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Abstract: Using the model based on the Regge-like laws, new analytical formulas are obtained for the
moment of inertia, the rotation frequency, and the radius of astronomical non-exotic objects (planets,
stars, galaxies, and clusters of galaxies). The rotation frequency and moment of inertia of a neutron
star and the observable Universe are estimated. The estimates of the average numbers of stars and
galaxies in the observable Universe are given. The Darwin instability effect in the binary systems
(di-planets, di-stars, and di-galaxies) is also analyzed.
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1. Introduction

The Regge theory [1–3] proved to be very influential in the development of elementary
particle physics [4]. It is based on the analytical continuation of quantum mechanical
scattering amplitude into the complex angular space [2]. The scattering amplitude is pre-
sented as a power function. As known, one of the most important properties of elementary
particles is their ability to have an innate proper spin. The observed correlation between
the spin and mass of hadrons shows that the heavier the hadron, the greater the spin it
can have. It was revealed that the strongly interacting particles have a simple dependence
of the mass on the angular momentum: the particles fall into families where the Regge
trajectory functions are straight lines. The relation between the maximum spin, S, and
mass, M, for all known hadrons and hadron resonances is given by a rectilinear Regge
trajectory in the doubly logarithmic plane log10(M) vs. log10(S) (the Chew–Frautschi plot),
which for large spin values can be represented as [3]:

S = h̄
(

M
mp

)2
, (1)

where h̄ and mp are the reduced Planck constant and the mass of proton, respectively.
In References [5–9], the relations, found with the Regge approach for quantum objects,

have been applied to the macroscopic composite systems. As shown in References [5–9],
in the general case of an n–dimensional astrophysical object, the relation between spin S
and mass M of the object is the following:

S = h̄
(

M
mp

)1+1/n
. (2)

The quasi-classical expression (2) has been derived from simple dimensionality con-
siderations and the requirement of similarity with Equation (1) [5–9]. As seen, for the
one-dimensional case, n = 1, Equation (2) turns into Equation (1). In contrast to earlier
semi-phenomenological approaches, the expressions (1) and (2) contain only fundamental
constants as the parameters and are independent of any fitted empirical quantities.
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The application of Regge ideas to astrophysics has shown that the spins S of planets
and stars are well described by the Regge-like law for a sphere, S ∼ M4/3, n = 3, while
the spins of galaxies and clusters of galaxies obey the Regge-like law for a disk, S ∼ M3/2,
n = 2 [5–9]. The proposed simple Regge-like law allows us to obtain reasonable numerical
values for spins of cosmic objects in a self-consistent manner, starting from planets and
ending with the astronomical Universe as a whole, in an extremely wide range of masses
(30 orders of magnitude) and spins (50 orders of magnitude) [5–9]. Using Equation (2),
one can also obtain important formulas for the exotic neutron star and the observable
Universe, which are related, respectively, to the two important cosmological Eddington
and Chandrasekhar points on the cosmic analog of the Chew–Frautschi plot [8–10]. In
addition, References [5–9] offer an explanation of the origin of cosmic objects and their
rotation in the framework of the concept of Regge trajectories and the Ambartsumian
cosmogony [11,12]. In References [13–15], an analogy has been observed between the
behavior of hadrons in strong interactions at large distances and gravity. This property
arises due to the possibility of exchanging a colorless combination of two-gluon with spin
2, simulating a graviton [15]. One can also indicate a less phenomenological lines of such
type researches [16–20].

The aim of the present paper is to obtain the analytical expressions for the moment of
inertia, the rotation frequency, and the radius of celestial objects and to study the Darwin
instability effect in a binary star or binary galaxy [21] by using the model of References [5–9],
based on the concept of Regge trajectories.

2. Planets, Stars, Galaxies, and Clusters of Galaxies

Let us consider the individual astronomical objects such as planets, stars, galaxies,
and clusters of galaxies. The general virial theorem reads:

U = −2(Ek + Vr), (3)

where U = −ωGM2/R is the gravitational potential with the Newtonian constant of
gravitation, G, the radius, R, and the dimensionless structural factor, ω of the object.
The value of Ek includes the kinetic energy of both the thermal motion of particles and
the macroscopic motions of matter (caused by pulsations, convective currents, etc.), with
the exception of the rotation energy, Vr = S2/(2=) of the object. The dimensionless
structural factor,

