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Abstract: In this paper, an investigation of the role of nuclear saturation parameters on f -mode
oscillations in neutron stars is performed within the Cowling approximation. It is found that the
uncertainty in the effective nucleon mass plays a dominant role in controlling the f -mode frequencies.
The effect of the uncertainties in saturation parameters on previously-proposed empirical relations of
the frequencies with astrophysical observables relevant for asteroseismology are also investigated.
These results can serve as an important tool for constraining the nuclear parameter space and
understand the behaviour of dense nuclear matter from the future detection of f -modes.
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1. Introduction

With the direct detection of gravitational waves (GWs) from a binary merger GW170817
of neutron stars (NSs) [1], a new window of opportunity has opened up to directly probe
their interior composition. In conjunction with astrophysical observations using multi-
wavelength space-based and ground-based telescopes, gravitational wave detectors now
introduce the possibility of multi-messenger astronomy, from which several astrophysical
NS observables can be derived [2].

Neutron stars are compact remnants of the evolution of massive stars, associated
with core-collapse supernovae. These objects have extreme densities up to several times
normal nuclear matter density in the core, orders of magnitude beyond matter densities
possible to investigate with terrestrial experiments. It is therefore inevitable to resort to
theoretical models, in order to extrapolate the known physics at nuclear saturation to
higher densities and isospin asymmetries. This extrapolation leads to large uncertainties,
reflected by the proliferation of models. Different schemes (ab-initio, phenomenological)
have been applied to describe such equations of state (EoS) [3]. The ab initio many-body
models use realistic nucleon–nucleon (NN) interaction which is obtained by fitting the NN
scattering data. The phenomenological models are based on nuclear density functional
theories with effective nucleon-nucleon interactions, which are calibrated by reproducing
the nuclear bulk properties around saturation density. Different models show different
high-density behavior, resulting in different predictions for NS observables, thus making it
difficult to interpret and compare directly with astrophysical data.

NSs are visible throughout the electromagnetic spectrum. A number of global prop-
erties of NSs, such as their mass and radius, can be deduced from multi-wavelength
astronomical data. Accurate estimations of NS masses using post-Newtonian effects in rel-
ativistic NS binaries indicate maximum masses to be close to 2MSun [4,5]. Radius estimates
obtained from X-ray data [6] are less precise, but the recently launched NICER mission [7]
is soon expected to measure radii with a precision of up to 5%. These observables can be
obtained from the NS EoS by solving equations for hydrostatic equilibrium. Comparison

Physics 2021, 3, 302–319. https://doi.org/10.3390/physics3020022 https://www.mdpi.com/journal/physics

https://www.mdpi.com/journal/physics
https://www.mdpi.com
https://orcid.org/0000-0002-0995-2329
https://doi.org/10.3390/physics3020022
https://doi.org/10.3390/physics3020022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/physics3020022
https://www.mdpi.com/journal/physics
https://www.mdpi.com/article/10.3390/physics3020022?type=check_update&version=2


Physics 2021, 3 303

with astrophysical data then allows us to put important constraints on the EoS models and
consequently on the nature of dense matter.

GWs are considered one of the most promising tools for constraining dense matter
physics, as they can directly probe the interior composition of neutron stars. Quasi-normal
modes may be excited in oscillating NSs, producing copious amounts of GWs. These
modes, such as fundamental modes ( f -modes), pressure modes (p-modes), buoyancy
g-modes, rotational r-modes, are classified according to the restoring forces that bring
the system back to equilibrium. The most exciting fact is that the mode frequencies and
damping timescales contain signatures of the interior composition of neutron stars.

GWs may be emitted from NSs, both isolated or in binary. It was shown that during
a merger, the NSs in binary exert strong tidal forces on one another, and the resulting
deformation depends on their compactness [1]. This can lead to important constraints
on stellar radii and consequently on the dense matter EoS [8]. Further, quasi-normal
modes may also be excited during the merger and post-merger phases [9]. In the post-
merger phase, if a prompt collapse to a black hole does not occur, the remnant may be a
strongly-oscillating NS, as indicated by recent hydrodynamical simulations [10–12]. It is
expected that the fundamental quadrupolar fluid mode of the remnant may be strongly
excited and may dominate the post-merger GW signal, through generous amounts of
gravitational radiation through the Chandrasekhar–Friedman–Schutz (CFS) mechanism
when unstable [13].

