
Article

Spatially Developing Modes: The Darcy–Bénard
Problem Revisited

Antonio Barletta

����������
�������

Citation: Barletta, A. Spatially

Developing Modes: The

Darcy–Bénard Problem Revisited.

Physics 2021, 3, 549–562. https://

doi.org/10.3390/physics3030034

Received: 7 June 2021

Accepted: 19 July 2021

Published: 30 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Industrial Engineering, Alma Mater Studiorum, University of Bologna, Viale Risorgimento 2,
40136 Bologna, Italy; antonio.barletta@unibo.it

Abstract: In this paper, the instability resulting from small perturbations of the Darcy–Bénard system
is explored. An analysis based on time–periodic and spatially developing Fourier modes is adopted.
The system under examination is a horizontal porous layer saturated by a fluid. The two impermeable
and isothermal plane boundaries are considered to have different temperatures, so that the porous
layer is heated from below. The spatial instability for the system is defined by taking into account both
the spatial growth rate of the perturbation modes and their propagation direction. A comparison with
the neutral stability condition determined by using the classical spatially periodic and time–evolving
Fourier modes is performed. Finally, the physical meaning of the concept of spatial instability
is discussed. In contrast to the classical analysis, based on spatially periodic modes, the spatial
instability analysis, involving time–periodic Fourier modes, is found to lead to the conclusion that
instability occurs whenever the Rayleigh number is positive.
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1. Introduction

Under the current terminology, the Darcy–Bénard problem designates the study of
the onset of convection in a horizontal porous layer saturated by a fluid and bounded
by parallel plane walls at different temperatures. As the lower boundary temperature
is the largest, the mechanism for the onset of convection cells in the porous layer is the
buoyancy force caused by heating from below. The alternative name for this topic is the
Horton–Rogers–Lapwood problem. The denomination Darcy–Bénard focusses on the
application of Darcy’s law as a model of flow in a porous medium and to the Rayleigh–
Bénard nature of the instability as induced by the thermal buoyancy force [1,2]. On the
other hand, by referring to this problem as Horton–Rogers–Lapwood, one recognises the
pioneering contributions by Horton and Rogers [3] and by Lapwood [4] for its formulation
and solution. The considerably broad literature regarding the Darcy–Bénard problem has
been reviewed by several authors [5–9].

The usual approach to the solution of the Darcy–Bénard problem is the linear stability
analysis. This analysis is usually carried out by testing how spatially periodic and time–
evolving Fourier modes of perturbation affect the basic conduction state. In this state, the
fluid is motionless and a uniform downward temperature gradient yields a potentially
unstable thermal stratification of the fluid [5,8]. A different method for the linear stability
analysis of stationary shear flows is based on a different class of perturbation modes, namely
time–periodic and spatially–developing Fourier modes [2,10–12]. In particular, Chapter 7
of Schmid and Henningson [12] provides a detailed analysis of the spatially–developing
perturbations, exemplified for the Poiseuille flow.

The aim of this paper is a revisitation of the Darcy–Bénard problem from the per-
spective of spatial stability analysis. The latter is a shorthand for the method based on
the spatially–developing Fourier modes of perturbation having a periodic dependence
on time. The physical difference between the traditional stability analysis, based on
spatially–periodic modes, and the spatial stability analysis, based on time–periodic modes,
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is described in detail. The predictions of the spatial stability analysis for the Darcy–Bénard
problem are presented and discussed showing that Fourier modes exponentially–growing
in space along their direction of propagation exist for every positive value of the Rayleigh
number.

2. Mathematical Model

The objective of the present paper is the study of a fluid–saturated porous layer with
a thickness H and an infinite horizontal width. The z axis is considered to be oriented
vertically so that the gravitational acceleration is given by g = −g ez, where g is the
modulus of g, and ez is the unit vector in the z direction. The horizontal planes z = 0
and z = H are kept at uniform temperatures Th and Tc, respectively. Here, subscripts
h and c are meant to denote hot and cold boundaries, which is the typical setup for the
Darcy–Bénard problem. The x and y axes are horizontal. The seepage flow in the porous
medium is modelled through Darcy’s law. The Oberbeck–Boussinesq approximation is
employed as a model of the thermal buoyancy force acting on the fluid [8].

