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Abstract: Critical angle refractometry is an established technique for determining the refractive
index of liquids and solids. For transparent samples, the critical angle refractometry precision is
limited by incidence angle resolution. For lossy samples, the precision is also affected by reflectance
measurement error. In the present study, it is demonstarted that reflectance error can be practically
eliminated, provided that the sample’s extinction coefficient is a priori known with sufficient accuracy
(typically, better than 5%) through an independent measurement. Then, critical angle refractometry
can be as precise with lossy media as with transparent ones.
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1. Introduction

Critical angle refractometry is the standard for determining the refractive index of
transparent media [1–6]. The method relies on measurements of the reflectance, R(θ), of the
interface, formed by a transparent front medium (which is commonly a prism) of known
refractive index, no, and the sample of unknown index, n, for a range of incidence angles,
θ, that includes the critical angle, θc, of total internal reflection (TIR) [7–9].

As it is shown in Figure 1, the critical angle is located at a sharp discontinuity of the
θ-derivative, R′(θ); the refractive index of the sample is obtained from the TIR condition:

n/no = sin θc, (1)

with the corresponding relative error:

δn/n = δθc/tan θc. (2)

In determining the TIR critical angle, the error, δθc, is mainly regulated by the angular
resolution of the experimental setup, which is typically between 20 µrad and 100 µrad for
state-of-the-art refractometers [10].

Critical angle refractometry has also been used with lossy media where the refractive
index turns into the complex number, n = nr + ini, the imaginary part of which (imaginary
index) incorporates loss effects, namely, absorption and/or scattering. The reflectance
profile, R(θ), becomes smoother, and the critical angle, θc, is located at the maximum of
R′(θ), which now marks the gradual transition from the attenuated TIR (a-TIR) to the
partial reflection regime; see Figure 1. The underlying assumption is that Equation (1)
is still valid (at least approximately) and that it can be used to obtain an estimate of the
real index of the lossy sample [11,12]. This assumption introduces systematic errors that
have been the subject of extensive discussion; see, e.g., [13–15] Let us note that fitting the
reflectance profile, R(θ), to Fresnel equations is another way to compute the complex optical
constants [16–18]. However, bearing its own strengths and weaknesses, data regression is
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not a point method and, thus, cannot be taken as a “critical angle” refractometry approach
in itself.

Figure 1. (a) Fresnel reflectance, R(θ), profile, as a function of the incidence angle, θ, at an interface
between a transparent sample and a transparent prism, such that the ratio of unknown refractive
index to the known index is n/no = 0.75. Long-dashed arrow indicates the location of the corre-
sponding critical angle, θc. (b) Fresnel reflectance profile at an interface between a lossy sample and
a transparent prism, such that nr/no = 0.75 and ni/no = 0.005, where nr and ni are the real and
inginary parts of the refractive index, respectively. Short-dashed arrows indicate the location of the
corresponding critical angle and critical reflectance, Rc. (c) The critical angle rests at the peak of the
reflectance derivative, which is also depicted (in arbitrary units).

Recently, the universal condition of a-TIR,

nr/no = g1(θc, Rc) and ni/no = g2(θc, Rc), (3)

was proposed, where Rc is the critical reflectance at θc, and functions g1 and g2 are derived
from the Fresnel equations [19]. In the case of the s-polarisation, which is the main foucus
of the present study, these equations are given in Section 2. Using Equation (3), the complex
refractive index can be determined by θc and Rc.

Then, the relative error of the real index, δnr/nr, depends on both δθc and δRc:

δnr

nr
=

1
g1
·

√(∂g1

∂θc
· δθc

)2
+
( ∂g1

∂Rc
· δRc

)2
. (4)

In determining the critical reflectance, the error δRc is mainly due to intensity fluctua-
tions of the laser sources and, therefore, to be of the order of 10−2, which is at least two
orders of magnitude larger than δθc. As a result, critical angle refractometry is less precise
with lossy media than it is with transparent ones.

In this paper, it is demonstrated that the critical reflectance can be numerically com-
puted with higher accuracy than it can be experimentally obtained, provided that the
extinction coefficient of the sample is a priori known with sufficient accuracy (<5%, typi-
cally). Then, the real index relative error for lossy samples (being δθc and δRc dependent;
see Equation (4)) can become equal to the relative error for transparent samples (which is
only δθc dependent; see Equation (2)). This is a significant advancement in the field of opti-
cal characterisation of absorbing and/or scattering media, which include, among others,
various forms of biological matter, non-transparent liquids, colloids and food products.



