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Abstract: The instability of traveling pulses in nonlinear diffusion problems is inspected on the
example of Gunn domains in semiconductors. Mathematically, the problem is reduced to the
calculation of the “energy” of the ground state in the Schrödinger equation with a complicated
potential. A general method to obtain the bottom-part spectrum of such equations based on the
approximation of the potential by square wells is proposed and applied. Possible generalization of
the approach to other types of nonlinear diffusion equations is discussed.
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1. Historical Remarks

When the Editors kindly offered me to submit a paper to this Special Issue dedicated
to my fifty years in physics, I began to think about a possible topic of the paper. Finally, I
decided that the best is to generalize the results of my very first paper [1], which formally
was published exactly fifty years ago. I said “formally” because actually this paper has
never been published. Perhaps, its story is so remarkable that it is worth telling it here.

The point is that though I graduated from the Lomonosov Moscow State University
(MSU)—the one where now I head a laboratory—I did not enter this university in the
usual, standard manner. It so happened that the university I entered was the Belorussian
State University (BSU) in Minsk. Now, Minsk is the capital of independent state Belarus,
while, at that time, Minsk and Moscow both belonged to a single state: the Soviet Union.
In Minsk, I met my first scientific adviser Mikhail Aleksandrovich El’yashevich [2].

Then, upon completing my first two university years in Minsk, I moved to Moscow.
Thus, I became a student of MSU due to my transfer from BSU. Just one letter difference
in the names meant the drastic difference in the ranks. Though BSU was quite a good
university, MSU was (and is) the Number One.

Doing paperwork related to the transfer, I asked El’yashevich for a reference letter to
one of his collaborators in Moscow. I then obtained a letter to his former Ph.D. student
Sergei Ivanovich Anisimov [3], who became my next scientific adviser.

It was 1969. At that time, I could not even imagine how lucky I was. Anisimov was
employed by the Landau Institute for Theoretical Physics. The Institute was created just five
years ago to collect “under a single roof” the first generation of Lev Davidovich Landau’s
disciples [4]. By the time I am talking about, all of them had become first magnitude stars
in the scientific sky.

Thus, suddenly and almost by chance, I became embedded in the scientific atmosphere
representing the very top of theoretical physics in the USSR, and I would say in the entire
world too. Moreover, I had even more good luck, though, I did not know it yet: In the
very same year of my transfer to MSU, a prominent theoretical physicist Il’ya Mikhailovich
Lifshits [5] succeeded the late Landau’s position of the Head of the Theoretical Physics
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Department at the Kapitza Institute [6]. To this end, he moved to Moscow from Khar’kov (a
big Ukrainian city), where he resided before. In addition to this position, Il’ya Mikhailovich
got a professorship at the Chair for Quantum Theory, the Faculty of Physics, MSU. By that
time, another employee of the Landau Institute and a disciple of Il’ya Mikhailovich, namely,
Mark Yakovlevich Azbel [7], already shared his position at the Landau Institute with a
professorial position of this Chair. The second disciple of Il’ya Mikhailovich, who came
from Khar’kov to Moscow and became a Professor of the same Chair, was Moisei Isaakovich
Kaganov. Among other scientific accomplishments of this group was the galvanomagnetic
theory of electrons with an arbitrary dispersion law. The theory describes the effects
of both electric and magnetic fields acting together on free electrons in metals. In this
theory, electrons are regarded as quasi-classical particles, but, instead of the conventional
dependence of the energy on (quasi)momentum ε(p) = p2/(2m), this dependence may be
arbitrary. The theory was a breakthrough in quantum solid-state physics, and was named
after its creators—the LAK theory (Lifshitz, Azbel, Kaganov).

There is an interesting story related to this abbreviation. When another one of Landau’s
disciples, Alexander Solomonovich Kompaneetz, known, in addition to his outstanding
scientific results, for his sense of humor, leant about LAK theory, he said, “It is excellent
that the authors did not employ the inverted order of them.” The joke is that kal in Russian
means excrements.