ω =
∫ 1

0
dqx

qx

x
, (4)

is determined by the density profile, ρ(r), of the object. Here, x = r/R, and

qx = Mx/M =
∫ r

0
dr′r′2ρ(r′)/

∫ R

0
dr′r′2ρ(r′) ,

are the fraction of the radius and the mass fraction, respectively, of the object at a distance
r from the center of the object. Note that as soon as qx ≤ 1, one has ω ≥ 1/2. For the
homogeneous density distribution, ω = 3/5. If the concentration of matter indefinitely
increases to the center of the object, then ω = 99/125 ≈ 0.8. The structure of main sequence
stars is rather well distributed by polytropes of indexes n0 from 1.5 to about 3.5 and
corresponding structural factors, ω = 3/(5− n0), from 6/7 to about 2.

Using Equations (2) and (3), and the observed scaling law,

R = αMm (5)
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between the radius, R, and the mass, M, of object (α and m are constants), one obtains the
expression for the moment of inertia:

= = − S2

U + 2Ek
=

h̄2α

ωGM2−m − 2αEk

(
M
mp

)2+2/n
. (6)

On the other side,

= =
S
Ω

=
h̄
Ω

(
M
mp

)1+1/n
. (7)

Assuming that the rotational frequency, Ω, is a function of mass M (γ and d are
constants),

Ω = γMd, (8)

and using Equations (6) and (7), one can derive the following relation:

m = 1− 1
n
− d, (9)

connecting the constants m and n, or the radius-mass relation

R = αM1−1/n−d, (10)

and the new experssions:

Ek = β

(
M
mp

)1+1/n+d
, (11)

= =
h̄2α

ωGm1+1/n+d
p − 2αβ

(
M
mp

)1+1/n−d
, (12)

γ =
ωGm1+1/n+d

p

h̄α
− 2β

h̄
. (13)

As one can see from Equation (13), the value of γ has the dimension of frequency and,
correspondingly, d = 0 in Equation (8). Then, Equations (8)–(13) read:

m = 1− 1
n

, (14)

R = αM1−1/n, (15)

Ek = β

(
M
mp

)1+1/n
, (16)

= =
h̄2α

ωGm1+1/n
p − 2αβ

(
M
mp

)1+1/n
, (17)
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and

Ω =
ωGm1+1/n

p

h̄α
− 2β

h̄
. (18)

The value of β in Equation (16) is the constant that can be extracted from the observed
data of Ω, α, and ω. As it is seen, the moment of inertia (17) depends on the dimension n
of the object, the classical and quantum fundamental constants G, h̄, mp, the dimensionless
structural factor ω. The constants α and β are determined from the observed data. The
Regge-like spin-mass Equation (2), the moment-of-inertia-mass Formula (17) (or (7)), and
the radius–mass Relation (15) contain the same quantity n, which means that they are
related to each other. One should stress that the constants α, β, and ω for planets, stars,
galaxies, and clusters of galaxies differ one from another.

Equations (2), (17), and (18) can be generalized by making the substitution h̄→ Dh̄,
where D is a constant. However, as it is shown in References [5–9], spins of planets, stars,
galaxies, clusters of galaxies, neutron stars and the observable Universe (see Section 3
below) are well described with D = 1.

For star-like and planet-like objects with n = 3, Equation (9) leads to m = 2/3 and,
then,

R = αM2/3, (19)

which is in perfect agreement with the observational data for the main sequence stars [22–28].
For main sequence stars, α = R�/M2/3

� , where R� and M� are the radius and the mass of
the Sun [29–31]. From Equation (12), one gets:

= ∼ M4/3. (20)

For galaxy-like or a cluster of galaxy-like object with n = 2: m = 1/2 (see Equation (9)),
and:

R = αM1/2 (21)

from Equation (10), and

= ∼ M3/2 (22)

from Equation (12). Note that the derived m = 1/2 is within the observational range of
m of 2/5 to 2/3 [32]. For the galaxy-like objects, the definition of the constant α from the
observational data is given in References [33,34].