2.1. Non–Dimensional Analysis

Let us introduce scaled quantities in order to express the governing equations in a
non–dimensional form:

(x∗, y∗, z∗) =
(x, y, z)

H
, t∗ =

t
σH2/α

, u∗ =
u

α/H
,

p∗ =
p

µα/K
, T∗ =

T − Tc

Th − Tc
. (1)

Furthermore, the Rayleigh number is defined as

R =
gβ(Th − Tc)KH

να
. (2)

In Equations (1) and (2), t is the time, u is the seepage velocity with Cartesian compo-
nents (u, v, w), p is the local difference between the pressure and the hydrostatic pressure,
and T is the temperature. The symbols α, µ, ν, β, K and σ stand for the average thermal
diffusivity of the saturated porous medium, the dynamic viscosity of the fluid, the kine-
matic viscosity of the fluid, the thermal expansion coefficient of the fluid, the permeability
of the porous medium and the heat capacity ratio, respectively. In fact, the quantity σ is
the ratio between the average volumetric heat capacity of the porous medium and that of
the saturating fluid. The starred quantities defined by Equation (1) are non–dimensional.
Since the forthcoming analysis will be entirely formulated in non–dimensional terms,
the stars will be hereafter omitted for the sake of brevity. The notation (Th, Tc) for the
dimensional boundary temperatures tacitly presumes that Th > Tc, which is the usual
situation of heating–from–below and unstable thermal stratification characteristic of the
Rayleigh–Bénard system. This entails R > 0, whereas a negative Rayleigh number signifies
the opposite situation of heating–from–above.

The non–dimensional form of the local mass, momentum and energy balance equa-
tions is given by [8]:

∇ · u = 0, (3a)

u = −∇p + R T ez, (3b)
∂T
∂t

+ u · ∇T = ∇2T. (3c)

Such governing equations are subject to the boundary conditions:

w(x, y, 0, t) = 0 = w(x, y, 1, t), T(x, y, 0, t) = 1, T(x, y, 1, t) = 0, (4)
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which express the impermeability of the boundaries and their uniform dimensionless
temperatures, 1 and 0.

2.2. Basic Conduction State and Perturbations

A steady state of the system exists where the heat transfer across the porous layer is
one of pure conduction. A time–independent solution of Equations (3) and (4) for this state,
denoted with the subscript 0, is given by

u0 = 0, T0 = 1− z, ∇p0 = R (1− z) ez. (5)

In order to test the stability of such a steady state, the standard procedure is perturbing
the system. Here, one assumes linear or small–amplitude perturbations (U, P, Θ) such that:

u = u0 + ε U, p = p0 + ε P, T = T0 + ε Θ, (6)

where ε is a small perturbation parameter, i.e., |ε| � 1. Let us now substitute Equations (5)
and (6) into Equations (3) and (4) and simplify terms O

(
ε2):

∇ ·U = 0, (7a)

U = −∇P + R Θ ez, (7b)
∂Θ
∂t
−W = ∇2Θ, (7c)

W(x, y, 0, t) = 0 = W(x, y, 1, t), Θ(x, y, 0, t) = 0 = Θ(x, y, 1, t), (7d)

where (U, V, W) represent the Cartesian components of U. In Equations (7), ε–dependence
is simplified due to the linearisation.

