and Nonstationary Casimir Effect [6]. Being supported in part
by the authority of Schwinger [7], the first name gradually acquired the overwhelming popularity,
so that now we have an established direction in the theoretical and experimental physics, known under
the general name Dynamical Casimir Effect (DCE). This area became rather large by now: more than
300 papers containing the words “dynamical Casimir” have been published already, including more
than 100 publications during the past decade. Moore’s paper [1] has been cited more than 400 times,
and some authors use the name “Moore effect” instead of DCE (other names were “Mirror Induced
Radiation” or “Motion Induced Radiation”).

To combine different studies under the same “roof”, it seems reasonable to assume the following
definition of the Dynamical Casimir Effect: Macroscopic phenomena caused by changes of vacuum quantum
states of fields due to fast time variations of positions (or properties) of boundaries confining the fields (or other
parameters). Such phenomena include, in particular, the modification of the Casimir force for moving
boundaries. However, the most important manifestation is the creation of the field quanta (photons)
due to the motion of neutral boundaries. The most important ingredients of the DCE are quantum
vacuum fluctuations and macroscopic manifestations. The reference to vacuum fluctuations explains
the appearance of Casimir’s name (by analogy with the famous static Casimir effect, which is also
considered frequently as a manifestation of quantum vacuum fluctuations), although Casimir himself
did not write anything on this subject. Therefore, the DCE can be considered as the specific subfield of
a much bigger physical area, known nowadays under the name Casimir Physics. This whole area is
outside the present study, so that we give only a few references to the relevant reviews and books [8–24].

In turn, the subject of the DCE can be divided in several sub-areas. In the strict (narrow) sense,
one can think about the “single mirror DCE” or “cavity DCE”. In the most wide sense, the DCE
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can be related to the amplification of quantum (vacuum) fluctuations in macroscopic systems, and many
authors studied analogs of the DCE in parametrically excited media. The “intermediate” area of
quantum circuits with time-dependent parameters is also frequently considered as belonging to the
DCE. The aim of our review is to describe the main achievements in all those sub-areas for the past
50 years, as well as still unsolved and challenging problems. This is not the first review on the
subject. The early history, including studies on the classical fields with moving boundaries, can be found
in [25–28]. The most recent reviews were published almost a decade ago [29–31]. Therefore, here I
tried to collect a more or less complete list of references to the publications of the decade after 2009.
As for earlier papers, I have included only a small part of them, to maintain a reasonable length of
this review.

2. One-Dimensional Models with Moving Boundaries

One-dimensional “toy” models were considered by many authors because they are much simpler
than the realistic 3D ones; therefore, they admit exact and relatively simple analytical solutions, which
can provide some insight into the real effects.

2.1. Classical Fields

The history of studies on classical fields in time-dependent domains began almost 100 years ago.
The first exact solution of the wave equation (with c = 1)

∂2 A/∂t2 − ∂2 A/∂x2 = 0, (1)

in a time-dependent domain 0 < x < L(t), satisfying the boundary conditions

A(0, t) = A(L(t), t) = 0, (2)

was obtained by Nicolai [32] for
L(t) = L0(1 + αt). (3)

The solution was interpreted in terms of the transverse vibrations of a string with a variable length.
A few years later, these results were published in [33], where the extension to the case of electromagnetic
field was also made. A similar treatment was given by Havelock [34] in connection with the problem
of radiation pressure. However, this subject hardly attracted the attention of researchers for several
decades. The splash of new studies happened in the 1960s, probably due to the invention of lasers.
We cite here only a few of relevant papers [35–38]. Much more references can be found in [26,39,40].

2.2. Quantum Fields

In the quantum case, one of the most interesting problems is the creation of quanta of
different fields from the initial vacuum (ground) state due to the time variation of some parameters.
The generation of massive particles by time-dependent gravitational fields was considered for the first
time, probably, by Schrödinger [41]. Later on, this problem was treated by Imamura [42], Parker [43,44],
and Zel’dovich [45]. However, the main subject of the present paper is the creation of massless quanta
(photons). In this case, the simplest model is the so-called “scalar electrodynamics”, where the main
object is the single component of the vector potential operator, perpendicular to the axis x (and parallel
to the infinite plane surfaces confining the field). This operator satisfies, in the Heisenberg picture,
the same Equation (1) as the classical field vector. If the field is confined between two ideal surfaces
(ideal conducting walls) with coordinates x = 0 and x = L(t) > 0, then the condition of vanishing the
electric field at each surface, in the frame moving with the wall, results in the boundary conditions (2).
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It is assumed usually that both walls were at rest for t ≤ 0, so that initially the field can be written in
the form

A(x, t < 0) =
∞

∑
n=0

cn sin(nπx/L0) exp(−iωnt), ωn = nπ/L0, (4)

where coefficients cn are complex numbers in the classical case and operators in the quantum case.
Then, one has to find the function (operator) A(x, t) for t > 0. This problem can be solved in the
frameworks of two approaches.

2.2.1. Moore’s Approach

The specific feature of the wave equation in the single spatial dimension (1) is the existence of
the well known form of the general solution: A(x, t) = f (x − t) + g(x + t), where f and g can be
arbitrary functions. How can these functions be chosen to satisfy the additional boundary conditions
(2)? Moore [1] has found a complete set of solutions to the problem, satisfying the initial condition (4),
in the form

An(x, t) = Cn {exp [−iπnR(t− x)]− exp [−iπnR(t + x)]} , (5)

where function R(ξ) must satisfy the functional equation

R(t + L(t))− R(t− L(t)) = 2. (6)

As a matter of fact, a quite similar approach was used in [32–34], although for a linear function
L(t) only. Independently, Equation (6) was obtained by Vesnitskii [38].

It is easy to find an exact solution to Equation (6) for the uniform law of motion of the boundary (3).
This was done by many authors, starting from [32–34]. We give it in the form obtained in [37]:

Rα(ξ) =
2 ln |1 + αξ|

ln |(1 + v)/(1− v)| , v = αL0. (7)

Evidently, function (7) goes to R0(ξ) = ξ/L0 if α → 0. For an arbitrary nonrelativistic law of
motion, one can find the solution in the form of the expansion over subsequent time derivatives of the
wall displacement. Such an idea goes to the papers [1,38] whose results (with some corrections) can be
written in the form [26]

R(ξ) = ξλ(ξ)− 1
2

ξ2λ̇(ξ) +
1
6

ξλ̈(ξ)
[
ξ2 − L2(ξ)

]
+ · · · , λ(ξ) ≡ L−1(ξ). (8)

In the special case of L(t) = L0/(1 + αt), when λ̈(ξ) ≡ 0, Equation (8) yields another exact
solution, R(ξ) = L−1

0

(
ξ + 1

2 αξ2
)

. Unfortunately, the expansions such as Label(8) cannot be used in
the long-time limit ξ → ∞, since the terms proportional to the derivatives of λ(ξ) (which are supposed
to be small corrections) become bigger than the unperturbed term ξλ(ξ).

Several exact solutions to the Moore equation were found with the aid of the “inverse”
method [40,46,47], when one chooses some reasonable function R(ξ) and determines the corresponding
law of motion of the boundary L(t) using the consequence of Equation (6),

L̇(t) =
R′[t− L(t)]− R′[t + L(t)]
R′[t− L(t)] + R′[t + L(t)]

. (9)

To solve differential Equation (9) with some simple functions, R(ξ) is more easier than solving
the functional Equation (6) for the given function L(t). However, the dependence L(t) does not appear
to be admissible from the point of view of physics (the velocity may occur greater than the speed of
light, or some discontinuities may arise) for any simple function R(ξ). A large list of simple functions
R(ξ) (rational, exponential, logarithmic, hyperbolic, trigonometrical, and inverse trigonometrical) and,
corresponding to them, functions L(t) can be found in [40]. The cases considered in [47] correspond to
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some monotonous displacements of the mirror from the initial to final positions. Typical functions R(ξ)
used in [47] were some combinations of ξ/L0 and some trigonometric functions, such as sin(mπξ/L0).
However, none of these functions can be used in the parametric resonance case. Exact solutions for
some specific trajectories of the single mirror were found in [48–59]. Two mirrors moving with constant
accelerations in opposite directions were considered in [60,61]. Massless spin-1/2 fields in a 1D box
with moving boundaries were studied in [62], while the single mirror case was considered in [63].
The solutions of the 1D Klein–Gordon equation with one uniformly moving boundary (and another
boundary at rest) were found in [64,65].