It is therefore of great interest to constrain the NS EoS using studies of f -modes. The
goal of NS asteroseismology is to express the f -mode frequency or damping timescale
in terms of global NS observables, independent of the underlying EoS. The goal of NS
asteroseismology is to extract the information about its interior and/or that of its global
properties from the frequencies. Detection of f -modes would then allow us to invert such
relations and obtain constraints for the NS EoS [14–16]. Most of such studies adopted
polytropic or parametrized EoSs due to their simplicity [14,17,18]. There are a few investi-
gations that considered realistic equations of state, but only a few representative parameter
sets were considered [15,16,19]. Fits using such EoSs have been used to derive relations
between mode frequencies and global variables (mean density, compactness). Recently,
in [20], the frequency and the damping time of f -modes have been constrained within nar-
row windows using quite model-independent EOSs derived from the nuclear matter at low
densities and perturbative quantum chromodynamcs (QCD) at high densities, connected
by interpolating subluminal monotropes at intermediate densities. Although the dispersion
of frequencies due to different EoSs in such studies is evident, one cannot compare between
the chosen EoSs as they correspond to very different nuclear matter properties. Therefore,
it is very difficult to extract any direct information about the role of the underlying nuclear
parameters from such studies.

In this paper, the influence of underlying nuclear saturation parameters on f -mode
frequencies using Cowling approximation (neglecting background metric perturbations)
is investigated. Within the framework of the relativistic mean field (RMF) model, we
systematically explore the parameter space allowed by current nuclear experimental data
and perform a sensitivity study of the mode frequencies to the uncertainties in each of
these parameters. It is also investigated how these uncertainties affect previously proposed
empirical relations in the literature, relevant for asteroseismology of non-rotating NSs.

Section 2 describes the microscopic calculation of the EoS as well as the determination
of macroscopic NS observables from such an EoS. We also elaborate on the pulsation
equations to be solved to obtain f -mode frequencies in non-rotating NSs. The results of
our investigations are presented in Section 3, including the sensitivity study and asteroseis-
mology relations. The findings are summarized in Section 4.

It is worth mentioning here that the use of the Cowling approximation in solving
the mode frequencies introduces uncertainties (typically 10–30%) exceeding those of the
semi-empirical relations sought. However, this is known from previous studies, and the
investigation nevertheless gives us a good qualitative idea about how much the uncertainty
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in the nuclear saturation parameters affects these relations. This is discussed in detail in
Section 2.3.

2. Formalism
2.1. Microscopic Description

As already mentioned in Section 1, this investigation is performed within the frame-
work of the RMF model [21]. Such models have already been applied successfully to
describe nuclear matter and nuclei [3]. In order to obtain the EoS of nuclear matter in the
RMF Model, let us start with the following interaction Lagrangian density:

Lint = ∑
N

ΨN

[
gσσ− gωγµωµ −

gρ

2
γµ~τ~ρµ

]
ΨN

− 1
3

bm(gσσ)3 − 1
4

c(gσσ)4

+ Λω(g2
ρ ~ρµ ~ρµ)(g2

ωωµωµ) +
ζ

4!
(g2

ωωµωµ)2,

(1)

where ΨN is the Dirac spinor for nucleons N (neutron or proton) and ΨN is its Dirac
adjoint. Further, m is the vacuum nucleon mass, γµ = {γ0, γ1, γ2, γ3} are the Gamma
matrices and ~τ indicate Pauli matrices. The interaction among the nucleons is mediated
by the exchange of the scalar (σ), vector (ω) and the isovector (ρ) mesons. The isoscalar
nucleon–nucleon couplings gσ and gω are determined by fixing them to nuclear saturation
properties. The σ meson self-interaction terms b and c ensure the correct description
of nuclear matter at saturation density. The effective nucleon mass is then defined as
m∗ = m − gσσ. The isovector and mixed ω-ρ couplings gρ and Λω can be related to
empirical quantities such as symmetry energy, Jsym, and its slope, Lsym [22–25]. The quartic
ω self-coupling ζ is set to zero. The terms O(3) and higher are not considered here in
the expansion with density and asymmetry, as soon as the nuclear experimental data to
constrain such parameters have large uncertainties.