Physics 2021, 3 571

2. Background Theory and Initial Observations

The functions g1 and g2 [19] are compactly expressed in terms of the sample’s complex
dielectric constant, εr + i · εi = (nr + i · ni)

2, and the prism’s dielectric constant, εo = n2
p:

g1 =

[√
ε2

r + ε2
i

2εo
+

εr

2εo

]1/2

and g2 =

[√
ε2

r + ε2
i

2εo
− εr

2εo

]1/2

, (5)

where
εr

εo
=

α + t2

1 + t2 and
εi
εo

=

√
γ2 − α2

1 + t2 , (6)

with

α =
(1 + γ)2

2ρ2 − γ, γ =
2t

(3ρ2 − 2ρ− 2)t + ρ
√
(9ρ2 − 12ρ− 8)t2 − 4

, (7)

and
t = tan θc, ρ =

1 + Rc

1− Rc
. (8)

As it is described in [19], the preceding formalism, which is valid for s-polarisation,
calculates output values (nr, ni) from refractometric input pairs (θc, Rc) by successive
algebraic substitutions into Equations (5)–(8). Let us remark that Equations (5) and (6) are
also valid for p-polarised light, in which case however, there exist no explicit solutions for α
and γ such as those provided by Equation (7). Instead, these parameters can be calculated
as solutions to two algebraic equations, as is analytically shown in [19]. In that sense, the
forthcoming analysis may be replicated for p-polarisation. Despite some more complication
in the calculations, the results, reported here for s-polarisation, are qualitatively similar to
those of p-polarisation.

Figure 2 gives a graphical insight by the isoangular curve which consists of pairs
(nr/no, ni/no), computed by keeping θc constant (θc = π/4 in this example), while letting
Rc to vary. There is no loss of generality, associated with the specific choice of θc, because
larger (smaller) critical angles simply shift the curve to the right (left). An indicative
measurement (with θc = π/4, Rc varying) defines a single point in the (nr/no, ni/no)-
plane, whose coordinates uniquely determine the complex refractive index.

Figure 2. Isoangular curves in the (nr/no, ni/no)-plane for the s-polarisation, θc = π/4 and variable
Rc. As one moves along the direction of the arrow, Rc increases in steps of 0.005, within the range
[0.385, 0.990]. The vertical dashed line marks the transparency limit, nr/no = sin(π/4).

In Figure 2, one can observe quite wide range, spanned by the imaginary index as
the critical reflectance varies, especially compared to the relatively modest shift for the
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real index, which is nevertheless non-negligible. The vertical dashed line in Figure 2
marks the transparency limit nr/no = sin(π/4) ≈ 0.707, which is the estimate of the TIR-
condition (Equation (1)) for each point of the isoangular curve. Unsurprisingly, this estimate
practically coincides with the exact result for small ni/no, e.g., ni/no � 10−4, a range that
includes, for example, most liquids at wavelengths far from their ultraviolet or infrared
resonances, but excludes most forms of biological matter, even in the therapeutic optical
window. The most interesting feature in Figure 2 is the turning point of the isoangular curve,
which vividly demonstrates that the systematic error, introduced by use of Equation (1)
with lossy media, does not increase monotonically with attenuation but decreases above the
turning point, and even becomes zero when the isoangular curve crosses the transparency
limit marked by the dashed vertical line. This behaviour, which now emerges as a natural
consequence of the universal a-TIR condition, had been previously observed [13,20] and
labeled as inexplicable by other authors [14].

3. Method’s Application with a Priori Known Extinction Coefficient
3.1. Main Concept

The sample’s extinction coefficient, µ, i.e., the sum of the absorption coefficient, µa,
and the scattering coefficient, µs, can be a priori known via an independent experimental
method such as absorption spectroscopy or collimated transmittance spectroscopy. This
type of independent extinction coefficient measurement has been reported earlier for
pure water [21], various emulsions [22], bioliquids [23], oils [24] and semiconductors [25];
typically, the relative error, σµ = δµ/µ, in the measurement of the extinction coefficient is
of 0.1% to 10% [26–30].

