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Abstract: We revisit the possibility of first order electroweak phase transition (EWPT) in one
of the simplest extensions of the Standard Model scalar sector, namely the two-Higgs-doublet
model (2HDM). We take into account the ensuing constraints from the electroweak precision tests,
Higgs signal strengths and the recent LHC bounds from direct scalar searches. By studying the
vacuum transition in 2HDM, we discuss in detail the entropy released in the first order EWPT in
various parameter planes of a 2HDM.
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1. Introduction

It is a well-established fact that electroweak phase transition (EWPT) is either a second
order or a smooth crossover in the Standard Model (SM) of particle physics. It is also
well-established that the entropy density in the early universe plasma is conserved in
the course of the cosmological expansion if the plasma is in thermal equilibrium state
with negligible chemical potential of every species [1,2]. The entropy conservation law is
given by

s =
P + ρ

T
a3 = const. (1)

where s is the entropy density, a(t) is the scale factor, T(t) is the temperature of the fluid (or
plasma) are function of time t, ρ and P are the energy density and pressure of the plasma,
respectively.

In the early universe, the state of matter is quite close to the equilibrium as the reaction
rate Γ ∼ nσv, n = 1, 2, represents decays of one and two-body reactions, respectively, σv is
the product of annihilation cross section, is much faster than the cosmological expansion
rate, i.e., the Hubble parameter H = ȧ/a ∝ T2/mPl , where ȧ is the time derivative of
the scale factor. The equilibrium condition Γ > H is always satisfied for at temperature
T < α mPl. Here α is the coupling constant of the particle interaction of the order of ∼ 10−2

and mPl is the Planck mass. Due to the large value of mPl, thermal equilibrium exists in
most of the history of the universe, if α� 1.

As mentioned above, during thermal equilibrium, the entropy density in the comoving
volume is conserved. However, there are scenarios where the entropy density is not
conserved. For example, if the universe at a certain stage was dominated by primordial
black holes [3], the entropy production can be very high, high enough to delete the pre-
existing baryon asymmetry [4]. In the context of the modern cosmological paradigm of
inflationary Universe with baryosynthesis and dark matter/energy, physics beyond the
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Standard Model (BSM) underlying these necessary elements of the modern cosmological
model can provide many examples of various mechanisms of high entropy production (see
e.g., [5] for review and references). Taking apart the wide range of various possibilities we
consider here the problem of entropy production by minimal extension of SM and start the
discussion from the SM predictions for the cosmological entropy production.

A large entropy production could take place during during quantum chromodynam-
ical (QCD) phase phase transition at T ∼ 100–200 MeV. However, due to difficulty in
numerical computation, QCD phase transition in early universe cosmology is not known
in detail. For reference, see Ref. [6].

Few mechanisms of realistic though very weak entropy production could take place
during the freeze-out of dark matter (DM) particles. However, usually, the fraction of DM
density was quite low at the freezing out temperature and the effect is tiny.

An interesting effect, not covered in this paper, is the formation of bubble walls that
can take place in the early universe. Their collision can lead to the formation of primordial
black holes due to first order phase transition with background gravitational waves [7,8].
The entropy released in the process can wipe out the dark matter density that was present
before EWPT. Recent results on muon (g− 2) experiment, see Refs. [9–11], have opened
up a new window to study dark matter in the framework of extended SM physics which
shall be done in our next work.

Most probably, the largest entropy release in the standard model took place in the
process of the electroweak transition from symmetric to asymmetric electroweak phase in
the course of the cosmological cooling down. In the SM with one Higgs field, the process is
a mild crossover and the entropy production is about 13% [12].

According to the electroweak (EW) theory at the temperature higher than a critical one,
T > Tc, the expectation value of the Higgs field, 〈φ〉, in the fluid (plasma) is zero and the
universe is in electroweak symmetric phase [13].When the temperature drops below 〈Tc〉, a
nonzero expectation value is created, which gradually rises, with decreasing temperature,
up to the vacuum expectation value η. Such a state does not satisfy the conditions necessary
for the entropy conservation and an entropy production is expected.

A huge amount of entropy is released if EWPT is first order, which is the case even
with the minimalist extension of standard model known as two-Higgs-doublet Model
(2HDM). In what follows, we have considered a real 2HDM of type-I and are scanned over
certain parameter spaces and used numerical analysis to calculate the entropy production
for some interesting and unique benchmark points.