The uncertainty in the nuclear empirical quantities derived from state-of-the-art exper-
imental data (saturation density, nsat, energy per particle at saturation, Esat, compressibility,
Ksat, effective nucleon mass m∗/m, symmetry energy, Jsym, and slope of symmetry energy,
Lsym, is also reflected in the uncertainty in the determination of the RMF model parameters.
In order to test the results of this study, first, the two commonly used parametrizations [26],
GM1 and GM3, are considered, for which the EoSs are well known. Once the numerical
scheme is verified, the entire RMF parameter space, defined by present uncertainties of
theoretical and experimental nuclear saturation data, is explored. The range of values of
empirical parameters explored in this paper is summarized in Table 1. For each individual
parameter “variation”, within the ranges shown in Table 1, the others are kept at the
“fixed” values.

Given the Lagrangian density Equation (1), one can solve the equations of motion
of the constituent particles as well as those of the mesons. In the mean-field approach,
the meson fields are replaced by their mean-field expectation values, i.e., ω̄ = 〈ω0〉,
ρ̄ = 〈ρ0

3〉. One can then calculate the EoS (pressure-energy density relationship) using this
RMF model. The energy density is given by [25]:

ε = ∑
N

1
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(2)
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where kFN and EFN are the Fermi momentum and energy of the corresponding nucleon N
respectively.

The pressure p can be derived from the energy density using the Gibbs–Duhem
relation [27],

p = ∑
N

µNnN − ε, (3)

where the nucleon chemical potentials are given by

µN = EFN + gωω̄ +
gρ

2
τ3N ρ̄. (4)

Table 1. Empirical parameter values for RMF models considered in this paper; see text for
more details.

Model nsat Esat Ksat Jsym Lsym m∗/m
[fm−3] [MeV] [MeV] [MeV] [MeV]

GM1 0.153 −16.3 300 32.5 93.7 0.70
GM3 0.153 −16.3 240 32.5 89.7 0.78

RMF fixed 0.16 −16.0 240 32 60 0.60
variation [0.15, 0.16] [−16.5, −15.5] [240, 280] [30, 32] [50, 60] [0.55, 0.75]

2.2. Macroscopic Description

Using the spherical coordinates (t, r, θ, φ) for time and space, where θ and φ represent
spherical angular coordinates, the background spacetime is characterized by a line element,

ds2 = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2dθ2 + r2 sin(θ)dφ2, (5)

where Φ, Λ are metric functions with respect to r. Given an EoS, the equilibrium configura-
tions of non-rotating relativistic NSs can be obtained by solving the Tolman-Oppenheimer-
Volkoff (TOV) equations of hydrostatic equilibrium [27],

dm(r)
dr

= 4πε(r)r2 ,

dp(r)
dr

= − [p(r) + ε(r)][m(r) + 4πr3 p(r)]
r(r− 2m(r))

,

dΦ(r)
dr

= − 1
(ε + p)

dp
dr

.

(6)

Integrating the TOV equations from the center of the star to the surface, one can
obtain global NS observables, such as mass, M, radius, R, and compactness, C = M/R.
The boundary conditions that must be satisfied are a vanishing mass, m|r=0 = 0, at the
centre of the star, and a vanishing pressure, p|r=R = 0), at the surface, along with the metric
function, Φ|r=R = 1

2 ln(1− 2M/R), at the surface of the star. The tidal deformability, Λ, can
be obtained by solving a set of differential equations coupled with the TOV equations [28].
These can then be compared to the state-of-the-art limits, derived from astrophysical data,
in order to impose constraints on the dense matter EoS.

All the EoS curves—pressure p vs. energy density ε—considered in this paper are
displayed in Figure 1. Each curve corresponds to a different empirical parameter set from
Table 1. The total mass, M (in solar mass MSun) and radius, R, corresponding to each EoS
curve from Figure 1, are given in Figure 2. It is evident from Figure 2 that for all the EoSs,
considered here, the maximum masses lie above 2MSun indicated by a horizontal dotted
line in Figure 2.
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Figure 1. Equations of state used in this paper; see text for details.