One can recognize that Equations (7) are invariant with respect to rotations around
the z axis, so that any horizontal direction is just equivalent. Then, the analysis can be
made two–dimensional by assuming independence from the coordinate y, so that the
perturbation fields are defined in the xz plane and V is zero. With this understanding, one
can introduce a perturbation stream function defined as

U =
∂Ψ
∂z

, W = −∂Ψ
∂x

. (8)

Thus, Equations (7) can be rewritten as

∇2Ψ = −R
∂Θ
∂x

, (9a)

∇2Θ =
∂Θ
∂t

+
∂Ψ
∂x

, (9b)

Ψ(x, 0, t) = 0 = Ψ(x, 1, t), Θ(x, 0, t) = 0 = Θ(x, 1, t). (9c)

The solution of Equations (9) may be expressed through Fourier sine series in the
z coordinate, so that Equation (9c) is identically satisfied. In fact, let us introduce the
notation,

F =

(
Ψ
Θ

)
, (10)

where F(x, z, t) can be considered as a perturbation (two–dimensional) vector function. A
straightforward way to express the dependence on z is by employing sine Fourier series,
so that:

F(x, z, t) =
∞

∑
n=1

Fn(x, t) sin(nπz). (11)
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Equations (9) now read:

∂2Ψn

∂x2 − (nπ)2Ψn = −R
∂Θn

∂x
, (12a)

∂2Θn

∂x2 − (nπ)2Θn =
∂Θn

∂t
+

∂Ψn

∂x
, (12b)

for every n = 1, 2, etc.
In Sections 3 and 4, two different paths are considered to complete the solution of

the Darcy–Bénard problem. The one discussed in Section 3 is simple and widely known
in the literature [5–9]. On the other hand, the procedure, discussed in Section 4, is more
complicated, while disclosing new elements of appraisement and new insights into the
Darcy–Bénard problem.

3. Spatially Periodic Fourier Modes

The Fourier transform of Fn(x, t) can be defined as [13]:

F̂n(k, t) =
1√
2π

+∞∫
−∞

Fn(x, t) e−ikx dx, (13)

with its inverse transform given by

Fn(x, t) =
1√
2π

+∞∫
−∞

F̂n(k, t) eikx dk. (14)

The transformation variable is the coordinate x, so that k is endowed with the physical
meaning of a wave number. Equation (14) evidences that the perturbation vector F is
expressed as the linear combination of spatially–periodic wavelike signals, each one with a
periodicity along the x axis given by 2π/k.

The Fourier transform, when applied to Equations (12), yields:[
(nπ)2 + k2

]
Ψ̂n − ikR Θ̂n = 0, (15a)[

(nπ)2 + k2
]
Θ̂n +

∂Θ̂n

∂t
+ ikΨ̂n = 0. (15b)

The solution of Equations (15) is:

Ψ̂n(k, t) =
ikR

(nπ)2 + k2
Θ̂n(k, 0) eλt, Θ̂n(k, t) = Θ̂n(k, 0)eλt, (16)

with:

λ = −
[
(nπ)2 + k2

]
+

k2R

(nπ)2 + k2
. (17)

Equations (16) and (17) allow us to finalise the linear stability analysis. The pertur-
bation modes Ψ̂n and Θ̂n grow exponentially in time when, for a given wave number k,
R exceeds the threshold [(nπ)2 + k2]2/k2, while they are damped exponentially in time
if R is smaller than this threshold. The former condition delineates the instability of the
Darcy–Bénard system, while the latter identifies the stability. Therefore, the marginal
condition between stability and instability is:

R =

[
(nπ)2 + k2

]2

k2 . (18)
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The minimum value of R along the marginal stability curve is the critical value, Rc. It
is achieved with n = 1 and is given by Rc = 4π2, which corresponds to the critical wave
number kc = π [8].

4. Time–Periodic Fourier Modes

Let us now explore an alternative approach to the Fourier transform solution described
in Section 3. Let us define the Fourier transform of Fn(x, t) as:

F̃n(x, ω) =
1√
2π

+∞∫
−∞

Fn(x, t) eiωt dt, (19)

so that the inverse transform is given by:

Fn(x, t) =
1√
2π

+∞∫
−∞

F̃n(x, ω) e−iωt dω. (20)

In Equations (19) and (20), the transformation variable is the time t, and ω represents
the angular frequency. Equation (20) implies that the perturbation vector F is a linear
combination of time–periodic wavelike signals, each one with a periodicity in time given
by 2π/ω. By applying the Fourier transform (19) to Equations (12), one finds:

∂2Ψ̃n

∂x2 − (nπ)2Ψ̃n = −R
∂Θ̃n

∂x
, (21a)

∂2Θ̃n

∂x2 − (nπ)2Θ̃n = −iω Θ̃n +
∂Ψ̃n

∂x
. (21b)

Much like as in Section 3, the solution of Equations (21) can be expressed as:

Ψ̃n(x, ω) = Θ̃n(0, ω)
4

∑
j=1

CjηjR

(nπ)2 − η2
j

eηjx,

Θ̃n(x, ω) = Θ̃n(0, ω)
4

∑
j=1

Cj eηx, (22)

where C1, C2, C3 and C4 are coefficients such that ∑4
j=1 Cj = 1 and η1, η2, η3 and η4 are the

four roots of the equation,[
(nπ)2 − η2

][
(nπ)2 − η2 − iω

]
+ η2R = 0. (23)

The complication emerging from Equations (22) and (23) is two–fold. First, the expo-
nential parameter η is complex, while λ in Equation (17) is real. Second, η is defined only
implicitly through Equation (23), whereas λ is explicitly expressed by Equation (17). The
real and imaginary parts of η can be denoted as

η = s + ik, (24)

where s represents the exponential growth rate in the x direction, while k is the wave
number. For every given pair (R, n), one obtains four different branches η(ω) by solving
the algebraic Equation (23).

One can rescale the variables η, ω and R, so that:

η′ =
η

n
, ω′ =

ω

n2 , R′ =
R
n2 . (25)
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With the scaled variables, Equation (23) is rewritten as:(
π2 − η′2

)(
π2 − η′2 − iω′

)
+ η′2R′ = 0, (26)

which is, in fact, the n = 1 version of Equation (23). Hereafter, the primes in the scaled
symbols, defined by Equation (25), are omitted. This is definitely equivalent to assuming
n = 1 in Equation (23). In what follows, one must keep in mind that any predicted value
of, say, η has to be multiplied by n whenever n > 1.

The four solution branches of Equation (26) are given by:

η1(ω) =

√
1
2

[
2π2 − R− iω−

√
(R + iω)2 − 4π2R

]
, η2(ω) = − η1(ω),

η3(ω) =

√
1
2

[
2π2 − R− iω +

√
(R + iω)2 − 4π2R

]
, η4(ω) = − η3(ω). (27)

4.1. Spatial Stability

Now, one is ready to define spatial stability. For given R and ω, one can say that
the steady state (5) is spatially stable if the real and imaginary parts of η(ω) satisfy the
condition

sk < 0. (28)

On the other hand, the steady state is spatially unstable if the real and imaginary parts
of η(ω) satisfy the condition

sk > 0. (29)

The rationale behind such definitions is that the time–periodic modes of the pertur-
bations defined by Equations (19), (22) and (23) are stable when they are damped along
their direction of propagation, which is determined by the sign of their phase velocity,
ω/k. On the other hand, the perturbation modes are spatially unstable when they are
amplified along their direction of propagation. Without any loss of generality, one can
fix ω > 0. Then, the sign of the phase velocity coincides with the sign of the imaginary
part of η(ω), i.e., with the sign of k. A qualitative sketch of the concept described by
Equations (28) and (29) is provided in Figure 1. Furthermore, the very special condition
ω = 0 is discussed in Section 5 below.

An equivalent way to define spatial stability is by employing the argument function,
arg(a), whose values range within the interval [−π, π], namely:

spatial stability: − π

2
< arg(η(ω)) < 0 or

π

2
< arg(η(ω)) < π,

spatial instability: − π < arg(η(ω)) < −π

2
or 0 < arg(η(ω)) <

π

2
. (30)
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x

z

spatial stability

x

z

spatial instability

Figure 1. A qualitative sketch of spatial stability (upper frame), and spatial instability (lower frame).