The formalism, described in Section 2, can be used to calculate the real part of the
refractive index (real index) from the value of the critical angle alone. The direct measure-
ment of critical reflectance is no longer needed, since Rc can be determined from the value
of the extinction coefficient, which is related to the imaginary index [31]:

µ =
4πni

λ
, (9)

so that the following equation holds true (λ is the light wavelength):

g2(θc, Rc) =
ni
no

=
µλ

4πno
. (10)

Solving Equation (10) for Rc (the only unknown variable) is a simple task for iterative
computing software such as Mathematica’s FindRoot or Mathcad’s Find. As long as the
initial guess root is kept within its physically meaningful range, 0 < Rc < 1, the solu-
tion is always unique and unambiguous. Substituting the measured value of θc and the
numerically retrieved value of Rc in g1(θc, Rc) yields the real index of the lossy sample.

The procedure described has a straightforward graphical interpretation. Let us con-
sider the measurement of a critical angle, for example, θc = π/4, so that one can refer to
Figure 2. An a priori known value of the extinction coefficient (equivalently, ni) defines
a unique horizontal line that crosses the isoangular curve at a single point; locating its
position is equivalent to numerically computing the value of Rc. The abscissa of that point
is the real index of the lossy medium.

3.2. Critical Reflectance Error

The formalism of Section 2 enables the calculation of nr from the values of θc and
Rc. The method, introduced in Section 3.1, retrieves the numerical value of Rc from
the extinction coefficient (when the extinction coefficient is already known) instead of
its direct measurement. To better appreciate the advantage of the proposed method,
one has to remember that the experimental error of a direct reflectance measurement is
typically greater than 10−2. Breaking this threshold does not seem possible with standard
unstabilized laser sources of moderate cost, such as those used in common refractometers.
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Let us now show that the propagated error, δRc, of the numerically retrieved Rc can be
kept below the 10−2 threshold. To this end, one accounts for the fact that Rc is numerically
computed from input values of θc and µ, or equivalently, θc and ni, which are assumed to
be independent variables, so that the covariance between them can be taken to be zero.
Therefore, propagated error δRc conveys corresponding experimental errors δθc and δni:

δRc =

√(∂Rc

∂θc
· δθc

)2
+
(∂Rc

∂ni
· δni

)2
. (11)

Critical reflectance, Rc, is not expressed explicitly as a function of θc and ni. In-
stead, Equation (10) can be restated in the implicit form: F(θc, Rc, ni) = F(g2(θc, Rc), ni) =
g2(θc, Rc)− ni/no = 0. Then, the derivatives in Equation (11) can be obtained using the
implicit function theorem:

∂Rc

∂θc
= −

(
∂F
∂θc

)/( ∂F
∂Rc

)
= −

(
∂g2

∂θc

)/( ∂g2

∂Rc

)
, (12)

and
∂Rc

∂ni
= −

(
∂F
∂ni

)/( ∂F
∂Rc

)
=

1
no

/( ∂g2

∂Rc

)
. (13)

Moreover, one can introduce the relative error, σµ, which is related to δni and δµ:

σµ =
δµ

µ
=

δni
ni

=
δni

g2 · no
. (14)

Substituting Equations (12)–(14) into Equation (11) yields:

δRc =

∣∣∣∣ ∂g2

∂Rc

∣∣∣∣−1
√(

∂g2

∂θc
· δθc

)2

+ (σµ · g2)2. (15)

Values of g2 and its two partial derivatives that appear in Equation (15) can be easily
computed for any pair (θc, Rc). Therefore, error δRc can be estimated as a function of
the variables θc, Rc, δθc, and σµ. Numerical investigation reveals that δRc is practically
independent of δθc, at least when this parameter is kept within its reasonable range,
20 µrad ≤ δθc ≤ 100 µrad. This observation reflects the easily verifiable fact that

∂g2

∂θc
· δθc � σµ · g2, (16)

which reduces Equation (15) to the approximate form:

δRc ≈
∣∣∣∣ ∂g2

∂Rc

∣∣∣∣−1

· σµ · g2, (17)

and narrows δRc down to a function of only three variables, namely, of θc, Rc, and σµ.
Figure 3 shows the results of calculations of δRc versus σµ for indicative values

θc = π/4 and Rc = 0.5: the solid line, produced via the exact Equation (15). In agreement
with the approximate Equation (17), δRc is not affected by δθc and increases linearly with
σµ, which is taken within the range 0.1% ≤ σµ ≤ 10%. One can observe that δRc ≈ 10−4