Figure 2. Mass–radius relations corresponding to the equations of state plotted in Figure 1.
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In this study, we have not imposed observational constraints on radii. The reason is
that the precise determination of NS radii is an ongoing effort and the radius constraints
(from X-ray binary data and thermonuclear bursts [6], GW [8] and NICER [7] data) are
model-dependent and less robust than those of the maximum mass. The recent analysis [8]
of tidal deformabilities from GW170817 led to the determination of the statistically most
probable radius of 1.4 MSun NS. A detailed discussion in [25] narrates how this most
probable value for radius changes depending on the models used [8,29–31]. It was also
shown that imposing this constraint would disfavor values of effective mass m∗/m < 0.6,
and this would also apply to the investigation in this paper.

2.3. Solving the Mode Pulsation Equations

The aim of this study is to investigate the influence of the uncertainty in the empirical
nuclear parameters on NS f -modes. In general, one must solve coupled fluid and space-
time perturbation equations to obtain the mode frequencies [32–39]. However, the situation
simplifies if one considers weak gravitational fields and neglect the metric perturbations.
This approach, known as the Cowling approximation (CA) [40], has been widely applied
for studying Newtonian as well as relativistic NSs.

Although, ideally, one must employ fully linearized equations in general relativity,
it has been shown that the difference on applying the CA is less than 20% for f -modes [41].
The differences between frequencies obtained from the CA and the ones obtained from the
full set of linearized equations have already been studied in the literature. e.g., in Figure 8
of [42] and Figure 5 of [43] the two calculations have been compared, and it has been
demonstrated that the error due to CA is in the range ∼15–30% for f -modes and ∼10% for
g-modes, which is fairly decent given the drastic simplification of the calculations. These
studies show that the CA tends to underestimate the frequency of the f -mode and that the
error of the CA for the f -mode tends to decrease as the mass of the star gets larger [42].

Here, only non-rotating NSs are considered; see Ref. [19] for investigations of f -modes
in rotating NSs. The fluid Lagrangian displacement vector is defined by

ξ i = (e−ΛW,−V∂θ ,−V sin−2 θ∂φ)r−2Ylm(θ, φ), (7)

where i is the vector index and ∂θ = ∂/∂θ etc., W(t, r) and V(t, r) are functions of r and
t. The fluid perturbations are decomposed into spherical harmonics Ylm(θ, φ) of degree
l = 0, 1, 2, . . . and order m = −l, . . . , l. Using these variables, the perturbation equations
for the fluid oscillations can be obtained from the conservation of the energy–momentum
tensor δ(∇νTµν) = 0. For a harmonic time dependence, the perturbation functions can
be written as W(t, r) = W(r)eiωt and V(t, r) = V(r)eiωt. On simplification, the pulsation
equations required to be solved in order to obtain these frequencies are given by [39]:

dW(r)
dr

=
dε

dp

[
ω2r2eΛ(r)−2Φ(r)V(r) +

dΦ(r)
dr

W(r)
]
− l(l + 1)eΛ(r)V(r),

dV(r)
dr

= 2
dΦ(r)

dr
V(r)− 1

r2 eΛ(r)W(r).
(8)

The functions V(r) and W(r), along with the frequency ω, characterize the pertur-
bation vector. We solve the coupled Equation (8) on a fixed background metric from the
origin (r = 0), where the solutions behave approximately like [41,44]

V(r) =
C
l

rl ,

W(r) = Crl+1,
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where C is an arbitrary constant. The other boundary condition that needs to be fulfilled is
that the Lagrangian perturbation to the pressure must vanish at the star’s surface, r = R.
Such condition reads:

ω2eΛ(R)−2Φ(R)V(R) +
1

R2

(
dΦ
dr

)∣∣∣∣
r=R

W(R) = 0. (9)

In full general relativity (no Cowling approximation), the solution to the perturbation
equations are complex, whose real part corresponds to mode frequencies and imaginary
part to the damping time. However, in the Cowling approximation, the solutions yield
only real mode frequencies ω.

3. Results
3.1. Testing the Numerical Scheme

In order to test the numerical scheme, first, the well-known results for f -mode frequen-
cies for the GM1 parameter set (see e.g., [41,44]) and also for the GM3 set are reproduced.
In Figure 3 one displays the fundamental f -mode frequencies, ν = ω/2π, where ω is
the solution to perturbation equations, as a function of total mass M (in MSun) for these
two reference parameter sets. As expected, the f -modes have frequencies within 1–3 kHz
compatible with previous results reported in literature [41,44].