The asymptotic solution of the Moore equation for L(t) = L0 [1 + ε sin(πqt/L0)], with q = 1, 2, . . .
and |ε| � 1, was found in [66,67]. For εt� 1, it has the form (here L0 = 1)

R(t) = t− 2
πq

Im {ln [1 + ζ + exp(iπqt)(1− ζ)]} , ζ = exp
[
(−1)q+1πqεt

]
, (10)

which clearly demonstrates that the asymptotic mode structure in the resonance case is quite different
from the mode structure inside the cavity with unmoving walls. The solution (10) was improved
in [68]. The additional term

∆R(t) =
2ζε(−1)qz sin(qπz)

1 + ζ2 + (1− ζ2) cos(qπz)
, −1 ≤ z = t− 2p ≤ 1, p = 0, 1, 2, . . . (11)

is negligible in the long-time limit, but it is crucial for the solution to satisfy the correct boundary
condition at short times. The case of two moving boundaries, left L(t) and right R(t), was studied
in [69]. Then, Equations (5) and (6) can be generalized as follows:

An(x, t) = Cn {exp [−iπnF(t− x)]− exp [−iπnG(t + x)]} , (12)

G(t + R(t))− F(t− R(t)) = 2, G(t + L(t))− F(t− L(t)) = 0. (13)

The solutions generalizing (10) and (11) were found in [69] for the boundaries oscillating with
equal resonance frequencies, but different amplitudes and with some phase difference. Numerical
solutions of Equations (13) were presented in [70]. The authors of [71,72] pointed out on a possible
physical realization of one-dimensional models in the case of TEM modes in cylindrical waveguides.
The methods of characteristics and circle maps were applied in [73–75]. The one-dimensional cavity
with one and two oscillating mirrors was considered within the framework of the “optical” approach
in [76]. Generalizations of Moore’s approach to the one-dimensional vibrating cavities were considered
in [77]. A one-dimensional uniformly contracting cavity was studied in [78]. The computer program
for the numerical solution of the Moore equation was presented in [79]. The Floquet map was applied
in [80].

2.2.2. The Modification of the Casimir Force

How can the function R(ξ) be used? The first application is connected with the modification of
the static Casimir force due to the motion of boundaries. It was shown in [3,81] that the force pressing
the moving wall (more precisely, the T11 component of the energy-momentum tensor of the field) is
given by a simple formula (for the initial vacuum state of the field)

F = −g[t− L(t)]− g[t + L(t)], (14)

where

g(ξ) =
1

24π

{
R′′′(ξ)
R′(ξ)

− 3
2

[
R′′(ξ)
R′(ξ)

]2
}
+

π

48
[
R′(ξ)

]2 . (15)
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For the wall at rest, when R0(ξ) = ξ/L0, one gets the following expression for the stationary
Casimir force in one dimension [3,81] (returning to the dimensional variables):

F = −πh̄c/(24L2
0). (16)

If the distance between the boundaries L(t) slowly varies with time (in the sense that |dL/dt| � c),
then the approximate solution (8) yields [6] the following generalization of formula (16):

F = − πh̄c
24L2(t)

[
1 +

(
L̇
c

)2 (7
3
− 1

π2

)
− LL̈

c2

(
2
3
− 2

π2

)]
. (17)

The Casimir force in a cavity moving with a constant acceleration was calculated in [82].
In the parametric resonance case, the force averaged over the period of oscillations was calculated

in [67] (in the dimensionless units with L0 = 1):

〈F〉 = − π

24

[
q2 +

1
2

(
1− q2

) (
ζ + ζ−1

)]
, ζ = exp

[
(−1)q+1πqεt

]
. (18)

For q ≥ 2, we do not have attraction, but an exponentially increasing pressure on the oscillating
wall due to the creation of real photons in the cavity. An effective action approach to the problem of
dynamical Casimir force in 1+1 dimensions was developed in [83].

2.2.3. Generation of Quanta inside the 1D Cavity with Moving Boundary

The knowledge of function R(ξ) also permits one to calculate the mean number of created quanta
inside a nonstationary cavity. The general scheme is as follows [1,81]. Taking into account only the
electromagnetic modes whose vector potential is directed along z-axis (“scalar electrodynamics”), one
can write down the field operator in the Heisenberg representation Â(x, t) at t ≤ 0 (when both the plates
were at rest at the positions xle f t = 0 and xright = L0) as (we assume c = h̄ = 1)

Âin = 2
∞

∑
n=1

1√
n

sin
nπx
L0

b̂n exp (−iωnt) + h.c. (19)

where b̂n means the usual annihilation photon operator and ωn = πn/L0. The choice of coefficients in
Equation (19) corresponds to the standard form of the field Hamiltonian (in the Gaussian units)

Ĥ ≡ 1
8π

∫ L0

0
dx
[
(∂A/∂t)2 + (∂A/∂x)2

]
=

∞

∑
n=1

ωn

(
b̂†

n b̂n + 1/2
)

. (20)

For t > 0, the field operator can be written as

Â(x, t) = 2
∞

∑
n=1

1√
n

[
b̂nψ(n)(x, t) + h.c.

]
, (21)

where functions ψ(n)(x, t) are given by formula (5) with Cn = −i/2 (in order to satisfy the initial
conditions). If the wall stops after some time T, then the field operator can be expanded again over
the complete set of sine functions, like in Equation (19), but with the “physical” operators âm and â†

m
instead of b̂m and b̂†

m. The two sets of operators are related by means of the Bogoliubov transformation

âm =
∞

∑
n=1

(
b̂nαnm + b̂†

nβ∗nm

)
, m = 1, 2, . . . , (22)
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which implies the unitarity conditions

∞

∑
m=1

(α∗nmαkm − β∗nmβkm) = δnk,
∞

∑
n=1

(
α∗nmαnj − β∗nmβnj

)
= δmj,

∞

∑
n=1

(β∗nmαnk − β∗nkαnm) = 0. (23)

If the final position of moving boundary coincides with initial position L0, then the Bogoliubov
coefficients can be found in the form [84] (here c = 1)

αmn

βmn

}
=

1
2

√
m/n

∫ t/L0+1

t/L0−1
dx exp {−iπ [nR (L0x)∓mx]} . (24)

The mean number of photons in the mth mode equals the average value of the operator â†
m âm in

the initial state |in〉, since namely this operator has a physical meaning at t > T:

Nm ≡ 〈in|â†
m âm|in〉 = ∑

n
|βnm|2 + ∑

n,k

[
(α∗nmαkm + β∗nmβkm) 〈b̂†

n b̂k〉+ 2Re
(

βnmαkm〈b̂n b̂k〉
)]

. (25)

The first sum on the right-hand side of (25) describes the effect of the photon creation from
vacuum, while the other sums are different from zero only in the case of a non-vacuum initial state of
the field.

In the resonance case, solution (10) leads after long calculations to the following simple formula
for the rate of photon generation in the mth mode, when the wall vibrates at the twice frequency of the
first resonator eigenmode, in the limit εt� 1 [67]:

dNm/dt ≈ |ε| [1− (−1)m] /(mπ). (26)

The energy density inside the cavity can be calculated as [3,81] 〈T00(x, t)〉 = −g(t + x)− g(t− x),
with the same function g(ξ) (15). It was shown in [68,85–87] that, for q ≥ 2, the energy density grows
exponentially in the form of q traveling wave packets, which become narrower and higher as time
increases. The total energy also grows exponentially. For two resonantly oscillating boundaries (with
equal frequencies), the asymptotic photon production rate is given by the same formula (26), where ε

should be replaced with ε̃ = εL + (−1)q+1εR cos(φ), where εL,R are relative oscillation amplitudes of
each boundary and φ the phase difference [69].

The influence of initial states of the field and different boundary conditions on the energy density
and radiation force was studied analytically and numerically in [88–91]. The case of two relativistic
moving mirrors was studied in [92].

2.2.4. Expansions over the Instantaneous Basis

Another approach to the problem consists of expanding the function ψ(n)(x, t) in Equation (21) in
a series with respect to the instantaneous basis [93–97]:

ψ(n)(x, t > 0) =
∞

∑
k=1

Q(n)
k (t)

√
L0

L(t)
sin
(

πk[x− u(t)]
L(t)

)
, n = 1, 2, . . . (27)

with the initial conditions Q(n)
k (0) = δkn, Q̇(n)

k (0) = −iωnδkn, k, n = 1, 2, . . .. This way, we satisfy
automatically both the boundary conditions, A(u(t), t) = A(u(t) + L(t), t) = 0, and the initial
condition (4). Putting expression (27) into the wave Equation (1), one can arrive after some algebra at
an infinite set of coupled differential equations [97–99]

Q̈(n)
k + ω2

k(t)Q
(n)
k = 2

∞

∑
j=1

gkj(t)Q̇
(n)
j +

∞

∑
j=1

ġkj(t)Q
(n)
j +O

(
g2

kj

)
, (28)
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ωk(t) = kπ/L(t), gkj(t) = −gjk(t) = (−1)k−j
2kj
(

L̇ + u̇εkj

)
(j2 − k2) L(t)

, εkj = 1− (−1)k−j, j 6= k. (29)

For u = 0 (the left wall at rest), the equations like (28)–(29) were derived in [95,100].
If the wall comes back to its initial position L0 after some interval of time T, then the right-hand

side of Equation (28) disappears, so, at t > T, one can write

Q(n)
k (t) = ξ

(n)
k e−iωk(t+δT) + η

(n)
k eiωk(t+δT), k, n = 1, 2, . . . (30)

where ξ
(n)
k and η

(n)
k are some constant complex coefficients. To find these coefficients, one has to solve

an infinite set of coupled Equation (28) (k = 1, 2, . . .) with time-dependent parameters; moreover,
each equation also contains an infinite number of terms. However, the problem can be essentially
simplified, if the walls perform small oscillations at the frequency ωw close to some unperturbed field
eigenfrequency: L(t) = L0 (1 + εL sin [pω1(1 + δ)t]), u(t) = εuL0 sin [pω1(1 + δ)t + ϕ]. Assuming
|εL|, |εu| ∼ ε� 1, it is natural to look for the solutions to Equation (28) in the form