The paper is arranged as follows: in the next section details about 2HDM are given
along with some some Large Hadron Collider (LHC) constraints, followed by the theoretical
framework of the process. Due to cumbersome and very difficult analytical calculations,
we did numerical analysis of certain parameters using the BSMPT package [14]. A generic
discussion and conclusion is given there after. The paper closes by two appendices that
give details about the metric being used here and also the masses of the scalar bosons
generated by 2HDM.

2. 2HDM: A Brief Review and Current Constraints

There are two scalar doublets in the framework and they are defined as:

ϕI =

(
φ+

I
1√
2
(vI + ρI) + i ηI

)
, (2)

with I = 1, 2. Here φ±I , ρI , ηI , and vI indicate the charged, neutral CP-even and neutral
CP-odd degrees of freedom (d.o.f.) and the vacuum expectation value (VEV) of the I-th
doublet, respectively.
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Prior to spontaneous symmetry breaking (SSB), the tree-level 2HDM Lagrangian,
comprising of 6-dimensional operators, assumes the form

L = Lkin + LYuk −V(ϕ1, ϕ2) + L6, (3)

where,

Lkin = − 1
4 ∑

X=Ga ,Wi ,B

XµνXµν + ∑
I=1,2
|Dµ ϕI |2 + ∑

ψ=Q,L,u,d,l
ψ̄i /Dψ,

LYuk = ∑
I=1,2

Ye
I l̄ eϕI + ∑

I=1,2
Yd

I q̄ dϕI + ∑
I=1,2

Yu
I q̄ uϕ̃I ,

V(ϕ1, ϕ2) = m2
11|ϕ1|2 + m2

22|ϕ2|2 − (µ2 ϕ†
1 ϕ2 + h.c.) + λ1|ϕ1|4 + λ2|ϕ2|4 + λ3|ϕ1|2|ϕ2|2 (4)

+λ4|ϕ†
1 ϕ2|2 +

[(λ5

2
ϕ†

1 ϕ2 + λ6|ϕ1|2 + λ7|ϕ2|2
)

ϕ†
1 ϕ2 + h.c.

]
,

L6 = ∑
i

ciOi/ f 2.

Lkin is the kinetic term of the Lagrangian, LYuk is the Lagrangian originating from
the Yukawa interaction. The indices µ, ν = 0, 1, 2, 3 are the indexes for the time-space
components. Wi, i = 1, 2, 3, and B are the four gauge bosons, Ga (a = 1, 2) are the
Goldstone bosons and Ye, Yd and Yu are the Yukawa coupling constants. D is the covariant
derivative, see Ref. [15], and q, u, d, e, l, q, m11, m22 are defined in Appendix B. The
term ’h.c.’ and the symbol † stay for the Hermitian conjugate. ci is the Wilson coefficient
of the 6-dimensinal operator Oi and f . The terms proportional to λ6,7 are known as ‘hard-
Z2 violating’ because, not only do they lead to a quadratically divergent amplitude for
ϕ1 ↔ ϕ2 transition [16] but also to CP-violation in the scalar sector for complex values [17].
However, it is possible to realize the CP-conserving limit with nonzero values of λ6,7
as well [18]. In this paper, we contain our discussion to the CP-conserving 2HDM, and
hence λ6,7 = 0. The electroweak symmetry is broken by the VEVs, namely v1 and v2
corresponding to the two doublets ϕ1,2 respectively. This leads to the mixing of same types
of degrees of freedom of ϕ1,2. For the case of CP-conservation, the mass matrices of the
neutral CP-even and odd scalars and the charged scalars are diagonalized by the following
operation:(

H
h

)
= R(α)

(
ρ1
ρ2

)
,

(
W±L
H±

)
= R(β)

(
φ±1
φ±2

)
,

(
ZL
A

)
= R(β)

(
η1
η2

)
. (5)

Here,

R(θ) =
[

cos θ sin θ
− sin θ cos θ

]
, (6)

h, H are the neutral CP-even physical d.o.f., and A and H± are the neutral CP-odd and
charged d.o.f., respectively. ZL and A are the other scalars. From Equation (5) it can
be seen that β is the mixing angle of the charged and CP-odd sectors and is given by
β = tan−1(v2/v1). ∆ is the mixing angle of the CP-even neutral scalars and is expressed as

∆ = sin−1

[
M2

ρ12√
(M2

ρ12)
2 + (M2

ρ11 −m2
h)

2

]
, (7)

withM2
ρ is the mass-squared matrix in the neutral CP-even sector and the repeating and

non-repeating indices refers to the diagonal and off diagonal elements, respectively. Please
see Appendix B for detailed values of the masses. Here, we have assumed that h is the
SM-like Higgs with mass of mh ∼ 125.09 GeV and mH > mh. It has been shown that
the tree-level Higgs-mediated flavor-changing neutral currents (FCNC) appear in models
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where more than one scalar doublet gives mass to the same kind of SM fermions [19,20].
Such a situation can be avoided under the framework of various discrete symmetries, for
example, a Z2 symmetry [19,20].