Figure 3. The f -mode frequencies, ν, as a function of total mass. M, for the parameter sets GM1
and GM3.

It must be noted here that the f -mode frequencies for low mass stars will change when
one considers interactions with other modes (such as p-modes or g-modes) due to avoided
crossings [45]. For this reason, we confine the results of this study to NS masses above
1 MSun To note here is that the typical f -mode frequency from low-mass neutron stars is
∼kHz, which is not in the sensitivity range of the current gravitational wave detectors.
There is a possibility that the next generation of detectors, such as the Einstein telescope,
will be able to probe f -mode frequencies from low-mass NSs.

3.2. Sensitivity Study
3.2.1. Calculation of l = 2 f -Modes

In Section 2, the uncertainties associated with the nuclear saturation parameters, which
in turn result in the uncertainty in the EoS, were discussed. Having tested the numerical
scheme of the f -mode frequencies in Section 3.1, the study is extended here to investigate
the entire parameter space. Each of the nuclear saturation parameters are varied one by one
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within their known uncertainties listed in Table 1 and study the sensitivity of the f -mode
frequencies to each of the variations.

Variations of the RMF parameters m∗/m, Jsym and Lsym were performed in [25] within
the ranges compatible with the estimations from a variety of experimental, observational
and theoretical calculations. Similarly, in the present study, these saturation nuclear param-
eters were varied along with the other parameters ρsat, Esat and Ksat, within the parameter
space (see Table 1) compatible with current uncertainties in experimental data. Parameter
sets such as GM1 or GM3 are points that lie within this allowed parameter space. As these
EoS parametrizations like GM1, GM3 are obtained by fitting the couplings to reproduce
certain chosen experimental data, the influence of any individual saturation parameter on
the f -mode frequencies is not clear from a comparison of such EoSs. For example, let us
consider the sets GM1 and GM3: one cannot compare the f -mode frequencies for these two
sets because the sets differ both in Ksat and m∗/m, while the other parameters are the same.
So, in order to extract the influence of each individual saturation parameter on f -mode
frequencies, one must perform a sensitivity study by varying them one by one within the
present experimental uncertainties, keeping the others fixed, as it is done here.

In Figure 4, f -mode frequencies, ν, are displayed as a function of neutron star mass, M
(in MSun), for equations of state with varying empirical parameters (a) energy at saturation,
Esat, (b) compressibility, Ksat, (c) symmetry energy, Jsym, (d) symmetry energy slope, Lsym,
(e) saturation density, ρsat, and (f) effective mass, m∗/m. It is obvious from the panels
in Figure 4 that the influence of varying the isoscalar parameters, energy per particle
at saturation Esat and compressibility Ksat, is negligible. Similarly, the variation of the
isovector parameters, symmetry energy Jsym and its slope Lsym, do not vary the f -mode
frequencies significantly, as can be seen from the same figure. In Figure 4e, one can see
a small non-zero effect of the variation in the saturation density ρsat. However, the most
important influence on the frequencies comes from the variation in the effective nucleon
mass m∗/m. In Figure 4f, one can clearly differentiate between the different EoSs with
varying effective mass in the f -modes as a function of the stellar mass. The frequencies as
a function of NS masses are seen to vary between 2 kHz to 2.6 kHz, and the variation is
monotonic with increasing m∗/m. This could have interesting consequences for extracting
dense matter physics from the detection of f -mode frequencies for known stellar masses.
It is interesting here to compare the above results (obtained within the Cowling approxi-
mation and the RMF model framework) with those presented in Ref. [20] (see e.g., the left
panel of Figure 3 in Ref. [20]), which were obtained from quite model-independent EoS
limits based on low-density nuclear matter and perturbative QCD, using the full linearized
oscillation equations.