3. Neutron Star and Observable Universe

The Kerr maximal spin of the rotating black hole reads:

S =
GM2

c
= h̄

(
M

mPl

)2
= h̄

(
M
mp

)2
I−1, (23)

where c is the speed of light in vacuum, I = h̄c/(Gm2
p) = 1.69× 1038 is the dimensionless

combination of fundamental constants, and mPl = (h̄c/G)1/2 = mp I1/2 = 1.3× 1019mp =
2.18× 10−8 kg is the Planck mass [9]. Equating Equations (2) and (23), one can derive the
Chandrasekhar mass,

MC = mp I3/2 (24)

for n = 3, and the Eddington mass,

ME = mp I2 (25)
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for n = 2. The resulting masses MC = 2.20× 1057mp = 3.46× 1030 kg and ME = 2.87×
1076mp = 4.80× 1049 kg correspond to the Chandrasekhar limiting mass of a degenerate
neutron star and the Eddington limiting mass of the observable Universe, respectively [8,9].
As seen, the neutron mass MC is close to the mass of the Sun, M� = 1.99× 1030 kg.

Taking for the average masses of stars and galaxies in the Universe, respectively,
the masses of the Sun and our Galaxy (MG = 3.38× 1041 kg), and using Equation (25), one
can roughly estimate the average number of galaxies,

Ngalaxy ≈
ME

MG
≈ 108,

and average number of stars,

Nstar ≈
ME

M�
≈ 1019,

in the observable Universe.
Substituting Equations (24) and (25) into Equation (2) leads to the limiting spins:

SC = h̄I2 (26)

for the neutron star, and

SE = h̄I3 (27)

for the observable Universe. Equation (27) predicts the rotation of the entire astronomical
Universe as a whole with the spin SE = 2.87 × 1076h̄ = 5.12 × 1080 J·s [8,9]. For the
comparison, SC = 2.20× 1057h̄ = 3.03× 1042 J·s. Employing the theoretical radius–mass
relation,

R = GM/c2 , (28)

of the rotating black hole, and Equations (24) and (25), one derives [10] the radius of
neutron star:

RC = rp I1/2 , (29)

and the radius of the observable Universe:

RE = rp I, (30)

where the factor rp = h̄/(mpc) = 2.10× 10−16 m is the proton radius. The calculated radii
(29) and (30) are: RC = 1.30× 1019rp = 2.74× 103 m, and RE = 1.69× 1038rp = 3.56× 1022

m. For comparison, the radius of the Sun is R� = 6.99× 108 m. The equality [9]

SE

R3
E
=

h̄
r3

p
(31)

follows from Equations (27) and (30), and implies that the spin densities of the proton and
the Universe are the same within a factor of two.

Employing Equations (29) and (30), one obtains the following rotational frequencies
for a neutron star and the observable Universe (ωp = c/rp = 1.43× 1024s−1):

ΩC =
c

RC
=

c
rp

I−1/2 = 7.68× 10−20 c
rp

= 1.10× 105s−1, (32)

ΩE =
c

RE
=

c
rp

I−1 = 5.90× 10−39 c
rp

= 8.43× 10−15s−1. (33)
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Note that
ΩC

ΩE
=

RE

RC
=

ME

MC
=

(
SE

SC

)1/2
= I1/2 = 1.3× 1019.

The corresponding moments of inertia, =C = 2.76× 1037 J·s2 and =E = 6.08× 1094

J·s2, are calculated as follows

=C =
SC

ΩC
=

h̄rp

c
I5/2, (34)

=E =
SE

ΩE
=

h̄rp

c
I4, (35)

where h̄rp/c = 7.39× 10−59 J·s2. Note that

=E

=C
=

(
ΩC

ΩE

)3
=

(
RE

RC

)3
=

(
ME

MC

)3
=

(
SE

SC

)3/2
= I3/2 = 2.2× 1057.

From Equations (3), (23), and (28), one obtains:

=C,E =
S2

C,ERC,E

ωC,EGM2
C,E

=
MC,ER2

C,E

ωC,E
.

From comparing these equations with Equations (34) and (35), it follows that the
dimensionless structural factors for the neutron star and the observable Universe are equal
to the unity, ωC = ωE = 1, and Ek = β = 0. Surprisingly, the moments of inertia (34)
and (35) are larger than corresponding rigid-body moments of inertia.

Counting the average age of the Universe on the order of 14 billion years and using
Equation (33), one derives a numerical value of the angular velocity of rotation of the
Universe:

ΩE = 4× 103 1
age− of−Universe

. (36)

In other words, the total rotation time of the observable Universe is approximately 107

years, which is about 103 times less than the average age of the Universe. In Reference [9],
the estimated frequency estimate is about six orders of magnitude less than the value given
by Equation (36) due to the difference in the moments of inertia used in the calculations.