Due to the rotation in the scalar sector following Equation (5), the couplings of the
SM gauge bosons and fermions to the SM-like Higgs boson are required to be re-scaled
compared to the corresponding SM values. After SSB, the Yukawa sector of the 2HDM can
be written as:

−LYuk =
1√
2
(κDsβ−α + ρDcβ−α)D̄Dh +

1√
2
(κDcβ−α − ρDsβ−α)D̄DH

+
1√
2
(κUsβ−α + ρUcβ−α)ŪUh +

1√
2
(κUcβ−α − ρUsβ−α)ŪUH

+
1√
2
(κLsβ−α − ρLcβ−α)L̄Lh +

1√
2
(κLcβ−α − ρLsβ−α)L̄LH (8)

− i√
2

Ūγ5ρUUA +
i√
2

D̄γ5ρDDA +
i√
2

L̄γ5ρLLA

+
(

Ū(VCKM ρDPR − ρUVCKMPL)DH+ + ν̄ρLPRLH+ + h.c.
)

.

Here, κ f =
√

2M f /v for f = U, D and L. L and R are defined after Equation (11).
For details of other parameters see Ref. [21]. The generation indices of the fermionic
fields have been suppressed in Equation (9). As mentioned earlier, the measurement of
the signal strengths of the SM-like Higgs at LHC demands that the properties of one of
the neutral CP-even neutral scalars, here h, should closely resemble that of the SM Higgs.
As Equation (9) indicates, this is satisfied at the vicinity of the so-called ‘alignment limit’,
i.e., cos(β− α) → 0. The current measurement of Higgs signal strengths have pushed
the 2HDMs close to the alignment limit [22–25]. The measurement of the Higgs signal
strengths dictate that for type-II 2HDM, at tan β ∼ 1, the constraint on cos(β− α) is given
by −0.05 . cos(β− α) . 0.15 at 95% CL. The allowed region becomes even smaller for
higher values of tan β. The situation for type-III and -IV are quite similar to that of type-II
2HDM.

This constraint is comparably relaxed in type-I 2HDM, where the allowed range is
| cos(β− α)| . 0.4. Among the tree-level scalar-gauge couplings which are important for
the cascade decays of the new scalars, AZh and H±hW∓ are proportional to cos(β− α),
whereas AZH and H±HW∓ are proportional to sin(β− α). The tripple letters denote
tripple coupling and Z is one of the SM guage bosons. It is possible to realize an exact
alignment in the multi-Higgs-doublet models in the framework of certain additional
symmetries of the 2HDM potential [26–30].

The impact of the measurement of the Higgs signal strengths in each individual search
channels on the cos(β− α) vs. tan β plane has been discussed in Ref. [31]. It should be
mentioned that the coupling multipliers of the SM-like Higgs also becomes close to unity
when sin(β + α) = 1, i.e., at the so-called ‘wrong-sign Yukawa’ limit [32] for type-II, type-
III, and type-IV 2HDM. Though, with better measurement of the processes like Vh→ bb̄,
h → γγ, Υγ, (where b is the bottom quark), [33,34] the fate of the wrong-sign Yukawa
region will be decided in near future.

It is possible to constrain the parameter space of the type-II 2HDM even at the
alignment limit from the nonobservation of the heavier scalars [18] in processes like
gg/bb̄→ H/A→ ττ̄, γγ, gg→ H → hh, etc. Here g and τ represents gluon and tau and
their respective interactions. Both ATLAS and CMS experiments are involved in numer-
ous dedicated searches of these kinds, for instance Refs. [35–39], resulting in significant
constraints on the 2HDM parameter space.

The constraints from the decay of the new scalars into SM particles are significantly
relaxed in the hierarchical scenario compared to the degenerate case [25]. However. for
the hierarchical spectrum of new scalars, the channels like H(A)→ ZA(H) dominates the
total decay width of such states, leading to new bounds on the parameter space which



Physics 2021, 3 279

are not applicable for the degenerate case. A hierarchical spectrum such as mA > mH ∼
mH± ∼ v can lead to a first order electroweak phase transition providing an explanation
for the matter-antimatter asymmetry, with A → ZH being its smoking gun signature at
LHC [40,41]. In general, the importance of Higgs cascade decays as the possible probes of
an extended scalar sector have been discussed in the literature [42–47] and A→ ZH decay
is dubbed as a ‘golden channel’ in this context [48].