4.2. Parametric Conditions for Spatial Instability

One can first envisage the special case where R = 0. From a physical viewpoint, such
a case should not be prone to any kind of thermal instability. In fact, there is no thermal
forcing coming from the boundary temperature difference as, with R = 0, we have no
temperature difference between the boundary planes, z = 0 and z = 1. This result is
confirmed by Equations (22) and (27). In particular, Equations (27) yield:

η1(ω) = −η2(ω) =
√

π2 − iω, η3(ω) = −η4(ω) = π, (31)

in the case R = 0.
On account of Equations (22), the roots η3(ω) and η4(ω) are unphysical as they yield

a singularity of Ψ̃n(x, ω), unless Θ̃n(0, ω) = 0. The latter condition is trivial as it yields
vanishing perturbations. On the other hand, from Equation (31), one may conclude that
the expressions for the roots η1(ω) and η2(ω) imply sk = −ω/2 < 0, which yields spatial
stability according to Equation (28).

Figure 2 shows the plots of the product sk for the branches (η1, η2) and for the branches
(η3, η4), with two conditions of stable thermal stratification (heating–from–above), namely
R = −50 and R = −10. The first remark is the obvious fact that sk is identical for the
root branches η1 and η2. In fact, the product sk is the product between the real part and
the imaginary part of η and η2 = −η1, on account of Equation (27). The same reasoning
applies for the pair (η3, η4). A second feature suggested by Figure 2 is that, with R < 0,
no spatial instability is possible. This circumstance is a consequence of sk being evidently
negative in all cases illustrated in Figure 2. Hereafter, the blue colour is employed for the
plots when the root branch η corresponds to spatial stability, sk < 0, while the red colour
is used to denote spatial instability, sk > 0. Let us note that the line corresponding to the
pair (η3, η4) gradually, but slightly, deviates from the trend sk = −ω/2 reported for the
limiting case R = 0.
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Figure 2. The product sk of the porous layer spatial growth rate, s, and the wave number, k, versus
the angular frequency, ω, for the values of the Rayleigh number, R = −50 (left frame) and R = −10
(right frame). Each frame contains plots made for the complex growth parameter pairs (η1, η2) and
(η3, η4), defined by Equations (27).

Figure 3 displays the product sk versus R for the branch pairs (η1, η2) and (η3, η4).
The plots are organised in four frames for ω values of 1, 20, 50 and 100. The most important
feature is the transition to spatial instability when R > 0 for all the values of ω considered
in Figure 3. The transition is evidently driven by the branches (η3, η4). One may notice the
interchange between the branch pairs (η1, η2) and (η3, η4) while crossing the line R = 0.
Figure 3 further enforces the conclusion that no spatial instability is exploited with R ≤ 0.
Thus, henceforth, the R > 0 domain is focussed on, physically meaning an unstable thermal
stratification (downward temperature gradient) in the basic conduction state.
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Figure 3. The product sk versus R for ω = 1 (upper left), 20 (upper right), 50 (bottom left), and 100
(bottom right). Each frame contains plots for both branch pairs (η1, η2) and (η3, η4). Red and blue
lines denote the spatially unstable and stable modes, respectively.
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Figure 4 provides the plots of s versus ω for the four solution branches, given by
Equation (27), with red lines denoting spatial instability, sk > 0, and the blue lines indi-
cating spatial stability, sk < 0. The branches (η3, η4) are always spatially unstable with
something special happening when R = 4π2 is approached from below. In fact, one can
see that the frame with R = 10 displays the branches (η1, η3) as completely detached from
(η2, η4). When R = 10 and ω → 0, the branches (η1, η3) approach a positive limit, while
the branches (η2, η4) tend towards a negative value. With R ≥ 4π2, Figure 4 shows that
the limit of s when ω → 0 is 0 for all the four branches. The distance at ω → 0 between the
detached branch pairs, (η1, η3) and (η2, η4), decreases as R increases and becomes 0 when
R = 4π2. This phenomenon is clearly illustrated in Figure 5, where the difference between
the values of s for the branches η3 and η4 is shown (just the same plot can be obtained by
considering η1 and η2, instead). It is noteworthy that R = 4π2 is the critical value for the
onset of the convective instability, as it is recalled at the end of Section 3. However, here,
this special value of R does not delimit the region of instability, as it happens with the
spatially–periodic Fourier modes, discussed in Section 3. On the other hand, R = 4π2 is
the minimum R such that the growth rate of the spatially unstable modes is 0 in the ω → 0
limit.
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Figure 4. The rate s versus ω for R = 10 (upper left), 4π2 (upper right), 50 (bottom left), and 100
(bottom right). Each frame contains plots for four eigenvalue branches, η1, η2, η3 and η4. Red and
blue lines denote the spatially unstable and stable modes, respectively.
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4π2
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Figure 5. The difference s3 − s4 of the s values, calculated with η3 and η4, versus R at ω → 0.