(or 10−3) when σµ ≈ 0.1% (1%), indicating that critical reflectance error can be two (one)
orders of magnitude smaller than the 10−2 threshold, when Rc is numerically retrieved
from the a priori known extinction coefficient.
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Figure 3. Solid line: error in the numerical determination of the critical reflectance, δRc, as a function
of the exstinction coefficient relative error, σµ. Calculations are based on Equation (15) for θc = π/4
and Rc = 0.5. Dashed lines: relative error, δnr/nr, as a function of σµ for the same pair of θc and
Rc values; δθc varies from 100 via 50 to 20 µrad, as indicated. Calculations result from substituting
Equation (15) into Equation (4).

3.3. Real Index Error

The relative error, δnr/nr, can be computed as a function of the variables θc, Rc, δθc,
and σµ by substituting Equation (15) into Equation (4).

Figure 3 shows δnr/nr versus σµ for θc = π/4 and Rc = 0.5: the dashed lines
correspond to δθc = 100, 50 and 20 µrad, as indicated. The error lines become horizontal
for small σµ at a constant value δnr/nr ≈ δθc/ tan θc (in this example, tan θc = 1). In the
horizontal region, the relative real index error is practically equal to that of a transparent
sample (cf. Equation (2)). This observation alone proves that refractometry with lossy
media can be as precise as the refractometry with transparent ones, provided that the
extinction coefficient is a priori known with sufficient accuracy. The horizontal regions
terminate at a maximum permissible σµ, above which δnr/nr continues to increase beyond
the transparency limit. In the example considered, this transition occurs in the vicinity
of σµ ≈ 1% when δθc = 20 µrad, at σµ ≈ 2% when δθc = 50 µrad, and at σµ ≈ 4% when
δθc = 100 µrad.

Note that the upper and lower dashed lines in Figure 3 flatten out at δnr/nr ≈ 10−4

(when δθc = 100 µrad) and δnr/nr ≈ 2× 10−5 (when δθc = 20 µrad). These levels match
the specifications of modern refractometers operating with transparent samples, which
typically prescribe an error δn/n between ∼10−4 (standard precision) and ∼2 × 10−5

(ultimate precision) [32].
As a final exercise, let us consider the refractometric measurement of a lossy sample

with nr = 1.5 by use of a reference front medium with no = 2, so that nr/no = 0.75.
With these assumptions, as given, it is straightforward to calculate the magnitude of σµ

that is required to reach (i) the ultimate precision δnr/nr ≈ 2× 10−5, assuming that the
refractometer measures critical angles with an ultrahigh accuracy δθc = 20 µrad, and (ii) a
standard precision δnr/nr ≈ 10−4, with a more tolerant δθc = 100 µrad. The calculations
are shown in Figure 4 by solid and dashed lines, respectively.
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Figure 4. Maximum permissible relative error, σµ, as a function of ni for ultimate refractometric
precision δnr/nr = 2× 10−5, when δθc = 20 µrad (solid line), and standard refractometric precision
δnr/nr = 10−4, when δθc = 100 µrad (dashed line). A sample with nr = 1.5 and a prism with no = 2
are considered.

Therein, one observes a general trend: the maximum permissible σµ decreases with
increasing ni. This trend clearly indicates that the need for accurate measurements of the
extinction coefficient is more acute when optical loss is growing. There is one exception to
this, which manifests itself as a characteristic sharp peak at larger ni. This peak reflects the
vertical slope of the isoangular curve at the turning point, see Figure 2. Quite naturally, σµ

is found increasing again at the transparent limit, where the slope of the isoangular curve
is again nearly vertical. Likewise, σµ decreases rapidly for larger ni after the peak because
the slope of isoangular curve above there is zero

To better understand the interpretation made, let us point that a vertical slope in
Figure 2 suggests that small enough change in the imaginary index causes zero shift to the
real index. Similarly, a horizontal slope suggests that small change in the imaginary index
causes a maximum shift in the real index. Hence, the real index error minimizes (and the
maximum permissible σµ maximizes) as soon as the slope turns vertical, and vice versa.