3. EWPT Theory in 2HDM

The Lagrangian density of the electroweak theory (discussed in details in the previous
section) in 2HDM can be expressed as [15]

L = L f + LYuk + Lgauge,kin + LHiggs. (9)

The first term on the right hand side, L f , is the kinetic term for the fermion fields:

L f = ∑
j

i
(

Ψ̄(j)
L /DΨ(j)

L + Ψ̄(j)
R /DΨ(j)

R

)
(10)

= iΨ̄Lγµ(∂µ + igWµ + ig′YLBµ)ΨL

+iΨ̄Rγµ(∂µ + igWµ + ig′YRBµ)ΨR, (11)

where L and R represents the left and right chiral field of that fermion and /D is the Feynman
operator applied on the covariant derivative (it is defined as /A = γµ Aµ, where γ are the
gamma matrices) [15] and j runs over all fermionic species (the field Ψj) listed in Table A1.
And g is the coupling constant. The partial derivative denotes derivative over space time,
e.g., ∂0 = d/dt and µ runs from 0 to 3.

The second term of Equation (9), Yukawa interaction term (for details, see previous
section), LYuk is [49]

LYuk = −
[
ye ēRΦ†

a LL + y∗e L̄LΦ†
aeR + · · ·

]
, (12)

where ye is a complex dimensionless constant, Φa (a = 1, 2) is a SU(2)L doublet and for the
Lagrangian to be gauge invariant it is coupled with another SU(2)L fermion LL. eR is the
right chiral electron field and the same goes for other fermions like quarks, neutrinos, etc.

The third term Lgauge,kin represents U(1) invariant kinetic term of four gauge bosons
(Wi, i = 1, 2, 3 and B). It can be written as

Lgauge,kin = −1
4

Gi
µνGiµν − 1

4
FB

µνFBµν
, (13)

where Gi
µν = ∂µWi

ν − ∂νWi
µ − gεijkW j

µWk
ν and FB

µν = ∂µBν − ∂νBµ.
The Lagragian density for the doublet Higgs bosons is given by

LHiggs = (DµΦ1)
†(DµΦ2) + (DµΦ1)

†(DµΦ2)−Vtot(Φ1, Φ2)

= {(∂µ + igTiW i
µ + ig′YBµ)Φ1}†{(∂µ + igTiW i

µ + ig′YBµ)Φ1} (14)

+{(∂µ + igTiW i
µ + ig′YBµ)Φ2}†{(∂µ + igTiW i

µ + ig′YBµ)Φ2} −Vtot(Φ1, Φ2, T).

We define

Wµ = gTiWi
µ + g′YBµ. (15)

Thus, from Equation (15), we get:

LHiggs,kin = (∂µΦa
†)(∂µΦa)− i(WµΦa)

†(∂µΦa) + i(∂µΦa
†)WµΦa + (WµΦa)

†WµΦa. (16)
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The standard CP-conserving 2HDM potential Vtot(Φ1, Φ2, T) consists of tree level
potential Vtree(Φ1, Φ2):

Vtree(Φ1, Φ2) = m2
11Φ†

1Φ1 + m2
22Φ†

2Φ2 −
[
m2

12Φ†
1Φ2 + m∗12Φ†

2Φ1

]
+

1
2

λ1

(
Φ†

1Φ1

)2

+
1
2

λ2

(
Φ†

2Φ2

)2
+ λ3

(
Φ†

1Φ1

)(
Φ†

2Φ2

)
+ λ4

(
Φ†

1Φ2

)(
Φ†

2Φ1

)
(17)

+

[
1
2

λ5

(
Φ†

1Φ2

)2
+

1
2

λ∗5

(
Φ†

2Φ1

)2
]

and other correction terms VCW(v1, v2) and VT . The correction terms are defined in Refs.
[50,51]:

VCW(v1 + v2) = ∑
i

ni
64π2 (−1)2si m4

i (v1, v2)

[
log

(
m2

i (v1, v2)

µ2

)
− ci

]
, (18)

VT =
T4

2π2

(
∑

i=bosons
ni JB

[
m2

i (v1, v2)

T2

]
+ ∑

i=fermions
ni JF

[
m2

i (v1, v2)

T2

])
, (19)

where µ is the renormalisation scale which we take to be 246 GeV. For a detailed overview
of 2HDM scenarios and other relevant aspects, see Ref. [21].