Another geometrical feature, displayed in Figure 4 and rigorously verified by employ-
ing Equation (26), is that, for R = 4 π2, the condition ω → 0 is accomplished with

lim
ω→0

η = ±iπ and lim
ω→0

dη

dω
= ∞. (32)

In particular, having an infinite dη/dω means having a zero dω/dη. From the physical
viewpoint, the latter is a zero group–velocity condition. This is a further situation where
the spatial stability analysis mirrors, in a geometrical way, the classical stability analysis,
carried out through spatially–periodic Fourier modes. In fact, the condition of zero group–
velocity, or saddle–point condition, reflects the concept of absolute instability [13]. It is
widely known that the Darcy–Bénard system displays the transition to absolute instability
at critical conditions, R = Rc = 4π2 with k = kc = π [13]. As already pointed out
above, within the spatial stability analysis, the value R = Rc = 4π2 does not have the
physical meaning of a threshold to instability (either convective or absolute), even if it
displays significant geometrical characteristics. The analysis, presented in Section 5 just
below, shows that there is more to say about the physical meaning of the neutral stability
condition within the framework of the spatial stability analysis.

5. Stationary Spatially Developing Modes

The plot, given by Figure 5, refers to the limit ω → 0. However, the special case ω = 0
deserves a more thorough analysis. In fact, this case includes all the time–independent
perturbations within the wider class of the spatially–developing modes defined in Section 4.
Such special Fourier modes may display a different characterisation for their spatial stabil-
ity/instability with respect to the inequalities (28) and (29).

An illustration of the behaviour for the Fourier modes having ω = 0 is provided
in Figure 6. The time–periodicity becomes time–independence with ω = 0, so that the
entrance condition at x = 0 is not oscillatory, but stationary. This circumstance entails a
steady side heating or cooling mechanism through the cross–section x = 0. Interestingly
enough, this situation yields spatially–growing modes for every R < 4π2, either positive
or negative. This phenomenon is shown in Figure 6. When R < 0, the exponential growth
with x, either in the positive or in the negative x directions, occurs for all the possible
branches ηj, j = 1, 2, 3, 4. The vanishing k, when R < 0, just means that the exponentially–
growing modes do correspond to cells with infinite horizontal width. From the plots,
displayed in Figure 6, one can see that the criterion for spatial stability/instability given
by Equations (28) and (29) can be applied in the range 0 < R < 4π2. In fact, in this range,
one has sk < 0 (spatial stability) for the modes η1 and η2, while sk > 0 (spatial instability)
for the modes η3 and η4. The range R ≥ 4π2 is extremely important. Figure 6 reveals that
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s = 0 in this range, so that one observes spatially–periodic modes. One can say that the
range R ≥ 4π2 defines the intersection between the set of the spatially–periodic modes,
used for the analysis in Section 3, and the set of the time–periodic modes, discussed in
Section 4. In other words, the four thick lines, appearing with R ≥ 4π2 in the right–hand
frame of Figure 6, form the neutral stability curve, defined by employing Equation (18)
with n = 1. This is perfectly consistent with the analysis, reported in Section 4, which
clearly establishes how the neutral stability condition is obtained with a vanishing ω and
with vanishing growth rates both in time and in space.
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Figure 6. The growth rate, s (left frame), and the wave number, k (right frame), versus R for
stationary modes, ω = 0, for the four branches ηj, j = 1, 2, 3, and 4, given by Equations (27). Thicker
lines identify the condition of neutral stability.