Q(n)
k (t) = ξ

(n)
k e−iωk(1+δ)t + η

(n)
k eiωk(1+δ)t, (31)

allowing now the coefficients ξ
(n)
k and η

(n)
k to be slowly varying functions of time. Then, using the

standard method of slowly varying amplitudes [101], one can arrive [97] at the following set of
equations, containing only three terms with simple time independent coefficients in the right-hand sides:

d
dτ

ξ
(n)
k = (−1)p

[
(k + p)ξ(n)k+p − (k− p)ξ(n)k−p

]
+ 2iγkξ

(n)
k , (32)

d
dτ

η
(n)
k = (−1)p

[
(k + p)η(n)

k+p − (k− p)η(n)
k−p

]
− 2iγkη

(n)
k , (33)

τ = εω1t/2, γ = δ/ε, ξ
(n)
k (0) = δkn, η

(n)
k (0) = 0. (34)

Equations (32) and (33) correspond to the case of u = 0 (the left wall at rest). Actually, the term
u̇ in gkj(t) does not make any contribution to the simplified equations of motion for even values of
integer parameter p, so that the rate of change of the cavity length L̇/L0 is only important in this case.
On the contrary, if p is an odd number, then the field evolution depends on the velocity of the center of
the cavity vc = u̇ + L̇/2, but does not depend on L̇ alone [102]. Therefore, one should simply replace
L̇/L0 by 2vc/L0, if p is an odd number.

The uncoupled Equations (32) and (33) hold only for k ≥ p. This means that they describe the
evolution of all the Bogoliubov coefficients, only if p = 1. Then all the functions η

(n)
k (t) are identically

equal to zero due to the initial conditions (34); consequently, no photon can be created from vacuum
(in the lowest order approximation with respect to the small parameter ε). This special “semi-resonance”
case was studied in detail in [97,103], where exact analytical solutions to Equation (32) were obtained
in terms of the Jacobi polynomials. It was demonstrated that the total number of photons is an integral
of motion in this specific case. (A similar phenomenon in the classical case was discussed in [46],
whereas the quantum case was also considered in [96]). The exact formula for the total energy in all
cavity modes for p = 1 (normalized by the fundamental cavity mode energy h̄ω1) is as follows:

E(τ) = E(0) + 2 sinh2(aτ)

a2

[
E(0)− γ

2
Im(G1)

]
+ Re(G1)

sinh(2aτ)

2a
, (35)

a =
√

1− γ2, G1 = 2
∞

∑
n=1

√
n(n + 1)〈in|b̂†

n b̂n+1|in〉. (36)
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It can be shown that |Ė(0)| ≤ E(0). Thus, the total energy grows exponentially, when τ � 1
(provided γ < 1), although it can decrease at τ � 1, if Ė(0) = Re(G1) < 0. Since the total number of
photons is constant, such a behavior is explained by the effect of pumping the highest modes at the
expense of the lowest ones (in the classical case this effect was noticed in 1960s: see [39]). This results
in an effective cooling of the lowest electromagnetic modes. The absence of photon creation in the
fundamental mode was related to the SL(2, R) symmetry of the problem in Ref. [104].

If p ≥ 2, we have, in addition to (32)–(33), p− 1 pairs of coupled equations for the coefficients with
lower indexes 1 ≤ k ≤ p− 1,

d
dτ

ξ
(n)
k = (−1)p

[
(k + p)ξ(n)k+p − (p− k)η(n)

p−k

]
+ 2iγkξ

(n)
k , (37)

d
dτ

η
(n)
k = (−1)p

[
(k + p)η(n)

k+p − (p− k)ξ(n)p−k

]
− 2iγkη

(n)
k . (38)

In this case, some functions η
(n)
k (t) are not equal to zero at t > 0, thus we have the effect of photon

creation from the vacuum. It is convenient to introduce a new set of coefficients ρ
(n)
k , whose lower

indexes run over all integers from −∞ to ∞:

ρ
(n)
k =


ξ
(n)
k k > 0

0 k = 0

−η
(n)
−k k < 0

(39)

Then, Equations (32), (33), (37) and (38) can be combined into a single set of equations
(k = ±1,±2, . . .) [97]

d
dτ

ρ
(n)
k = (−1)p

[
(k + p)ρ(n)k+p − (k− p)ρ(n)k−p

]
+ 2iγkρ

(n)
k , ρ

(n)
k (0) = δkn. (40)

A remarkable feature of the set of Equation (40) is that its solutions satisfy exactly the unitarity
conditions (23), which can be rewritten as (m, j, n, k = 1, 2, . . .)

∞

∑
m=−∞

mρ
(n)∗
m ρ

(k)
m = nδnk

∞

∑
n=1

m
n

[
ρ
(n)∗
m ρ

(n)
j − ρ

(n)∗
−m ρ

(n)
−j

]
= δmj

∞

∑
n=1

1
n

[
ρ
(n)∗
m ρ

(n)
−j − ρ

(n)∗
j ρ

(n)
−m

]
= 0.

Exact solutions to the set (40) were found in [97] in terms of the Gauss hypergeometric function.
They can be expressed also in terms of the complete elliptic integrals, if p = 2 [105]. The most
interesting consequences of these solutions are as follows.

There is no photon creation in the modes with numbers p, 2p, . . .. In the short-time limit (τ � 1),
Ṅ (vac)

j+pq ∼ τ2q+1, but the photon generation rate in each mode tends to the constant value in the
long-time limit:

d
dτ
N (vac)

j+pq ≈
2ap2 sin2(π j/p)

π2(j + pq)
, apτ � 1. (41)

The total number of photons created from vacuum in all modes increases in time approximately
quadratically, both in the short-time and in the long-time limits (although with different coefficients):

N̈ (vac) =
1
3

p(p2 − 1), |apτ| � 1, N̈ (vac) = 2a2 p3/π2, apτ � 1, a > 0. (42)

At the same time, the total number of “nonvacuum” photons increases in time only linearly at apτ � 1.
The total energy in all modes for the initial vacuum state of field is given by the exact formula [97]

E (vac)(τ) =
p2 − 1
12a2 sinh2(paτ) . (43)
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The total energy increases exponentially at τ → ∞, provided γ < 1. In the special case of
γ = 0, such a behavior of the total energy was obtained also in the frameworks of other approaches
in [100,106–108]. Note that the total “vacuum” and “nonvacuum” energies increase exponentially
with time, if γ < 1, whereas the total number of photons increases only as τ2 and τ, respectively,
under the same conditions. This happens because the number of effectively excited modes increases in
time exponentially [109]. The parametric instability in systems with moving boundaries was studied
in [110–113].

The solutions found in [97] were used in [114,115] to study the effects of squeezing and the
formation of narrow packets inside the 1D cavity with oscillating walls. The emission of narrow
packets outside the 1D Fabry–Perot cavity was studied in [116–118]. The influence of the dispersion of
the reflection coefficient of the fixed mirror (with the ideal moving one) and the frequency detuning
on the formation of packets inside the 1D cavity was investigated for different initial conditions
in [119–121]. The comparisons of numerical and analytical calculations in the one-dimensional case
were made in [122–124]. It was shown that the coincidence of results is excellent for small enough
values of parameter ε < 10−5 (remember that the realistic values are expected to be less than 10−7).
However, strong differences were observed for big values ε > 10−2. For other approaches to solving
equations like (28), see, e.g., [99,125,126]. Recently, these equations were solved numerically in the 1D
and 3D cases, for one and two moving boundaries, in the study [127].

The case of mixed boundary conditions—Dirichlet condition φ(t, L(t)) = 0 for the moving
wall and Neumann condition ∂xφ(t, 0) = 0 for the wall at rest—was solved, following the method
of [105], in papers [128,129]. In this case, photons can be produced in all modes, differently from the
Dirichlet–Dirichlet boundary conditions used in [105].

The analytical results shown above were obtained in the first order approximation with respect to
the small parameter ε. Taking into account the higher order approximations, the resonance frequencies
can be made smaller than the fundamental frequency ω1. For example, it was shown that, in the n-th
order approximation, the resonances at the frequency 2ω̃1/n are possible [130] (the frequency ω̃1 is
slightly shifted from ω1 due to nonlinear effects). In particular, the photon creation from vacuum at
the frequency close to ω1 becomes possible in the second order approximation.

2.2.5. Quantum Regime of the Wall Motion

In all papers cited above, the law of motion of the wall (boundary) was prescribed. The inclusion of
the moving boundary as a part of the dynamical system was made by Barton and Calogeracos [131,132].
However, they considered the boundary as a classical particle. The back reaction of the field on the
motion of a classical wall was taken into account in [133,134]. The resonant energy exchange between
a moving boundary and cavity modes was studied in [135]. Another approach was used in Ref. [136],
where the mirror was replaced by an ensemble of electrons and ions, bounded by some effective
parabolic potential.