The potential-dependent mass of fermions and bosons mi(v1 + v2) and the corre-
sponding ni, si, and ci are discussed in details in Appendix B.

JB and JF are approximated Landau gauge up to leading orders:

T4 JB

[
m2

T

]
= −π4T4

45
+

π2

12
T2m2 − π

6
T(m2)3/2 − 1

32
m4 ln

m2

abT2 + · · · , (20)

T4 JF

[
m2

T

]
=

7π4T4

360
− π2

24
T2m2 − 1

32
m4 ln

m2

a f T2 + · · · , (21)

where ab = 16a f = 16π2 exp(3/2− 2γE) with γE being the Euler–Mascheroni constant.
When the temperature of the universe drops down to the critical temperature Tc,

a second local minimum appears with the same height of the global minimum situ-
ated at 〈Φ1〉 = 〈Φ2〉 = 0 [52]. The critical temperature can be obtained using the
following expression:

Vtot(Φ1 = 0, Φ2 = 0, Tc) = Vtot(Φ1 = v1, Φ2 = v2, Tc). (22)

During EWPT, if ρ and P are, respectively, the energy density and pressure of the fluid
determining the course of evolution of the early universe, then one gets [9]:

ρ = ρ f + ρgauge,kin + ρHiggs − g00LYuk, (23)

P = Pf + Pgauge,kin + PHiggs −
1
3

giiLYuk. (24)

where ρ and P are the energy and the pressure density of the plasma and the the first
three terms represents in the above equations the contribution from the fermionic, gauge
kinetic and the Higgs sectors, respectively. We have assumed that dark matter and other
components might have been present but they did not contribute much to the energy
density of the universe during the particular epoch of EWPT which happened in radia-
tion domination. The expressions for ρ f , Pf and ρgauge,kin, Pgauge,kin appear solely from
fermionic and gauge sectors and their interactions (the stress–energy tensor for the above
quantities is mentioned in Appendix A):
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ρH+F+G =
[
{∂0Φ†

a − i(W0Φa)
†}∂0Φa + {∂0Φa + iW0Φa}∂0Φ†

a

]
,

−g00
[
(∂αΦa

†)(∂αΦa)− i(WαΦa)
†(∂αΦa) + i(∂αΦa

†)WαΦa + (WαΦa)
†WαΦa

]
(25)

−g00[Vtot(Φ1, Φ2, T)],

PH+F+G =
[
{∂qΦ†

a − i(W qΦa)
†}∂qΦa + {∂qΦa + iW qΦa}∂qΦ†

a

]
−gqq

[
(∂αΦa

†)(∂αΦa)− i(WαΦa)
†(∂αΦa) + i(∂αΦa

†)WαΦa + (WαΦa)
†WαΦa

]
(26)

−gqq[Vtot(Φ1, Φ2, T)].

The subscript H+F+G stands for the total contribution that comes from the Higgs
sector, the fermionic sector and the gauge sector. The index 00 means the first element of
the metric tensor the repeated indices qq means the diagonal elements.

The early universe was flat, hence the metric gµν = (+,−,−,−). Furthermore, hence
ρH+F+G + PH+F+G become:

ρH+F+G + PH+F+G = ∂0Φa∂0Φ†
a + 2

[
(WαΦa)

†WαΦa

]
,

+
[
(∂0Φa

†)(∂0Φa)− i(W0Φa)
†(∂0Φa) + i(∂0Φa

†)W0Φa

]
(27)

where the explicit expression for ρH+F+G is given as

ρH+F+G = ∂0Φa∂0Φ†
a +

[
(WαΦa)

†WαΦa

]
−[Vtot(Φ1, Φ2, T) + LYuk]. (28)

The oscillations of the Higgs fields around minimum after it appeared in the course of
the phase transition, are damped due to particle production by the oscillating field. The
characteristic time is equal to the decay width of the Higgses and it is large in comparison
with the expansion rate and the universe cooling rate. So we may assume that Higgses
essentially live in the minimum, of the potential. In principle, it can be calculated numeri-
cally by the solution of the corresponding Klein–Gordon equation with damping induced
by the particle production [12].