6. Further Insights into the Spatial Stability Analysis

Thus far, it has been demonstrated that the linear stability analysis of the Darcy–
Bénard system can be carried out by employing either spatially–periodic Fourier modes or
time–periodic Fourier modes. The former is the classical approach meant to focus on the
time growth rate of the perturbations as the key parameter for establishing whether the
basic state is stable or unstable. The latter has its focus on the spatial growth rate of the
perturbations and on the concept of spatial instability occurring when the amplitude of the
time–periodic Fourier modes grows in the spatial direction of propagation.

The two conceptions of instability are not equivalent as the instability to spatially–
periodic modes is possible only with R > 4π2, while the instability to time–periodic modes
is possible whenever R > 0. Beyond their mathematical formulations and predictions,
the difference between the two approaches to linear instability is grounded on diversified
physical scenarios.

If one relies on the solution method, based on the Fourier transform, given by
Equations (13) and (14), as well as on the expressions (16), it appears that one is trac-
ing the evolution of a perturbation, defined by a function Θ̂n(k, 0). If such a function is
processed through the Fourier inverse transform (14) and, then, it is substituted into the
Fourier series (11), it becomes evident that, in fact, one prescribes an initial condition for the
perturbation at time t = 0. Thus, what one is doing is applying Lyapunov’s definition of
stability/instability; see, e.g., Arnold [14]. This definition can be rephrased as follows: alter
(slightly) an equilibrium state of a dynamical system and trace the evolution in time to demonstrate
the stability/instability of that equilibrium state. The question is how an alteration in the initial
state, at time t = 0, affects the time evolution of a dynamical system. This is exactly the
framework implied by Equations (13), (14) and (16).

The focus of spatial instability can be captured from Equations (19), (20) and (22). Here,
one does not trace the evolution in time of an arbitrary initial condition fixed at t = 0, but
rather one describes the development in space of a condition set at a specified cross–section
of the porous layer at x = 0. If Lyapunov’s definition of the instability is based on the
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alteration of the initial condition at t = 0, then one now conceives the instability, induced
by an altered condition at x = 0. The effects of such an alteration are measured by the
development in space, i.e., along the x direction, of a signal prescribed at x = 0. Hence,
there are two distinct approaches for the test of the linear stability in a stationary fluid flow.
Furthermore, the two types of stability test yield different outcomes, as it is mentioned
above. The parametric ranges, expressed in terms of the Rayleigh number, for the instability
to space–periodic Fourier modes and for the spatial instability, involving time–periodic
Fourier modes, are different. Nevertheless, in both cases, one models the reaction of a basic
flow to small–amplitude perturbations. The different outcomes are due to the different
experimental procedures implied by the two schemes. Oversimplifying the description,
spatially–periodic modes serve to measure the stability/instability on monitoring the time
evolution of the perturbations. This task is meant to be achieved by observing the flow at a
given spatial station, x. On the other hand, the time–periodic modes allow one to establish
if the basic flow is stable/unstable by taking a snapshot of the whole flow domain at a
given instant of time, t. If one takes into consideration the different experimental scenarios,
implied by the two approaches, it is not surprising that the predicted parametric conditions
for the instability are different.

Another remark is on the practical way to activate a time–periodic perturbation signal
at a given cross–section, say at x = 0. One can employ any device which induces a modula-
tion in the time of the fluid temperature or pressure. For instance, it could be a vibrating
element such as a membrane or an electric resistor subject to an alternating current (‘vi-
brating ribbons or harmonic point sources’, as suggested in Schmid and Henningson [12]).
Due to the symmetry, the control volume for the experiment can be the half–domain
x > 0, without any loss of generality. We refer the reader to Chapter 7 in Schmid and
Henningson [12] for further details on the physical meaning of the perturbations caused by
a spatially–localised source.