Meantime, the most important observation in Figure 4 is that the real index of the
sample can be measured with an extreme precision, δnr/nr ≈ 2× 10−5, as long as ni < 10−1

and σµ ≈ 0.1% (solid line). Note that although being strict, this situation is indeed
realistic. For example, the extinction coefficient of water has been measured with a relative
error even less than 0.1% near its infrared absorption peak (at λ = 1410 nm), where
ni = 2.3675× 10−4 [21]; see discussion in Section 3.4 below. This is also possible with
a much more lax σµ ≈ 1% for all ni < 10−2. An adequate for many applications error
δnr/nr ≈ 10−4 is reached with σµ ≈ 4% for all ni < 4 × 10−2 (dashed line). These
observations illustrate the functionality of the proposed method with all but the most
extremely attenuating media.

3.4. Comments on Implementation Issues

The proposed method involves the tandem use of two instruments. The first de-
termines the reflectance profile at the sample’s interface with a prism; prism coupling
refractometers operate routinely in various laboratories and they are also commercially
available; see, e.g. Metricons’s 2010/M model. The second measures the sample’s extinc-
tion coefficient. Collimated transmittance setups (typically, homemade) suit ideally this
purpose; see, e.g., [21,26,27]. The corresponding operating principle is straightforward.
The transmitted portion of a collimated light beam, travelling through sample sections of
variable length, is monitored; the extinction coefficient is then deduced by fitting experi-
mental results to the known Lambert-Beer law. This technique is commonly used for fluids
where liquid cells of different sizes facilitate tuning of the path length. The technique is
also applicable for solid samples, provided that slices of variable thickness can be cut.
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This tandem measurement is actually known. In [21], the (real) refractive index and
the extinction coefficient of several types of liquids, including water, were measured by the
combined use of critical angle refractometetry and collimated transmittance spectroscopy.
Unaware of the attenuated-TIR condition (Equation (3)) at that time, the standard TIR law
of transparent media (Equation (1)) was exploited in [21] to determine the real index. Let
us see, through a didactic example, how the method, proposed in this paper, adjusts those
results.

Let us start by selecting the reported data for water at a wavelength λ = 1410 nm, where
the extinction coefficient, µ = 21.1 cm−1, was measured [21] translating via Equation (9) into
the imaginary index, ni = 2.3675× 10−4. The relative error in this measurement was as
small as σµ = 0.05%. Using an SF13 glass prism with no = 1.7068, the real index was
approximated by the standard TIR condition, leading to the value nr = 1.3183, which,
given the index of the prism, corresponds to the critical angle θc = 50.568◦.

Using the required input pair (θc = 50.568◦, µ = 21.1 cm−1), the method, proposed
in the current paper, yields, first, the critical reflectance Rc = 91.99% and, then, the real
index of water, corrected to a new value, nr = 1.31842. The correction from the previous
estimate (nr = 1.3183) is relatively modest, while non negligible for applications requiring
high accuracy. The modest correction effect is expected (cf. Figure 2), since the imaginary
index in our example just exceeds 10−4; it would have been much stronger, had the sample
been more attenuating.

Using Equation (15), the prescribed σµ = 0.05% value, combined with an assumed
error in the measurement of critical angle, 20 µrad ≤ δθc ≤ 100 µrad, leads to a propagated
error in the numerical estimation of the critical reflectance within δRc ≈ 0.002%. Such
an accuracy is surely orders of magnitude higher than the ∼1% uncertainty with which
critical reflectance can be directly measured. This finding manifests the main advantage of
the method here described. Then, within the same δθc range, this method yields the real
index with an error of 2× 10−5 ≤ δnr ≤ 1× 10−4, the latter calculated as it is described in
Section 3.3. It is worth noticing the compliance of this result with Figure 3.

4. Conclusions

In this paper, the universal attenuated total internal reflection (a-TIR) condition is
exploited in order to accurately determine the real part of the refractive index), nr, of
lossy media from the critical incidence angle, θc, at s-polarisation given the extinction
coefficient, µ. This is accomplished in a two-step procedure. First, the critical reflectance,
Rc, is numerically retrieved from the pair (θc, µ). Then, the real index is calculated from θc
and Rc.

Numerical investigation reveals that Rc can be recovered (in the first step) more
accurately than it can be directly measured. As a consequence the determination of the real
index (in the second step) becomes more precise. The relative error, δnr/nr, can be reduced
down to 2× 10−5 when the respective error in the independent measurement of µ is in the
range of 0.1% to 1%.

The results, obtained here, demonstrate that refractometry of lossy media can be as
precise as with transparent media, a development that is of interest to various applications
in biomedical optics, material characterisation, analytical chemistry and quality control.
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