With the above assumption,

ρ = Φ̇2
a,min + Vtot(Φ1, Φ2, T) +

g∗π2

30
T4. (29)

where g∗ is the effective degrees of freedom.
The last term in Equation (29) arises from the Yukawa interaction between fermions

and Higgs bosons and from the energy density of the fermions, the gauge bosons and
the interaction between the Higgs and gauge bosons. This is the energy density of the
relativistic particles which have not gained mass till the moment of EWPT. g∗ is the effective
degrees of freedom. We have assumed that the energy density consists of the two parts: the
energy density of the fields φ(t)s sitting at the minima of the potential and the contribution
from relativistic matter.

Since for relativistic species P = (1/3)ρ, we can write

P =
Φ̇2

a,min

2
+

1
3

g∗π2

30
T4. (30)

The oscillations of scalar fields around their minima are quickly damped, so we take
the time derivative of the fields equivalent to the their derivative around the minima and
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neglect higher order terms of their time derivative φ̇2 and so on. Furthermore, as a result
the evolution of the minima induced by the expansion of the universe is very slow.

The entropy conservation law holds when the plasma (assumed to be an ideal fluid)
was in thermal equilibrium with negligible chemical potential. However, as the temperature
went below Tc, EWPT happened and the universe went into a thermally nonequilibrium
state. It is to be noted that one of the main consequences of EWPT is electroweak baryogen-
esis and, following Sakharov’s principle [53], the out-of-equilibrium process is a necessary
condition for successful baryogenesis.

As a result of this deviation from thermal equilibrium, the entropy conservation law
is no longer valid during EWPT and, hence, a rise in the entropy production can be noticed
significantly during this process.

To calculate this production, it is necessary to solve the evolution equation for energy
density conservation,

ρ̇ = −3H(ρ + P). (31)

From henceforward computational analysis was used for further calculations which
are discussed in the next section.

4. Entropy Release in 2HDM Scenarios

In the early universe when the temperature of universe T � Tc, the universe was
in thermal equilibrium and also was dominated by relativistic species. Almost all of the
fermions and bosons were massless and the contribution from those who were already
massive (e.g., DM) to the total energy density of the universe was insignificant. During that
epoch, the chemical potential of the massless bosons was zero, and with the assumption
that chemical potential of the fermions was negligible, the entropy density per comoving
volume was conserved and given by

s ≡ ρr + Pr

T
a3 = const., (32)

where the subscript r is used to indicate relativistic components. For our scenario, general-
ising Equation (29),

ρr + Pr ∼ g∗T4, (33)

g? is not constant over time; it depends on the components of the hot primordial hot soup.
These two equations, Equation (32) and Equation (33), imply

T ∼ a−1. (34)

As long as the thermal equilibrium was maintained, s remained constant. If the
thermal equilibrium was not maintained at some epoch at later time, the value of s and thus
g?(T)a3T3, might have increased as entropy can only either increase or remain constant.
The contribution to entropy is dominated by a single particle species, namely by that with
the largest mass in the temperature range m(T) < T. So for these temperatures g∗(T)T =
const. and the relative entropy rise is given just by a3T3. Since the final temperature
Tf = m(Tf ), below which new particle species start to dominate, does not depend upon
g∗, the relatives entropy rise is determined by T3a3. In other words, we calculate below the
entropy rise over background of the constant g∗a3T2.

As the universe dropped down to Tc the Higgs potential gets degenerate minima.
If the temperature drops to the mass of any component of the relativistic plasma, that
component gained mass and became non-relativistic and decoupled from relativistic fluid.
We are assuming this process was instantaneous and the universe was not in thermal
equilibrium.There is change in g? of the relativistic plasma. This led to increase of s.
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Suppose at Tc, the scale factor was ac and g? ≡ g?,tot = 110.75 for our 2HDM model
and thus at that moment sc ∼ g?,tot a3

c T3
c . As the temperature drops down to T ∼ Tx,

the component ’x’ would decoupled and thus g? would decrease. If g?,+ and g?,− be the
g?-factor before and after the decoupling of the ’x’, then change in s relative to the time of
critical temperature is:

δs
sc

=
(g?,+ ax Tx)

3 − (g?,tot ac Tc)
3

(g?,tot ac Tc)
3 . (35)

In what follows, the BSMPT C++ package, which deals with various properties and
features related to 2HDM and baryon asymmetry is applied. The package was used to
calculate the critical temperature for Tc and the vacuum expectation value VEV and Veff(T)
for each benchmark points. The calculation was repeated for 4 parameter space, the first
one being the benchmark points provided in the BSMPT manual. The parameters are
chosen in such a way that they satisfy the limiting conditions for type-I real 2HDM. It
should also be noted that we have assumed that VEV/Tc > 1. If this limiting assumption
is varied, more benchmark points would arise, which is beyond the scope of this paper.