The quantized motion of the boundary was considered in [137–141]. The authors of [139–141]
considered a scalar field in a one-dimensional cavity with one fixed and one mobile wall; the latter
was bound to an equilibrium position by a harmonic potential and its mechanical degrees of freedom
were treated quantum mechanically. The presence of the moving wall yielded an effective interaction
between the field modes, described by means of the interaction Hamiltonian

Ĥint =
(

b̂ + b̂†
)

∑
jk

CkjN
[(

âk + â†
k

) (
âj + â†

j

)]
, (44)

where b̂ and âj are bosonic operators, describing the mobile mirror and field modes, respectively,

and N is the normal ordering operator. Note that a simplified version of (44), Ĥint = h̄G
(

b̂ + b̂†
)

â† â,
was used to describe the ponderomotive effects of a strong laser field in cavities with oscillating walls,
but under the condition that the mechanical oscillator frequency is many orders of magnitude smaller
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than the cavity frequency, so that the DCE is negligible [142–145]. The recent progress in studies of
such fully quantized optomechanical systems in connection with the DCE can be seen in [146–152].

2.3. Partially Transparent Mirrors and General Boundary Conditions in 1D

The DCE with partially reflecting mirrors in the one-dimensional models was considered
in [53,102,117,131,132,153–159]. The comparison of the Dirichlet and Neumann boundary conditions
in terms of the solutions to Moore’s Equation (6) was performed in paper [72]. Another approach to
this problem was used in [160]. The so-called Robin boundary conditions of the form

(φ− γ(t)∂φ/∂x = 0) |at the boundary (45)

were studied in connection with the DCE in [131,132,161–164]. The simplest model uses the complex
reflection and transmission coefficients in the form [131,132]:

r = − iγ
ω + iγ

, t =
ω

ω + iγ
. (46)

This is equivalent to the model of the boundary as an equivalent delta-potential or a jellium-type
plasma sheet of infinitely small thickness. Such kind of models was used e.g., in Refs. [165,166].
Quantum and classical effects produced by thin sheets of electrons, working as relativistic mirrors,
were considered in [167–169].

The further generalization to the δ − δ′ potential was considered in [170]. In this model,
the reflection and transmission coefficients have the form

r =
2ωλ− iγ

ω (λ2 + 1) + iγ
, t =

ω
(
λ2 + 1

)
ω (λ2 + 1) + iγ

. (47)

It was shown that a partially reflecting single moving mirror can produce a larger number
of particles in comparison with a perfect one. The interference between the motion of a single
mirror and the time-dependent Robin parameter was studied in [171]. The problem of creation of
a time-dependent boundary was addressed in [172]. The catastrophic generation of quanta due to
instantaneous appearance and disappearance of a wall in a cavity was shown in [173]. The explosive
photon production due to instantaneous changes from the Neumann to the Dirichlet BC (or reversely)
was considered in [174]. (A similar unphysical behavior was discovered in [175] in the case of
instantaneous displacements of boundaries.) Microscopic models of mirrors as oscillators coupled
bilinearly to quantum fields were considered in [176–180].

3. Three-Dimensional Models with Moving Boundaries

3.1. Single Mirror DCE

The effect of photon production from vacuum, caused by single mirrors moving in the
three-dimensional space with relativistic velocities or with great accelerations, was studied in the
papers [181–186]. The nonrelativistic motion of the plane mirror was considered in [187–191].
The radiation from dynamically deforming mirrors with different boundary conditions was calculated
in [192–194]. Graphene-like mirrors were considered in [195]. Classical analogs of the DCE due to the
oscillating motion of the plane surfaces containing dipole layers were considered in [196,197]. For the
most recent publications, one can see [198–200].

Various quantum effects arising due to the motion of dielectric boundaries in three dimensions,
including the modification of the Casimir force and creation of photons, have been studied in [201–208].
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3.1.1. Quantum Friction for Moving Surfaces

The first calculations of the forces acting on the single mirrors moving with nonrelativistic velocities
due to the vacuum or thermal fluctuations of the field were performed in the framework of the spectral
approach (using the fluctuation–dissipation theorem) in [209] (three-dimensional case, the force
proportional to the fifth-order derivative of the coordinate) and in [210] (one-dimensional model,
the force proportional to the third-order derivative of the coordinate). These studies were continued
in [25,153,211–217], where it was assumed that the velocity of the boundary is perpendicular to
the surface.

The frictional force proportional to the constant relative velocity of two parallel plates, when
this velocity is also parallel to the surfaces, was calculated by Teodorovich [218] in the van der Waals
regime (i.e., neglecting the retardation effects). More general results were obtained by Levitov [219] and
Polevoi [220]. In particular, Levitov had shown that the linear dependence on the velocity disappears
at zero absolute temperature, but the friction force is still nonzero: it is proportional to v3 for a very
small separation between the plates, while it becomes velocity independent (like the dry friction) for a
big enough separation. Later on, the theory of “Casimir friction” was the subject of studies [221–228],
with controversial results. Moreover, the existence of such a friction force was questioned in [229] and
especially in [230]. The latter paper triggered hot discussions [231–235]. More recent results can be
found in [236–250]. In particular, it was shown in [246] that the friction force between two graphene
sheets is nonzero only if the relative velocity is larger than the Fermi velocity of the charge carriers in
graphene.

In 1971, Zel’dovich [251,252] predicted that a rotating object can amplify certain incident waves
under the condition ω − LΩ < 0, where ω is the frequency of the field mode, L is its azimuthal
quantum number, and Ω is the angular velocity of the rotating body (a cylinder). Furthermore,
he conjectured that such an object should spontaneously emit radiation for these selected modes.
This idea was further developed in [253]. The effect was called “superradiance” in [254,255] and
“spontaneous superradiance” in [256]. Recently, a similar phenomenon—the friction force on the
rotating bodies due to the interaction with vacuum (or thermal) fluctuations of the EM field—was
studied in detail in papers [257–260]. Analogs in superfluids were considered in [261]. The wave
instability of the electromagnetic field inside a rotating cylinder, resulting in exponential growth with
time, was studied in [262].

3.2. Cavity DCE

3.2.1. Effective Hamiltonians

The instantaneous basis approach, described above, corresponds to the Heisenberg description
of the quantum systems. It was believed for some time after Moore [1] that it is the only possible
approach to the systems with moving boundaries. However, an equivalent Schrödinger description
(although approximate) also exists. It is based on using some effective Hamiltonians [94–96,98–100,156,
175,263–267]. The general structure of the effective infinite-dimensional quadratic Lagrangians and
Hamiltonians arising in the canonical approach to the dynamical Casimir effect was analyzed and
classified in [98,263].

Following [268], let us suppose that the set of Maxwell’s equation in a medium with
time-independent parameters and boundaries can be reduced to an equation of the form
K̂({L})Fα(r; {L}) = ω2

α({L})Fα(r; {L}), where {L} means a set of parameters (for example,
the distance between the walls or the dielectric permittivity inside the cavity), ωα({L}) is the
eigenfrequency of the field mode labeled by the number (or a set of numbers) α and Fα(r; {L})
is some vector function describing the EM field (e.g., the vector potential). In the simplest cases,
K̂({L}) is reduced to the Laplace operator. Usually, the operator K̂({L}) is self-adjoint, and the set of
functions {Fα(r; {L})} is orthonormal and complete in some sense.
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Now, suppose that parameters L1, L2, . . . , Ln become time-dependent. If one can still satisfy
automatically the boundary conditions, expanding the field F(r, t) over “instantaneous” eigenfunctions
F(r, t) = ∑α qα(t)Fα(r; {L(t)}) (this is true, e.g., for the Dirichlet boundary conditions, which are
equivalent in some cases to the TE polarization of the field modes), then the dynamics of the field is
described completely by the generalized coordinates qα(t), whose equations of motion can be derived
from the effective time-dependent Hamiltonian [98]

H =
1
2 ∑

α

[
p2

α + ω2
α ({L(t)}) q2

α

]
+

n

∑
k=1

L̇k(t)
Lk(t)

∑
α 6=β

pαm(k)
αβ qβ, (48)

m(k)
αβ = −m(k)

βα = Lk

∫
dV

∂Fα (r; {L})
∂Lk

Fβ (r; {L}) . (49)

Consequently, the field problem can be reduced to studying the dynamics of the infinite set of
harmonic oscillators with time-dependent frequencies and bilinear specific (coordinate–momentum)
time-dependent coupling. Methods of diagonalization of some specific Hamiltonians like (48) were
considered in [269,270].

3.2.2. Parametric Oscillator Model

From the point of view of applications to the DCE, the most important cases are those where the
parameters Lk(t) vary in time periodically. In the case of small harmonic variations at the frequency
close to the double unperturbed eigenfrequency of some mode 2ω0, the equations of motion resulting
from Hamiltonian (48) can be solved approximately with the aid of the method of slowly varying
amplitudes [101]. If the difference ωα −ωβ is not close to 2ω0 for all those modes which have nonzero
(or not very small) coupling coefficients mαβ, then only the selected mode with label 0 can be excited in
the long-time limit, and one can consider only this single resonance mode [27,105], whose excitation is
described by the Hamiltonian

H =
[

p2
0 + ω2

0 ({L(t)}) q2
0

]
/2. (50)

The theory of quantum nonstationary harmonic oscillator has been well developed since its
foundation by Husimi in 1953 [271] (see, e.g., [272–274] for the reviews and references). It appears that
all dynamical properties of the quantum oscillator are determined by the fundamental set of solutions
of the classical equation of motion

ε̈ + ω2(t)ε = 0. (51)

For harmonic variations of the frequency in the form ω(t) = ω0 [1 + 2κ cos(2ω0t)], with |κ| � 1,
Equation (51) can be solved approximately using, e.g., the method of averaging over fast oscillations
or the method of slowly varying amplitudes [101]. The final result is a simple formula for the number
of quanta created from the initial vacuum state [105,275]:

N = sinh2 (ω0κt) . (52)

Here, one can notice the striking difference between the parabolic dependence on time of the total
number of created quanta in the 1D case, according to Equation (42), and the exponential dependence
(52) in the 3D case. This is explained by the crucial difference in the eigenmode spectra: it is equidistant
in the 1D case, but strongly non-equidistant in the generic 3D case. A smooth transition from one
situation to another was demonstrated in [276]. Anharmonic and random periodic displacements of
boundaries were studied in [277].