Finally, let us comment on the four constants Cj, j = 1, . . . , 4, employed in Equations (22).
As it is already been pointed out, one has ∑4

j=1 Cj = 1. This condition is meant to ensure
the consistency for the expression of Θ̃n(x, ω) in Equations (22). An analogous constraint
is formulated to ensure consistency for the expression of Ψ̃n(x, ω) in Equations (22). Then:

4

∑
j=1

Cj = 1,
4

∑
j=1

CjηjR

(nπ)2 − η2
j

=
Ψ̃n(0, ω)

Θ̃n(0, ω)
. (33)

Equation (33) is insufficient to determine uniquely the four constants Cj for the func-
tions Ψ̃n(0, ω) and Θ̃n(0, ω). Two further extra conditions are to be set, constraining the
derivative ∂F/∂x at x = 0. Such extra constraints depend on the nature of the time–periodic
signal with angular frequency ω, prescribed at x = 0. One of the many possibilities is as-
suming symmetry conditions for the temperature and streamfunction perturbations, which
yields ∂F/∂x = 0 at x = 0. If such constraints are implemented through Equations (22),
Equation (33) is completed with:

4

∑
j=1

Cjηj = 0,
4

∑
j=1

Cjη
2
j R

(nπ)2 − η2
j

= 0. (34)

If the specification of the coefficients Cj is requested to rigorously formulate the devel-
oping region problem for both x > 0 and x < 0, the actual experimental conditions may
not yield accurately defined functions Ψ̃n(0, ω), Θ̃n(0, ω) and constants Cj. One expects
that, to some extent, an experimental setup of the Darcy–Bénard system likely shows up
stochastic perturbation signals emerging at x = 0 and developing in both the positive and
negative x direction. The clue of the reasoning is that a random signal necessarily includes
the most unstable modes, which turn out to dominate the flow development along x and
determine its spatially stable/unstable nature.
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7. Conclusions

In the present paper, the instability of the rest state in a horizontal porous layer
with impermeable boundaries kept at different temperatures, known as Darcy–Bénard
instability, is reconsidered. In particular, two different formulations of the linear analysis
are compared. The first formulation is the classical one, where the reaction of the system to
spatially–periodic Fourier modes, prescribed at the initial time t = 0, is traced through its
linear evolution. The second formulation leads to the concept of spatial stability/instability.
In this case, the system response to the time–periodic Fourier modes, imposed at a given
vertical cross–section, is tested. Conventionally, and without any loss of generality, the
position, where the perturbation signal is imposed, is set to x = 0. The main features,
drawn from the comparison of such different formulations, are as follows.

• The spatial instability condition was formulated by adopting a Fourier transform in
the time variable for the perturbations, thus giving rise to a complex growth rate
parameter, η, along the x direction. The transition to spatial instability occurs when
the product between the real part and the imaginary part of η is positive.

• As it is widely known in the literature, the classical linear stability analysis, based on
spatially–periodic Fourier modes, leads to the prediction of an unstable behaviour
when the Rayleigh number, R, is larger than 4π2. On the other hand, the analysis
involving time–periodic Fourier modes leads to the prediction of spatial instability
whenever R > 0, i.e., every time heat is supplied from below. In the special case of a
zero angular frequency, ω = 0, spatially unstable modes exist also for R < 0.

• Special geometrical features are displayed in the plots of the spatial growth rate,
s = Re(η), versus the angular frequency, ω, when R = 4π2. In particular, the two
unstable branches of η, which are disconnected for R < 4π2, merge when R = 4π2.
When this happens, a zero group–velocity condition is identified. However, such
features are of purely mathematical nature and do not alter in any way the spatially
unstable behaviour predicted for R > 0, either smaller or larger than 4π2. In order to
establish the physical meaning of the neutral stability condition within this framework,
a special focus on the condition ω = 0 is provided.

The research reported is meant to be a starting point for further developments of the
concept of spatial stability/instability for porous media saturated by a fluid. The tasks
to be pursued in the future include the extension to the nonzero flow rate variant of the
Darcy–Bénard problem, identifying the Prats instability problem [15]. Furthermore, the
spatial instability concept can be pushed in the nonlinear domain where the constraint of
small–amplitude perturbations is relaxed.
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