The differential equation Equation (31) was solved numerically by interpolating the
data for Veff(T) for all the benchmark points and the entropy release was calculated for the
same. For four different benchmark points, as mentioned in Table 1, the entropy release
has been calculated with the assumption of acTc ∼ 1 and and the results are presented in
Figure 1.
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Figure 1. The entropy release for four different scenarios are shown above. The left panel shows the entropy production for Tc = 139.5
GeV and 151 GeV (Benchmark-IV and III, respectively). The right panel shows the entropy production for Tc = 173.5 GeV (blue line,
Benchmark-II) and the bottom panel shows the entropy production for Tc = 255.5 GeV (black line, Benchmark-I).

As it is seen from Figure 1, the amount of entropy released increases as the critical
temperature for EWPT increases. For example, the entropy production for Tc = 139.5 GeV
is ∼ 41%, for Tc = 151 GeV is ∼52 %, for Tc = 173.5 GeV is ∼63 % and for Tc = 255.5 GeV
is ∼73 %. All these results are way higher than the entropy release by EWPT in the SM
which is ∼13% [4].
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Table 1. 2HDM benchmark points for entropy production.

mh [GeV] mH [GeV] mH± = mA [GeV] tan β

Benchmark-I 125 500 500 10

Benchmark-II 125 400 500 10

Benchmark-III 125 90 400 10

Benchmark-IV 125.09 228.17 233 6.94

λ1 λ2 λ3 λ4 λ5 Tc [GeV]

Benchmark-I 4.13 0.29 4.15 0 0 255.5

Benchmark-II 0.25 0.25 12.65 −1.48 −1.48 173.5

Benchmark-III 0.133 0.259 5.02 −2.51 −2.51 151

Benchmark-IV 1.22 0.29 −0.51 4.07 −3.86 139.5

The main reason for this excess in the production of entropy is the extra scalar bosons
produced in the 2HDM which contributes the most to the process. It is to be noted that
the contributions from lighter particles like electrons and neutrinos are similar to that
of the SM.

5. Conclusions

In this paper, it is shown that the total release of entropy due to electroweak phase
transition (EWPT) is very large even in the framework of minimal extension of the Standard
Model (SM) of particle physics namely type-I two-Higgs-doublet model (2HDM) compared
to the SM. It is a proven fact that unlike the SM where electroweak phase transition EWPT
is of second order, in the mere extension of the SM, EWPT becomes a first order phase
transition. An interesting fact is that as g∗, which is the effective degrees of freedom,
decreases as the temperature falls down. However, as we go to a very low temperature
scale, the minimum temperature takes the value of the particle mass and their contribution
remains the same as that of SM.

There are two points which should be noted. First, the benchmark points are unique
and they were calculated using the BSMPT package. The limiting condition of the BSMPT
was set so that the vacuum expectation value (VEV) exceeds the critical temperature, Tc:
VEV/Tc > 1. All the benchmark points used here satisfy this condition. Second, in this
paper, we have considered only the real sector of 2HDM. If other extensions of 2HDM such
as the complex 2HDM is considered, there might be considerable change in the entropy
production.

In addition, one needs to mention two effects even though they are beyond the scope
of this paper. First, the entropy release due to the EWPT can considerably reduce the
abundance of dark matter present in the universe before EWPT. Detailed calculation of this
dilution factor for SM scenario is done in Ref. [4]. Second, bubble walls that were formed
might collide and may produce primordial black holes and might lead to a sufficient
entropy production. The bubble collisions are also the source of primordial gravitational
wave background. These will be studied in the subsequent papers.

Author Contributions: Article by A.C. and M.Y.K. The authors contributed equally to this work. All
authors have read and agreed to the published version of the manuscript.

Funding: The work of AC is funded by RSF Grant 19-42-02004. The work by M.K. has been performed
with a support of the Ministry of Science and Higher Education of the Russian Federation, Project
“Fundamental problems of cosmic rays and dark matter”, No 0723-2020-0040.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Physics 2021, 3 285

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Alexander Dolgov for carefully reading the
manuscript and for several helpful discussions and comments. We acknowledge private communi-
cation with Phillipp Basler regarding BSMPT. We also thank Indrani Chakraborty, Anirban Kundu,
Madhumita Santra and Soubhik Mondal for discussions.