In the literature on the DCE, many authors frequently use an equivalent form of the single-mode
effective Hamiltonian (50) in terms of annihilation and creation operators, derived by Law [96],

Ĥ = ω(t)â† â− iχt

(
â2 − â†2

)
, χt = (dω/dt)/(4ω), h̄ = 1. (53)
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Algebraic methods of solving the Schrödinger equation with Hamiltonian (53) were used in [278].
Recently, the harmonic oscillator model was re-discovered and applied to the circuit QED in [279].

3.2.3. The Role of Intermode Interactions

The single-mode approximation of the generic Hamiltonian (48) does not work, if the frequency
difference between specific modes equals (almost) exactly twice the resonance frequency of some mode.
For example, such a resonance coupling between two modes is possible in cubical cavities [280]. This
case was studied in [280,281]. It was shown that the number of photons in both the coupled modes
grows exponentially with time in the long time limit ω0κt � 1, but the rate of photon generation
(the argument of the exponential function) turns out to be two times smaller than the value of this rate
in the absence of the resonance coupling. (Actually, this rate depends on the concrete values of the
coupling coefficients mαβ, but in any case it cannot exceed the ‘uncoupled’ values [281].) This example
indicates that the resonance coupling between the modes should be avoided in order to achieve the
maximal photon generation rate, at least in the case of TE modes. A detailed numerical study of this
case for different sizes of the rectangular cavities was performed in [282]. The authors of paper [166]
used numerical methods, taking into account the interaction between 50 lowest coupled modes in the
rectangular cavity, bisected by a “plasma sheet” with a periodically varying number of free carriers.
Some results of that paper show that the intermode coupling can increase the number of photons in
the modes of EM field with the TM polarization.

The parametric excitation of the resonantly coupled modes of the scalar field in the cubic cavity
was studied in [283]. The case of the TE polarization of the vector EM field was also considered
there. The “swinging” cubic cavity, performing small amplitude periodical rotations along the z-axis,
θ(t) = ε sin(Ωt), was considered in [284] (in the model of scalar field). The frequency Ω was chosen in
such a way that three modes, (1, 1, 1), (1, 2, 1) and (2, 1, 1), were resonantly coupled.

The role of intermode interactions was also studied in paper [285]. There, the evolution of the
classical electromagnetic field inside the cylindrical (rectangular) cavity with ideal boundaries was
studied analytically and numerically in the case, when the conductivity σ and dielectric permittivity ε

of a thin slab attached to the base of the cylinder can vary with time. It was shown that the single-mode
model can be justified, if the perturbation of the field is small due to the smallness of σ and δε. However,
no amplification can be achieved in this case for microwave fields, if σ and δε are due to the creation of
free carriers inside the slab.

3.2.4. Time-Dependent Casimir Force

Remember that the famous Casimir formula [286] for the attraction force per unit area between
two ideal infinite plates in three dimensions reads

F/S = −π2h̄c/(240L4
0). (54)

It was generalized, using the Green function method, to the case of uniform motion of one
boundary (in the direction perpendiculat to its surface) in [287] for the scalar field and in [288] for the
vector electromagnetic field. The results of two models turned out to be qualitatively different. Namely,
the scalar model predicted the increase of the absolute value of the Casimir force in the nonrelativistic
case:

Fscal = −
π2

480L4(t)

[
1 +

8
3

(v
c

)2
+ · · ·

]
, v/c� 1. (55)

On the contrary, the account of the TM modes of the electromagnetic field results in the decrease
of the absolute value of the Casimir force in the nonrelativistic case:

FEM = − π2

240L4(t)

[
1 +

(v
c

)2
(

2
3
− 10

π2

)
+ · · ·

]
, v/c� 1. (56)
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Moreover, as a matter of fact, the force practically does not depend on the velocity (with accuracy
about 10%), decreasing monotonously (by the absolute value) to the ultra-relativistic limit

FEM = − 3
8π2L4(t)

[
1 +

1
16

(
1− v2/c2

)2
+ · · ·

]
, 1− (v/c)2 � 1. (57)

However, the force can be significantly amplified under the resonance conditions, either in the
LC-contour [209] or in the Fabry–Perot cavity [210] (see also [84]). The time-dependent force between
vibrating plates was considered in [289].

3.2.5. Vector Fields in 3D Cavities

Quantum properties of the electromagnetic field between two infinite plates, moving with constant
relative velocity, with account of the field polarization, were considered in [290]. The photon generation
in the TE and TM modes of electromagnetic field between two parallel vibrating plates was considered
in [265]. It was shown that the photon generation rate in the TM modes is higher by one order of
magnitude than that in the TE modes (see also [266]). The case of a three-dimensional rectangular
cavity divided into two parts by an ideal mirror, which suddenly disappears, was considered in [291].
TE and TM modes in a resonant cavity bisected by a plasma sheet were considered in [166]. The DCE
for the Dirac field inside the 3D cubic box with oscillating walls was studied in [292]. The spherical and
cylindrical geometries were considered in [72,293–298]. General boundary conditions in 3D cavities
were used in [299,300]. The scattering approach was applied to the DCE problem in [301]. Numerical
algorithms were elaborated in [302].

3.2.6. Saturated Regimes

An unlimited growth of the number of generated “Casimir photons” happens in the simplified
models only. The maximal number of quanta that could be generated under realistic conditions
is limited due to many factors. One such factor is related to unavoidable nonlinearities in real
systems [303–306]. Another mechanism, related to the temporal coherence, was studied in [307].
The saturation due to the finite reflectance spectral band of mirrors was considered in [308].

4. General Parametric DCE

4.1. Circuit DCE

In view of great difficulties in observing weak manifestations of the DCE, several authors came
to the idea of simulating (modeling) this effect in more simple arrangements. Probably, the simplest
possibility is to use some electrical circuits [309]. The idea to use quantum resonant oscillatory
contours or Josephson junctions with time-dependent parameters (capacitance, inductance, magnetic
flux, critical current, etc.) was put forward by Man’ko many years ago [310]. More elaborated
proposals in the same direction were presented in [311–315]. The idea to use a superconducting
coplanar waveguide in combination with a Josephson junction was developed in [316–319], and the
experiments were reported in [320–323]. Their success is related to the possibility of achieving the
effective velocity of the boundary up to 25% of the light velocity in vacuum (although the analogy
with the motion of real boundaries is not perfect). A detailed review of this approach was given
in [31]. The experiments [320–323] were performed in the frequency interval of a few GHz. Their
arrangements can be considered as realizations of the one-dimensional models with time-dependent
parameters. The experiment [320] was performed with an open strip-line waveguide, where the
photon generation was achieved due to periodical fast changes of the boundary conditions on one
side of the line. Although that boundary conditions can be interpreted as equivalent to a high effective
velocity of an oscillating boundary, such an interpretation has a limited range of validity. The second
experiment [322] used the parametric resonance excitation of quanta due to changes of the effective
speed of light. This arrangement can be considered as a one-dimensional system with periodically
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varying distributed parameters. The results of that experiments stimulated many theoretical papers,
suggesting further improvements of the experimental schemes [324–337]. The circuit QED with
“artificial atoms” (qubits) was the subject of studies [338–350]. The most recent review on parametric
effects in circuit QED can be found in [351].

4.2. Analogs of DCE in Condensed Matter

Analogs of the DCE in Bose–Einstein condensates and ultracold gases with time-dependent
parameters were considered in [352–364]. An obvious advantage of replacing EM waves with their
sound analogs is a possibility of achieving high ratios of effective velocities to the sound speed,
including the supersonic regimes [358,360]. The use of plasmon resonances in metallic nanoparticles
surrounded by an amplifying medium, excited by femtosecond lasers, was suggested in [365]. The
DCE with polaritons was studied in [366–370], and the DCE with magnons in [371,372]. The DCE for
phonons was considered in [373–376].