4. Darwin Instability Effect in Binary Systems

Now let us apply the Regge-theory to the astronomical compact binary systems. When
the mass ratio in the compact binary star is extreme enough for the Darwin instability [21],
a merger of the binary components starts that triggers the outburst in a red nova [35].
The Darwin instability happens when the spin of the system is more than one-third of
the orbital angular momentum. This instability plays a role once the mass ratio becomes
small enough that the companion star can no longer keep the primary star synchronously
rotating via the tidal interaction. The angular momentum transferred from the binary orbit
to the intrinsic spin changes the orbit and leads to a runaway. For most of the massive
primary stars, this occurs at the mass ratio q = M2/M1 < 0.1 [36].

The total angular momentum, J, of the binary system is the sum of the orbital angular
momentum, L, and the spins, Sk, k =1, 2, of the individual components:

J = L + S1 + S2. (37)
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The J and Sk are expressed using the Regge-like laws [5,8,9]:

J = h̄
(

M
mp

)1+1/n
, (38)

and

Sk = h̄
(

Mk
mp

)1+1/n
, (39)

where Mk, k =1, 2, and M = M1 + M2 are masses of the binary components and the total
mass of the system, respectively. Then, the maximum (the antiparallel orbital and spin
angular momenta) and minimum (the parallel orbital and spin angular momenta) orbital
angular momenta are:

Lmax = J + S1 + S2, (40)

and

Lmin = J − S1 − S2, (41)

respectively. Using Equations (37)–(41), one derives:

S1 + S2

Lmin
=

1 + q1+1/n

(1 + q)1+1/n − q1+1/n − 1
, (42)

and

S1 + S2

Lmax
=

1 + q1+1/n

(1 + q)1+1/n + q1+1/n + 1
. (43)

For q = 1 (symmetric binary system) and n > 1, one has:

S1 + S2

Lmin
=

1
21/n − 1

> 1,

and
S1 + S2

Lmax
=

1
21/n + 1

>
1
3

.

For a symmetric binary star or binary planet (n = 3), or binary galaxy (n = 2) with
q = 1, (S1 + S2)/Lmax ≈ 0.44 and 0.41, respectively. At q→ 0:

S1 + S2

Lmin
→ ∞,

and
S1 + S2

Lmax
→ 1

2
.

As follows from these two expressions, for a very asymmetric binary system, the ratios
(S1 + S2)/Lmax,min are almost independent of the value of n. According to Reference [36],
the Darwin instability can occur when the binary mass ratio is very small (q < 0.1) or the
mass asymmetry is very large. The ratios (S1 + S2)/Lmax and (S1 + S2)/Lmin, continuously
increase with decreasing q from 1 to 0. As soon as the absolute values of the ratios are larger
than 1/3, all possible binary stars or binary planets, or binary galaxies, independently of
their mass ratios q, have to have the Darwin instability (S1 + S2 ≥ L/3) [21] and, hence, to
merge. However, the observations do not support this conclusion which probably means
that there is no Darwin instability effect in such binary systems and, then, the mechanism
of merging has other origins to be searched for.
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As follows, in the cases of antiparallel spins with L12 = J + S1 − S2 and L21 =
J−S1 +S2, the ratios |S2−S1|/L12 and |S1−S2|/L21 are larger than 1/3 for the asymmetric
binaries with q ≤ 1/3 [37].

5. Summary

Within the model [5–9], based on a concept of Regge trajectories, new analytical
expressions for the moment of inertia, the rotation frequency, and the radius of astronomical
objects (stars, planets, galaxies, and clusters of galaxies) are derived. The moment of inertia
is found to depend on the total mass, the dimension of the object, the dimensionless
structural factor, the classical, the quantum fundamental constants such as the Newtonian
constant of gravitation, the reduced Planck constant and the mass of proton, and the two
constants to be extracted from the observed data.

The expressions for the rotation frequencies, and moments of inertia, of neutron
star and the observed Universe are derived. The estimate of the speed of rotation of the
Universe is found to be of about (5–7) orders of magnitude larger than that of estimates.
The rotation time of the observable Universe is found to be about 107 years. The estimated
average numbers of galaxies and stars in the observable Universe are obtained to be ∼ 108

and ∼ 1019, respectively.
Employing the Regge-like laws, it is also shown that all possible binary stars (binary

planets) or binary galaxies satisfy the Darwin instability condition, which contradicts the
observations. This conclusion is not sensitive to the parameters of the model. Therefore,
other possible mechanisms that trigger the merger of the contact binary components to be
searched for.
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