3.2.2. f -Modes and Tidal Deformability

Among the various NS astrophysical observables that can help to constrain the nuclear
EoS, one of the most promising quantities that have recently emerged is tidal deformability.
With the discovery of GWs from mergers of NSs, it was seen that, during the inspiral phase,
the NSs exert strong gravitational forces on each other, and the deformation produced
depends on their EoS [1]. The relation between the dimensionless tidal deformability
and the NS compactness, C = M/R, is given by Λ = 2k2

3C5 , where k2 is the second tidal
Love number.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. f -mode frequencies, ν, as a function of neutron star mass, M, for equations of state with
varying empirical parameters (a) energy at saturation Esat, (b) compressibility Ksat, (c) symmetry
energy Jsym, (d) symmetry energy slope Lsym, (e) saturation density ρsat, and (f) effective mass m∗/m.

In order to estimate the influence of the m∗/m, the dominant empirical parameter
that affects the f -mode frequencies, we first demonstrate its effect on the EoS and tidal
deformability. In Figure 5, the dimensionless tidal deformability Λ as a function of NS
mass is plotted. One can see that the variation of effective nucleon masses m∗/m influ-
ences Λ as a function of the NS mass, and the range of values is consistent with recent
observations [31,46].
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Figure 5. Dimensionless tidal deformability, Λ, as a function of neutron star mass, M, for different
effective nucleon masses m∗/m.

Now, consider the influence of variation in m∗/m on the f -mode frequencies ν as a
function of Λ, as it is shown in Figure 6. One finds that the variation in effective nucleon
masses causes a change in f -mode frequencies in the range (2–2.6) kHz, for a corresponding
change in dimensionless tidal deformability in the range ∼1–10. From the curves, one
can obtain the frequencies corresponding to the lower limit of tidal deformability (∼160,
constraints from terrestrial nuclear experiments), and the upper limit of tidal deformability
of NSs extracted from the GW170817 event by LIGO and VIRGO Collaborations (∼580)
which can provide an interesting constraint for the effective nucleon mass and, hence, the
nuclear EoS [17].

Figure 6. The f -mode frequencies ν as a function of tidal deformability Λ for varying m∗/m.

It was already mentioned in the previous section that tidal deformability is related
to stellar compactness. In order to use GW observations to estimate the NS mass and
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radius and to differentiate between different families of EoS, empirical relations between
the frequency of f -modes and the compactness of the star may be useful [14,15,47]. In
Figure 7 the effect of variation of m∗/m on the f -mode frequencies as a function of com-
pactness, C = M/R, is shown. Alternatively, one may also derive the compactness from
observations of the gravitational redshift Z from spectral lines, as they are related by
Z = (1− 2C)−1/2 − 1. The corresponding variation of f -mode frequencies as a function of
Z is shown in Figure 8.

Figure 7. The f -mode frequencies, ν, as a function of stellar compactness, C = M/R, for varying
m∗/m.

Figure 8. The f -mode frequencies, ν, as a function of gravitational redshift, Z, for varying m∗/m.

3.3. Asteroseismology Relations for f -Modes
3.3.1. Linear Relation with Average Density

A potentially useful application of the f -mode is that it can be described by universal
fitting formulae for asteroseismology, using which the mass and radius of a compact
object could be inferred from gravitational wave data. Using polytropic EoSs, it has been
shown [14] that the oscillation frequency ν of the fundamental mode has a reasonably
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linear dependence on the square root of the average density (M/R3)1/2. This formula was
revisited by many authors [15,16,19,47,48] with polytropic or selected phenomenological
EoSs, but a comparison of their fits show a dispersion of the results around the fitting
curves. Many of the chosen EoSs in those results are no longer consistent with the recent
astrophysical observations, such as the maximum mass constraint of MSun. However, one
must distinguish those studies from the analysis in Ref. [20] for a wide range of EoSs, which
are consistent with the recent astrophysical data.

In Section 3.2, the dominant nuclear parameters that affect the f -mode frequencies are
determined. Now, we will derive the empirical fit relation described above for the entire
uncertainty range in the parameter space, namely, in ρsat and m∗/m. In Figure 9, the l = 2
f -mode frequencies as a function of (M/R3)1/2 for varying ρsat and m∗/m are plotted. A
linear fit to the curves, marked by the black dashed line, is obtained, and the equation for
the fit is given by:

y = 0.857 + 1.435x,

where y is the l = 2 f -mode frequency as a function of x = (M̄/R̄3)1/2, in terms of the
dimensionless variables M̄ = M/(1.4 MSun) and R̄ = R/(10 km) [19].