4.3. DCE and Atomic Excitations

Many papers were devoted to the interaction between the “Casimir photons” and multilevel
systems (“atoms” or “qubits”) inside cavities or quantum circuits [306,377–408]. In particular, two-level
atoms (qubits) were considered in [306,378,380–382,384,386,391,392,394,400,401,403,404,408]. Two
two-level atoms were studied in [390,396,405,407], and ensembles of many two-level atoms
in [383,385,388,395,397,398,401,406]. Three-level systems were considered in [379,387,389,408].
The case of N-level atoms in equally spaced, resonant ladder configuration, was investigated in [388].
The circuit DCE with two-level “atoms” was studied in [409]. The case of a two-level atom near a
single accelerated mirror was studied in [410]. A possibility of generation of quantum field states with
the hyper-Poissonian statistics, as well as some other “exotic” quantum states, due to the DCE in the
presence of “atoms”, was shown in [411,412]. The “anti-dynamic” Casimir effect (coherent annihilation
of system excitations from common initial states due to parametric modulation) was predicted and
studied in papers [304,340,413–418]. The effect of generation of pairs of atomic excitations instead
of photons (“inverse DCE”) was considered in [304]. A possibility of exciting the Rydberg atoms
passing near the boundary with oscillating parameters (“oscillating effective mirror”) was studied
in [419]. The influence of the oscillating boundary on the spontaneous emission rate of an atom placed
nearby this boundary was considered in [420,421]. The influence of the DCE on the fidelity of the
quantum state transfer between two qubits in the ultrastrong coupling regime was studied in [405].
The generation of photons by accelerated neutral objects in cavities with static walls was considered,
e.g., in [422].

5. Experimental Proposals for the Cavity DCE

5.1. Difficulties with Real Moving Boundaries

According to formula (52), a possibility of experimental verification of the DCE depends on
the amplitude of the frequency variation ∆ω = 2κω0. The main difficulty is due to the very high
frequency 2ω0. The most exciting dream is to observe the ”Casimir light” in the visible part of the
electromagnetic spectrum. However, it seems to be very improbable using real mirrors oscillating at
the frequency about 1015 Hz, due to the practical impossibility of exciting and maintaining the high
frequency oscillations of the suspended plate with a large amplitude and for a long time.

It seems that the only possible way to realize the real motion of material boundaries at high
frequencies is not to move the whole mirror, but to cause its surface to perform harmonic vibrations
with the aid of some mechanism, e.g., using the piezo-effect. The amplitude of such vibrations ∆L
is connected with the maximal relative deformation δ in a standing acoustic wave inside the wall
as δ = ωw∆L/vs, where vs ∼ 5 · 103 m/s is the sound velocity. Since usual materials cannot bear
deformations exceeding the value δmax ∼ 10−2, the velocity of the boundary cannot exceed the
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value vmax ∼ δmaxvs ∼ 50 m/s (independent on the frequency). The maximal possible frequency
variation amplitude ∆ω can be evaluated as ∆ω ∼ vsδmax/(2L), where L is the cavity size. For the
optical frequencies, taking 2L > 1 µm, we obtain ∆ω < 5× 107 s−1, whereas, for the microwave
frequencies (in the GHz band) with L ∼ 1 cm, we have ∆ω < 103 s−1. Since the time of excitation t
must be bigger than 1/∆ω, the quality factor of the cavity Q must be not less than Qmin ≈ ω0/∆ω ≈
(L/λ)4πc/(vsδ) ∼ 108(L/λ). Consequently, there are two main challenges: how to excite high
frequency surface oscillations and how to maintain the high quality factor in the regime of strong
surface vibrations. The excitation of high amplitude surface vibrations at the optical frequencies seems
very problematic. Therefore, hardly the ”Casimir light” in the visible region can be generated in
systems with really moving boundaries. However, this seems to be possible in other schemes, where
changes of some parameters can be interpreted as variations of an ”effective length” of the cavity.

The GHz frequency band seems more promising. In such a case, the dimensions of cavities must
be of the order of few centimeters. Superconducting cavities with the quality factors exceeding 1010 in
the frequency band from 1 to 50 GHz have been available for a long time. Therefore, the most difficult
problem is to excite the surface vibrations. At lower frequencies, it was solved long ago. Only recently,
a significant progress was achieved in fabrication of the so called “film bulk acoustic resonators”
(FBARs): piezoelectric devices working at the frequencies from 1 to 3 GHz [423]. They consist of
an aluminum nitride (AlN) film of thickness corresponding to one half of the acoustic wavelength,
sandwiched between two electrodes. It was suggested [424–426] to use such kind of devices to excite
the surface vibrations of cavities in order to observe the DCE. However, no experimental results in this
direction were reported until now. For the most recent proposals, see [427,428].

5.2. Simulations with Semiconductor Slabs

In view of difficulties of the excitation of oscillating motion of real boundaries, the ideas concerning
the imitation of this motion attracted more and more attention with the course of time. The first concrete
suggestion was made by Yablonovitch [5], who proposed to use a medium with a rapidly decreasing
in time refractive index (”plasma window”) to simulate the so-called Unruh effect. In addition,
he pointed out that fast changes of dielectric properties can be achieved in semiconductors illuminated
by subpicosecond optical pulses and supposed that ”the moving plasma front can act as a moving
mirror exceeding the speed of light.” Similar ideas and different possible schemes based on fast
changes of the carrier concentration in semiconductors illuminated by laser pulses were discussed
in [429–431]. Yablonovitch [5,429] put emphasis on the excitation of virtual electron–hole pairs by optical
radiation tuned to the transparent region just below the band gap in a semiconductor photodiode.
He showed that big changes of the real part of the dielectric permittivity could be achieved in this way.

The key idea of the experiment named “MIR” in the university of Padua [432,433] was to imitate
the motion of a boundary, using an effective “plasma mirror” formed by real electron–hole pairs in a
thin film near the surface of a semiconductor slab, illuminated by a periodical sequence of short laser
pulses. If the interval between pulses exceeds the recombination time of carriers in the semiconductor,
a highly conducting layer will periodically appear and disappear on the surface of the slab. This can be
interpreted as periodical displacements of the boundary. The basic physical idea was nicely explained
in [433]: ”. . . this effective motion is much more convenient than a mechanical motion, since in a
metal mirror only the conduction electrons reflect the electromagnetic waves, whereas a great amount
of power would be wasted in the acceleration of the much heavier nuclei.” However, attempts to
implement this idea in practice [434] met severe difficulties due to high losses in semiconductor
materials. A rough explanation was given in [285,435]. It seems that the necessary condition for the
photon generation, in addition to a high value of the slab conductivity, is the big negative change of
the real part of the dielectric permeability. Probably, this regime was not reached in the experiments.
An idea to use the resonance between the field mode and cyclotron transitions inside a semiconductor
heterostructure in a strong and rapidly varying magnetic field was suggested in [436].
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5.3. Simulations with Linear and Nonlinear Optical Materials

The main mechanism of the DCE is amplification of vacuum fluctuations due to fast variations of
instantaneous eigenfrequences of the field modes. These variations can happen either due to change of
real dimensions of the cavity confining the field (DCE in narrow sense) or due to changes of the effective
(optical) length, when dielectric properties of the medium inside the cavity depend on time (DCE in
wide sense). This second possibility was investigated theoretically by many authors [96,275,437–460].
The main problem is how to realize fast variations of the dielectric permeability in real experiments.
The idea to use laser beams passing through a material with nonlinear optical properties was
considered in [5,429,438–440,448], and concrete experimental schemes were proposed in [461–464].
Although those schemes are rather different (Dezael and Lambrecht [461] and Hizhnyakov [463]
considered nonlinear crystals with the second-order nonlinearity, whereas Faccio and Carusotto [462]
proposed to exploit the third-order Kerr effect), their common feature is the prediction of generation
of infrared [461,462] or even visible [463] photons, whose frequency is of the same order as the
frequency of the laser beam. The experiment based on the suggestion [462] was realized recently [465].
A simulation of the DCE in photonic lattices or photonic crystals was suggested in papers [466,467].

The evaluation of a possibility to obtain parametric amplification of the microwave vacuum field,
using a reentrant cavity enclosing a nonlinear crystal with a strong third-order nonlinearity, whose
refractive index is modulated by near infrared high-intensity laser pulses, was performed in [468,469].
Such a configuration seems to be more adequate for the simulation of the DCE because the effective
time-varying length of the cavity is created by infrared quanta, whereas an antenna put inside the
cavity can select microwave (RF) quanta only, whose frequency is five orders of magnitude smaller.
This could help experimentalists to get rid of various spurious effects due to other possible mechanisms
of photon generation.

5.4. Interaction with Detectors

An important part of the experiments on the DCE is how to detect the “Casimir photons”.
This problem was considered in [105,411,470–481]. Detectors modeled by harmonic oscillators were
studied in [105,471,475–479]. Two-level and multilevel detectors were considered in [471,477,481].
Electron beams as detectors were suggested in [472]. Rydberg atoms as detectors were proposed
in [474].

6. DCE and Other Quantum Phenomena

Various phenomena connected with the DCE were investigated in [482–486]. In particular,
the DCE in curved spacetimes or in the presence of gravitational fields was studied in [487–491]. The
role of the dynamical Casimir effect in the cosmological problems was studied in [158,492]. The DCE in
an infinite uniformly accelerated medium was considered in [493]. The influence of gravitational fields
on the DCE was studied in [494]. Many of these studies are connected with the general problem of the
quantum radiation produced by time-varying metrics. It takes the origin in the papers published about
50 years ago: [2,4,43–45,495–497]. For the recent studies one can see Refs. [454,498] The differences
between the DCE and the Unruh effect [499–501] were discussed, e.g., in studies [31,80,500,502–505].
Intersections between the DCE and quantum thermodynamics were discussed in [138,415,417,506].
Interferometers and detectors of weak signals with moving mirrors were considered in [61,507,508].
Possible (although looking fantastic at the moment) applications of the DCE to the space flights were
discussed in [509].