Conflicts of Interest: There has been no conflict of interest among the authors or with any pub-
lished literature.

Appendix A. Energy Momentum Tensor

Tµν
f = ∑

j
i
(

Ψ̄(j)
L γµ∂νΨ̄(j)

L + Ψ̄(j)
R γµ∂νΨ̄(j)

R

)
− gµνL f , (A1)

Tµν
gauge,kin = +

[
FB µα∂νBα −

1
4

gµνFB
αβFB αβ

]
+

[
Gi µα∂νWα −

1
4

gµνGi
αβGi αβ

]
− gεijk

(
WµjWk

α ∂νWα −W j
αWνk∂µWα

)
.

(A2)

These are the stress-energy tensors for the fermioinc and the gauge sectors, respectively.

Appendix B. Masses of New Scalars

ci =

{
5
6 , (i = W±, Z, γ),
3
2 , otherwise.

(A3)

m2
W =

g2

4
v2, (A4)

m2
Z =

g2 + g′2

4
v2, (A5)

m2
γ = 0, (A6)

m̄2
H± =

1
2

(
MC

11 +MC
22

)
+

1
2

√
4
((
MC

12
)2

+
(
MC

13
)2
)
+
(
MC

11 −MC
22
)2, (A7)

m̄2
G± =

1
2

(
MC

11 +MC
22+

)
− 1

2

√
4
((
MC

12
)2

+
(
MC

13
)2
)
+
(
MC

11 −MC
22
)2, (A8)

where

c1 =
1

48

(
12λ1 + 8λ3 + 4λ4 + 3

(
3g2 + g′2

))
, (A9)

c2 =
1

48

(
12λ2 + 8λ3 + 4λ4 + 3

(
3g2 + g′2

)
+

24
v2

2
m2

t (T = 0)

)

+
1

2v2
2

m2
b(T = 0), (A10)
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where mt(T = 0) = 172.5 GeV and mb(T = 0) = 4.92 GeV. For our case (v3 = 0),

MC
11 = m2

11 + λ1
v2

1
2

+ λ3
v2

2
2

, (A11)

MC
22 = m2

22 + λ2
v2

2
2

+ λ3
v2

1
2

, (A12)

MC
12 =

v1v2

2
(λ4 + λ5)−m2

12, (A13)

MC
13 = 0. (A14)

Masses of h, H and A are the eigen values of the matrix

M̄N =
(
MN

)
. (A15)

For our case (v3 = 0),

MN
11 = m2

11 +
3λ1

2
v2

1 +
λ3 + λ4

2
v2

2 +
1
2

λ5v2
2, (A16)

MN
22 = m2

11 +
λ1

2
v2

1 +
λ3 + λ4

2
v2

2 −
1
2

λ5v2
2, (A17)

MN
33 = m2

22 +
3λ2

2
v2

2 +
1
2
(λ3 + λ4 + λ5)v2

1, (A18)

MN
44 = m2

22 +
λ2

2
v2

2 +
1
2
(λ3 + λ4 − λ5)v2

1, (A19)

MN
12 = 0, (A20)

MN
13 = −m2

12 + (λ3 + λ4 + λ5)v1v2, (A21)

MN
14 = 0, (A22)

MN
23 = 0, (A23)

MN
24 = −m2

12 + λ5v1v2, (A24)

MN
34 = 0. (A25)

Table A1. Field-dependent mass of all fermions.

Fermions ni si m f (T = 0)

e 4 1
2

ye√
2

vk lepton

µ 4 1
2

yµ√
2

vk lepton

τ 4 1
2

yτ√
2

vk lepton

u 12 1
2

yu√
2

vk quark

c 12 1
2

yc√
2

vk quark

t 12 1
2

yt√
2

vk quark

d 12 1
2

yd√
2

vk quark

s 12 1
2

ys√
2

vk quark

b 12 1
2

yb√
2

vk quark
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Table A1. Cont.

Bosons ni si m(v)2

h 1 1 eigenvalues of (A15) Higgs

H 1 1 eigenvalues of (A15) Higgs

A 1 1 eigenvalues of (A15) Higgs

G0 1 1 eigenvalues of (A15) Goldstone

H± 2 1 Equation (A7) charged Higgs

G± 2 1 Equation (A8) charged Goldstone

ZL 1 1 Equation (A5) Higgs

ZT 2 2 Equation (A5) Higgs

WL 2 1 Equation (A4) Higgs

WT 4 2 Equation (A4) Higgs

γL 1 2 Equation (A6)

γT 2 2 Equation (A6)
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