Figure 9. The l = 2 f -mode frequencies as a function of (M/R3)1/2 for varying ρsat and m∗/m.
The black solid line gives the linear fit to the curves.

In comparison with earlier studies [14–16,19,47,48], this is the first time that a sensi-
tivity study to individual nuclear parameters and the effect of their uncertainties on the
empirical relations is probed. Here, one must recall the previously calculated [20] f -mode
frequencies by solving full perturbation equations for a large range of nuclear EoSs, by con-
sidering the maximally soft and stiff EOS compatible with low-density nuclear matter.
It is quite useful to compare the results of Figure 9 with the quite model-independent
region provided on the left panel of Figure 4 in [20]. In [20], it was pointed out that there
is a general spread of the phenomenological EoSs around proposed fit curves in litera-
ture, and fairly EoS-independent reliable boundaries were obtained between the fit lines
corresponding to hadronic [47] and CFL strange quark matter [42].

3.3.2. Higher-Order f -Modes

In the recent studies [48,49], the instability window relevant to f -modes was investigated
and it was concluded that higher-order, e.g., l = 3, 4 modes could be more dominant than
the quadrupole l = 2 mode. Doneva et al. [19] extended the asteroseismology relations for
five selected EoSs (of which now three EoSs are ruled out by Mmax arguments) to l = 3, 4
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modes. These relations are crucial input for calculating the higher-order mode frequencies
in rotating stars. It was also shown that observation of at least of two f -modes with different
spherical model numbers l can be used to determine the mass and radius to a good accuracy,
which can be further improved by performing the scheme in an iterative procedure.

With this motivation, a study of the variation of the f -mode frequencies as a function
of (M/R3)1/2 for higher-order modes l = 3, 4 in analogy with l = 2 case is performed here.
This is given in Figures 10 and 11. The linear fit,

y = 1.018 + 1.859x

to the curves for the l = 3 case is obtained with y being the l = 3 f -mode frequency.
Similarly, for the l = 4 case, the linear fit is given by:

y = 1.156 + 2.215x.

With these results, we propose a correction to the fit relations in [19] for the non-
rotating limit, by considering the entire uncertainty range of parameter space of saturation
nuclear data.

Figure 10. Same as Figure 9 but for higher-order l = 3 mode.

Figure 11. Same as Figure 9 but for higher-order l = 4 mode.
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3.3.3. Scaled Universal Relations

In Section 3.2.2, the influence of uncertainties of nuclear saturation parameters on
empirical relations between the f -mode frequency and stellar parameters such as density
and compactness was studied. Here, certain universal relations between the scaled f -mode
frequency versus compactness of NSs [15] are investigated. Correlations of the quasi-
normal mode frequency appropriately scaled by stellar mass (or radius) with compactness
were suggested in [39] for g-modes. It was shown that these phenomenological relations
are quite independent of the matter composition. It was also discussed that, using this
empirical formula and observing the mode frequencies from gravitational waves, one could
determine the stellar properties with high accuracy. Alternatively, with the observation of
the gravitational redshift parameter, which is directly related to the stellar compactness,
one could put constraints on the stellar mass. Lau [50] first demonstrated the existence of a
near-universal relation involving only Mω and I/M3, where I is the moment of inertia,
which has an accuracy of order 1%. The above mentioned studies demonstrate that semi-
universal correlations relating scaled oscillation mode frequencies with a scaled moment of
inertia or compactness have much lower uncertainties than unscaled relations involving
compactness. Such relations have been investigated more recently in [17,18] for p- and
w-modes.

Let us test these hypotheses for the EoSs considered in the current paper. In Figure 12,
the frequency scaled by the NS mass, ωM, and in Figure 13, the frequency scaled by
the NS radius ωR, are plotted as a function of compactness, C. One observes that ωM
indeed retains a universal behavior with C, while ωR shows slight deviation from universal
behavior with variation in effective nucleon mass. It is found that the f -mode frequency
can be well expressed as a function of stellar compactness M/R using the fit relation,

ωM = 190.364
(

M
R

)
− 5.095. (10)

These investigations confirm that, within the uncertainties of the model considered,
indeed the scaled semi-universal relations involving oscillation frequencies as a function
of compactness have lower uncertainties than those involving unscaled frequencies and,
therefore, have a better potential for applications in asteroseismology.