6.1. Damping and Decoherence

The necessity of taking into account the effects of damping in the DCE was clear from the very
beginning. Various estimations of the influence of these effects on the photon production rate inside
the cavity and in quantum circuits were made in [27,102,348,349,510–516].
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The closely connected problem of decoherence due to the DCE was considered for the first time
in [517,518]. For other publications in this direction, see, e,g., [380,519–522].

6.2. Entanglement

The problem of entanglement creation by means of the DCE was put forward in the study [523].
Various aspects of the problem of entanglement in systems with moving mirrors (or their analogs)
were considered in Refs. [143,144,333,346,361,363,524–539]. The quantum discord in the DCE was the
subject of studies [333,540]. Other aspects of the quantum information theory were investigated in
connection with the DCE in [541–543]. Possible applications of the DCE in quantum simulations were
discussed in [544].

6.3. Other Dynamical Effects

The Dynamical Lamb Effect, introduced in [545], consists of the excitation of atoms inside a cavity
with moving walls, without creation of real photons in the cavity. For further studies, one can consult
papers [348,349,523,533–535,546–548].

The Dynamical Casimir–Polder Effects are related to the influence of the EM field fluctuations on
the interaction between atomic-size objects (or between such objects and walls) in non-stationary
situations. The term was coined in papers [549,550]. For further developments, one can consult
studies [419,551–558].

7. Conclusions

This short review demonstrates an impressive expansion of the front of research related to
the DCE (or its analogs) in many different areas that happened during the past decade. Studies
in the area of quantum circuits come first (Section 4.1), stimulated by experiments [320,322,323].
They are followed by many results and suggestions that connect the DCE with the condensed matter
(Section 4.2) and atomic physics (Section 4.3). Here, the first experiment was reported in [353].
The first experimental results related to the analog of the DCE in an optical fiber were also obtained
recently [465]. Thus, the fascinating dynamical Casimir physics continues to attract many scientists.
However, an observation of the “real” DCE in cavities with moving boundaries is still a challenge
(or dream).
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88. Wȩgrzyn, P.; Róg, T. Photons produced inside a cavity with a moving wall. Acta Phys. Pol. B 2003,

34, 3887–3900.
89. Alves, D.T.; Granhen, E.R.; Lima, M.G.; Silva, H.O.; Rego, A.L.C. Time evolution of the energy density inside

a one-dimensional non-static cavity with a vacuum, thermal and a coherent state, J. Phys. Conf. Ser. 2009,
161, 012032.

90. Alves, D.T.; Granhen, E.R.; Lima, M.G.; Rego, A.L.C. Quantum radiation force on a moving mirror for a
thermal and a coherent field. J. Phys. Conf. Ser. 2009, 161, 012033.

91. Alves, D.T.; Granhen, E.R.; Silva, H.O.; Lima, M.G. Quantum radiation force on the moving mirror of a
cavity, with Dirichlet and Neumann boundary conditions for a vacuum, finite temperature, and a coherent
state. Phys. Rev. D 2010, 81, 025016.

92. Alves, D.T.; Granhen, E.R.; Pires, W.P. Quantum radiation reaction force on a one-dimensional cavity with
two relativistic moving mirrors. Phys. Rev. D 2010, 82, 045028.

93. Grinberg, G.A. A method of approach to problems of the theory of heat conduction, diffusion and the wave
theory and other similar problems in presence of moving boundaries and its applications to other problems.

94. Razavy, M.; Terning, J. Quantum radiation in a one-dimensional cavity with moving boundaries. Phys. Rev.
D 1985, 31, 307–313.

95. Calucci, G. Casimir effect for moving bodies. J. Phys. A Math. Gen. 1992, 25, 3873–3882.
96. Law, C.K. Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying

dielectric medium. Phys. Rev. A 1994, 49, 433–437.



Physics 2020, 2 88

97. Dodonov, V.V. Resonance photon generation in a vibrating cavity. J. Phys. A Math. Gen. 1998, 31, 9835–9854.
98. Schützhold, R.; Plunien, G.; Soff, G. Trembling cavities in the canonical approach. Phys. Rev. A 1998,

57, 2311–2318.
99. Ji, J.-Y.; Jung, H.-H.; Soh, K.-S. Interference phenomena in the photon production between two oscillating

walls. Phys. Rev. A 1998, 57, 4952–4955.
100. Law, C.K. Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. Phys.

Rev. A 1995, 51, 2537–2541.
101. Landau, L.D.; Lifshitz, E.M. Mechanics; Pergamon: Oxford, UK, 1969.
102. Lambrecht, A.; Jaekel, M.T.; Reynaud, S. Motion induced radiation from a vibrating cavity. Phys. Rev. Lett.

1996, 77, 615–618.
103. Dodonov, V.V. Resonance excitation and cooling of electromagnetic modes in a cavity with an oscillating

wall. Phys. Lett. A 1996, 213, 219–225.
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315. Berdiyorov, G.R.; Milošević, M.V.; Savel’ev, S.; Kusmartsev, F.; Peeters, F.M. Parametric amplification of

vortex-antivortex pair generation in a Josephson junction. Phys. Rev. B 2014, 90, 134505.
316. Dodonov, A.V. Photon creation from vacuum and interactions engineering in nonstationary circuit QED.

J. Phys. Conf. Ser. 2009, 161, 012029.
317. Johansson, J.R.; Johansson, G.; Wilson, C.M.; Nori, F. Dynamical Casimir effect in a superconducting coplanar

waveguide. Phys. Rev. Lett. 2009, 103, 147003.
318. Johansson, J.R.; Johansson, G.; Wilson, C.M.; Nori, F. Dynamical Casimir effect in superconducting

microwave circuits. Phys. Rev. A 2010, 82, 052509.
319. Wilson, C.M.; Duty, T.; Sandberg, M.; Persson, F.; Shumeiko, V.; Delsing, P. Photon generation in an

electromagnetic cavity with a time-dependent boundary. Phys. Rev. Lett. 2010, 105, 233907.
320. Wilson, C.M.; Johansson, G.; Pourkabirian, A.; Simoen, M.; Johansson, J.R.; Duty, T.; Nori, F.; Delsing, P.

Observation of the dynamical Casimir effect in a superconducting circuit. Nature 2011, 479, 376–379.
321. Johansson, J.R.; Johansson, G.; Wilson, C.M.; Delsing, P.; Nori, F. Nonclassical microwave radiation from the

dynamical Casimir effect. Phys. Rev. A 2013, 87, 043804.
322. Lähteenmäki, P.; Paraoanu, G.S.; Hassel, J.; Hakonen, P.J. Dynamical Casimir effect in a Josephson

metamaterial. Proc. Nat. Acad. Sci. USA 2013, 110, 4234–8.



Physics 2020, 2 96

323. Svensson, I.-M.; Pierre, M.; Simoen, M.; Wustmann, W.; Krantz, P.; Bengtsson, A.; Johansson, G.; Bylander,
J.; Shumeiko, V.; Delsing, P. Microwave photon generation in a doubly tunable superconducting resonator.
J. Phys. Conf. Ser. 2018, 969, 012146.

324. Wustmann, W.; Shumeiko, V. Parametric resonance in tunable superconducting cavities. Phys. Rev. B 2013,
87, 184501.

325. Rego, A.L.C.; Alves, J.P.daS.; Alves, D.T.; Farina, C. Relativistic bands in the spectrum of created particles via
the dynamical Casimir effect. Phys. Rev. A 2013, 88, 032515.

326. Rego, A.L.C.; Silva, H.O.; Alves, D.T.; Farina, C. New signatures of the dynamical Casimir effect in a
superconducting circuit. Phys. Rev. D 2014, 90, 025003.

327. Lindkvist, J.; Sabin, C.; Fuentes, I.; Dragan, A.; Svensson, I.-M.; Delsing, P.; Johansson, G. Twin paradox with
macroscopic clocks in superconducting circuits. Phys. Rev. A 2014, 90, 052113.

328. Zhang, Y.N.; Luo, X.W.; Zhou, Z.W. Dynamical Casimir effect in dissipative superconducting circuit system.
Sci. China - Phys. Mech. Astron. 2014, 57, 2251–2258.

329. Andersen, C.K.; Mølmer, K. Multifrequency modes in superconducting resonators: Bridging frequency gaps
in off-resonant couplings. Phys. Rev. A 2015, 91, 023828.

330. Doukas, J.; Louko, J. Superconducting circuit boundary conditions beyond the dynamical Casimir effect.
Phys. Rev. D 2015, 91, 044010.

331. Corona-Ugalde, P.; Martín-Martínez, E.; Wilson, C.M.; Mann, R.B. Dynamical Casimir effect in circuit QED
for nonuniform trajectories. Phys. Rev. A 2016, 93, 012519.

332. Lombardo, F.C.; Mazzitelli, F.D.; Soba, A.; Villar, P.I. Dynamical Casimir effect in superconducting circuits:
A numerical approach. Phys. Rev. A 2016, 93, 032501.

333. Samos-Saenz de Buruaga, D.N.; Sabín, C. Quantum coherence in the dynamical Casimir effect. Phys. Rev. A
2017, 95, 022307.