Figure 12. Scaled f -mode frequency ωM as function of stellar compactness C = M/R for varying
m∗/m.



Physics 2021, 3 316

Figure 13. Scaled f -mode frequency ωR (in kHz km) as function of stellar compactness C = M/R
for varying m∗/m.

4. Discussions

In this paper, the role of the underlying nuclear physics on f -modes was studied
within the Cowling approximation. Within the framework of the relativistic mean field
(RMF) model, a systematic investigation of the influence of the uncertainties in empirical
nuclear equation of state (EoS) parameters, consistent with recent nuclear experimental
data, on the f -mode frequencies was performed. The EoSs, obtained from these parameter
sets, all were found to bne compatible with the 2MSun maximum mass limit. It is found
that the nucleon in-medium mass to be the most dominant parameter, while the saturation
density has a small non-zero effect. Variation in effective mass between 0.55–0.75 resulted
in a corresponding variation of f -mode frequencies between (2–2.6) kHz as a function of
neutron star (NS) masses.

The effect of uncertainty in effective nucleon mass m∗/m on the relation between
f -mode frequencies and tidal deformability, compactness and gravitational redshift was
further investigated. These quantities can be derived and to be further constrained with the
rapid improvement in multi-messenger astrophysical observations. A future observation
of an f -mode frequency from an NS with known mass or tidal deformability would be
important for putting a constraint on this EoS parameter.

It was investigated whether the uncertainty in effective mass affects semi-universal
asteroseismology relations proposed in literature. Linear fits were ontained for correlations
between f -mode frequencies and the square root of the average density, for quadrupole
(l = 2) and higher-order (l = 3, 4) modes. These investigations also confirmed that,
within the uncertainties of the model considered, scaled semi-universal relations involving
oscillation frequencies as a function of compactness have lower uncertainties than those
involving unscaled frequencies. Scaled correlations relating the oscillation frequency
with other observables (such as the scaled moment of inertia, tidal deformability) should
therefore be probed for potential applications in asteroseismology in future work.

The effective nucleon mass m∗/m results from the interaction of nucleons in the
dense medium. Within the RMF model framework, it is shown that it is the dominant
parameter that governs f -modes. Several other studies that recently investigated EoS
effects in astrophysical scenarios [51–53], using the RMF model as well as other models,
also concluded that the nucleon effective mass played a dominant role. To generalize the
results obtained here, the role of the effective nucleon mass should also be probed for other
microscopic or phenomenological models, along with its density dependence, and this is
currently under investigation.

Let us emphasize that the results are obtained here within the Cowling approxima-
tion, neglecting background metric perturbations. It is well-known that the use of this
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simplification may introduce an uncertainty of the order of 10–30%. Ideally, one must
calculate the f -mode frequencies and damping times by solving full perturbation equations.
However, the main aim of the present study was to probe the role played by individual
nuclear saturation parameters on fundamental f -modes in neutron stars. The result ob-
tained clearly demonstrates that it is the nucleon effective mass that plays a dominant role.
Although the application of Cowling approximation limits a direct application of these
results to gravitational wave (GW) data, the study in this paper to be considered a first
step towards investigation of the role played by different nuclear saturation parameters on
f -modes and lays the foundation for an extension to a full calculation including calculation
of damping times, with an informed choice of the EoS parameter space resulting from
this work. That is currently a work in progress and the results to be communicated in
future publications.

In order to extract information about f -modes in NS merger remnants, one must
include rotation effects, which were not considered in this paper. In addition, the influence
of exotic constituents of matter (hyperons, kaons, deconfined quark matter) on f -modes to
be considered [20,41,44].

With the recent detection of GWs from binary compact objects, particularly, mergers
of binary neutron stars, prospects of constraining nuclear physics using GWs have become
attractive. It has been speculated that f -modes are among the most significant sources of
GWs due to the Chandrasekhar–Friedman–Schutz mechanism for isolated NSs and/or in
the post-merger scenario. Recent studies suggest that GWs produced by unstable l = m = 2
and the l = m = 4 f -modes could be detectable by the future Einstein Telescope for sources
in the Virgo cluster or for l = m = 3 modes even by the LIGO/VIRGO [49]. Then, a
possibility of distinguishing between NS EoSs using information about f -modes and NS
global observables proves to be very interesting.
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