334. Sabín, C.; Peropadre, B.; Lamata, L.; Solano, E. Simulating superluminal physics with superconducting
circuit technology. Phys. Rev. A 2017, 96, 032121.

335. Lombardo, F.C.; Mazzitelli, F.D.; Soba, A.; Villar, P.I. Dynamical Casimir effect in a double tunable
superconducting circuit. Phys. Rev. A 2018, 98, 022512.

336. Bosco, S.; Lindkvist, J. Johansson, G. Simulating moving cavities in superconducting circuits. Phys. Rev. A
2019, 100, 023817.

337. Ma, S.; Miao, H.; Xiang, Y.; Zhang, S. Enhanced dynamic Casimir effect in temporally and spatially modulated
Josephson transmission line. Laser Photonics Rev. 2019, 1900164.

338. Dodonov, A.V. Asymptotic mean excitation numbers due to anti-rotating term (AMENDART) in Markovian
circuit QED. J. Phys. Conf. Ser. 2011, 274, 012137.

339. Dodonov, A.V. Analytical description of nonstationary circuit QED in the dressed-states basis. J. Phys. A
Math. Theor. 2014, 47, 285303.

340. Veloso, D.S.; Dodonov, A.V. Prospects for observing dynamical and anti-dynamical Casimir effects in circuit
QED due to fast modulation of qubit parameters. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 165503.

341. Felicetti, S.; Sabin, C.; Fuentes, I.; Lamata, L.; Romero, G.; Solano, E. Relativistic motion with superconducting
qubits. Phys. Rev. B 2015, 92, 064501.

342. Hoi, I.-C.; Kockum, A.F.; Tornberg, L.; Pourkabirian, A.; Johansson, G.; Delsing, P.; Wilson, C.M. Probing the
quantum vacuum with an artificial atom in front of a mirror. Nat. Physics 2015, 11, 1045–1049.

343. Rossatto, D.Z.; Felicetti, S.; Eneriz, H.; Rico, E.; Sanz, M.; Solano, E. Entangling polaritons via dynamical
Casimir effect in circuit quantum electrodynamics. Phys. Rev. B 2016, 93, 094514.

344. Dodonov, A.V.; Militello, B.; Napoli, A.; Messina, A. Effective Landau-Zener transitions in the circuit
dynamical Casimir effect with time-varying modulation frequency, Phys. Rev. A 2016, 93, 052505.

345. Silva, E.L.S.; Dodonov, A.V. Analytical comparison of the first- and second-order resonances for
implementation of the dynamical Casimir effect in nonstationary circuit QED. J. Phys. A Math. Theor.
2016, 49, 495304.

346. García-Álvarez, L.; Felicetti, S.; Rico, E.; Solano, E.; Sabin, C. Entanglement of superconducting qubits via
acceleration radiation. Sci. Rep. 2017, 7, 657.

347. Gu, X.; Kockum, A.F.; Miranowicz, A.; Liu, Y.-X.; Nori, F. Microwave photonics with superconducting
quantum circuits. Phys. Rep. 2017, 718–719, 1–102.



Physics 2020, 2 97

348. Zhukov, A.A.; Shapiro, D.S.; Remizov, S.V.; Pogosov, W.V.; Lozovik, Y.E. Superconducting qubit in a
nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation.
Phys. Lett. A 2017, 381, 592–596.

349. Zhukov, A.A.; Remizov, S.V.; Pogosov, W.V.; Shapiro, D.S.; Lozovik, Y.E. Superconducting qubit systems as a
platform for studying effects of nonstationary electrodynamics in a cavity. JETP Lett. 18, 108, 63–70.

350. Dessano, H.; Dodonov, A.V. One- and three-photon dynamical Casimir effects using a nonstationary cyclic
qutrit. Phys. Rev. A 2018, 98, 022520.

351. Wustmann, W.; Shumeiko, V. Parametric effects in circuit quantum electrodynamics. Low Temp. Phys. 2019,
45, 848–869.

352. Carusotto, I.; Balbinot, R.; Fabbri, A.; Recati, A. Density correlations and analog dynamical Casimir emission
of Bogoliubov phonons in modulated atomic Bose-Einstein condensates. Eur. Phys. J. D 2010, 56, 391–404.

353. Jaskula, J.-C.; Partridge, G.B.; Bonneau, M.; Lopes, R.; Ruaudel, J.; Boiron, D.; Westbrook, C.I. Acoustic
analog to the dynamical Casimir effect in a Bose-Einstein condensate. Phys. Rev. Lett. 2012, 109, 220401.

354. Balbinot, R.; Fabbri, A. Amplifying the Hawking signal in BECs. Advances High Energy Phys. 2014, 713574.
355. Mendonça, J.T.; Dodonov, V.V. Time crystals in ultracold matter. J. Rus. Laser Res. 2014, 35, 93–100.
356. Dodonov, V.V.; Mendonca, J.T. Dynamical Casimir effect in ultra-cold matter with a time-dependent effective

charge. Phys. Scr. 2014, T160, 014008.
357. Mahajan, S.; Aggarwal, N.; Bhattacherjee, A.B.; ManMohan. Dynamical Casimir effect in superradiant light

scattering by Bose-Einstein condensate in an optomechanical cavity. Chin. Phys. B 2014, 23, 020315.
358. Marino, J.; Recati, A.; Carusotto, I. Casimir forces and quantum friction from Ginzburg radiation in atomic

Bose-Einstein condensates. Phys. Rev. Lett. 2017, 118, 045301.
359. Rosanov, N.N.; Vysotina, N.V. Dynamics of hysteresis for a Bose–Einstein condensate soliton in a dynamic

trap. Opt. Spectrosc. 2017, 123, 918–927.
360. Eckel, S.; Kumar, A.; Jacobson, T.; Spielman, I.B.; Campbell, G.K. A rapidly expanding Bose-Einstein

condensate: An expanding universe in the lab. Phys. Rev. X 2018, 8, 021021.
361. Tian, Z.; Cha, S.-Y.; Fischer, U.R. Roton entanglement in quenched dipolar Bose-Einstein condensates. Phys.

Rev. A 2018, 97, 063611.
362. Motazedifard, A.; Dalafi, A.; Naderi, M.H.; Roknizadeh, R. Controllable generation of photons and phonons

in a coupled Bose-Einstein condensate-optomechanical cavity via the parametric dynamical Casimir effect.
Ann. Phys. 2018, 396, 202–219.

363. Lange, K.; Peise, J.; Luecke, B.; Gruber, T.; Sala, A.; Polls, A.; Ertmer, W.; Juliá-Díaz, B.; Santos, L.; Klempt,
C. Creation of entangled atomic states by an analogue of the Dynamical Casimir effect. New J. Phys. 2018,
20, 103017.

364. Michael, M.H.; Schmiedmayer, J.; Demler, E. From the moving piston to the dynamical Casimir effect:
Explorations with shaken condensates. Phys. Rev. A 2019, 99, 053615.

365. Lawandy, N.M.; 2006 Scattering of vacuum states by dynamic plasmon singularities: Generating photons
from vacuum. Opt. Lett. 2006, 31 3650–2.

366. Ciuti, C.; Bastard, G.; Carusotto, I. Quantum vacuum properties of the intersubband cavity polariton field.
Phys. Rev. B 2005, 72, 115303.

367. Koghee, S.; Wouters, M. Dynamical Casimir emission from polariton condensates. Phys. Rev. Lett. 2014,
112, 036406.

368. Koghee, S.; Wouters, M. Dynamical quantum depletion in polariton condensates. Phys. Rev. B 2015,
92, 195309.

369. Hizhnyakov, V.; Loot, A.; Azizabadi, S.C. Dynamical Casimir effect for surface plasmon polaritons.
Phys. Lett. A 2015, 379, 501–505.

370. Naylor, W. Vacuum-excited surface plasmon polaritons. Phys. Rev. A 2015, 91, 053804.
371. Saito, H.; Hyuga, H. 2008 Dynamical Casimir effect for magnons in a spinor Bose-Einstein condensate. Phys.

Rev. A 2008, 78, 033605.
372. Zhao, X.-D.; Zhao, X.; Jing, H.; Zhou, L.; Zhang, W. Squeezed magnons in an optical lattice: Application to

simulation of the dynamical Casimir effect at finite temperature. Phys. Rev. A 2013, 87, 053627.
373. Ford, L.H.; Svaiter, N.F. The phononic Casimir effect: An analog model. J, Phys. Conf. Ser. 2009, 161, 012034.
374. Motazedifard, A.; Naderi, M.H.; Roknizadeh, R. Dynamical Casimir effect of phonon excitation in the

dispersive regime of cavity optomechanics. J. Opt. Soc. Am. B 2017, 34, 642–652.



Physics 2020, 2 98

375. Wang, X.; Qin, W.; Miranowicz, A.; Savasta, S.; Nori, F. Unconventional cavity optomechanics: Nonlinear
control of phonons in the acoustic quantum vacuum. Phys. Rev. A 2019, 100, 063827.

376. Wittemer, M.; Hakelberg, F.; Kiefer, P.; Schröder, J.-P.; Fey, C.; Schẗzhold, R.; Warring, U.; Schaetz, T. Phonon
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