To complete my description of the Chair for Quantum Theory, I should add that it
was headed by one of the most prominent experts in theoretical physics, a very respectable
person with the highest moral standards, Academician of the Soviet Academy of Sciences,
Mikhail Aleksandrovich Leontovich [8]. Alas, all of them have already passed away.

In 1969, I knew nothing about these people and the Chair, but Anisimov did know.
Therefore, when I asked his advice about the specific Chair at the Faculty of Physics for my
specialization, he immediately replied, “The one where I.M. Lifshitz is a Professor.” I took
his advice and applied for the specialization at this Chair. Once again, I was lucky — my
application was approved, and in addition to the excellent external scientific environment
at the Landau Institute, I benefited from that at the Chair for Quantum Theory.

Soon after my appearance at the Chair, I began to attend lectures on the quantum
theory of metals given by Kaganov. Bearing in mind that Kaganov was a brilliant lecturer,
it is easy to understand that I admired the beauty of the lectures and that of the theory
as a whole. Thus, it is easy to understand that, when Anisimov asked me about the
preferences for the topic of the future study, my reply was, “Something from quantum
solid-state physics”.

It is worth mentioning that, at the time, I did not have any idea about the specific
subfield, where the accomplishments of Anisimov lay (namely, laser–matter interaction,
physical hydrodynamics, shock waves, plasma physics, and the like). Fortunately, he
was a physicist with broad interests and understood physics far beyond the frames of his
own subfield. It was a typical feature of physicists from the Landau Institute originated
by Landau himself: Broad knowledge helps to see cross-links between different, seem-
ingly unrelated, problems. This, in turn, sometimes helps to obtain very beautiful and
unexpected results.

Then, according to my desire, Anisimov posed me a problem from quantum solid-state
physics. It was related to the Gunn effect in semiconductors [9]. At that time, the effect
was a fascinating, challenging topic, and, up to now, it still attracts a great deal of attention
from researchers [10–15].

Naturally, now the understanding of the effect is more profound, and its mathematical
description is much more elaborated than it was 50 years ago; see, e.g., Ref. [16]. However,
since the goal of this paper is to generalize the methods and results discussed in Ref. [1],
making them applicable to a broad class of related problems, rather than to inspect specific
peculiarities of the Gunn effect itself; in what follows, I stick to the old model of the
effect [17] employed by Knight and Peterson [18] and then, in my paper [1].
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Very briefly, the essence of the phenomenon is as follows. In a strong enough electric
field, E, applied to a semiconductor, the conductivity of the sample depends on E, and
the current–voltage curve becomes nonlinear. In some cases, calculations based on the
assumption of the spatially homogeneous distribution of the current density, j, and E along
and across the sample give rise to very unusual behavior of this dependence so that, in a
certain area of the E values, an increase in E results in a decrease in j.

In what follows, only one-dimensional cases will be considered, so I can replace
j(E)→ j(E). Then, by definition, the conductivity σ = j/E. Let us define the differential
conductivity as σd = dj/dE. Thus, the area mentioned above is characterized with a
negative differential conductivity. Here, I will not discuss the microscopic mechanisms
explaining the negativeness of σd; a detailed description may be found, e.g., in Ref. [19].
Further increase in E makes σd positive again so that the overall shape of the current–
voltage curve resembles letter "N”, see Figure 1.

E1 E2Ec1

j

jc1

jext

jc2

Ec2 E3 E

Figure 1. A letter-N-shape current–voltage characteristics obtained under the assumption that
electric field E = const along and across the sample: the differential conductivity, σd is negative at
Ec1 < E < Ec2.

It occurs that the assumption about the spatially uniform distribution of j and E in
the regions with σd < 0 is erroneous. This distribution is unstable against small spatially-
inhomogeneous perturbations and, eventually, is destroyed owing to their growth. In
certain cases, the instability ends up forming a strong field domain bounded by the cor-
responding layers of charge density. The domain drifts along the sample with a constant
speed until it hits the sample edge (anode). The domain disintegrates there, a new one
emerges at the opposite side of the sample, and the process repeats. As a result, oscillations
with the period L/v are generated. Here, L stands for the sample length and v is the drift
speed of the domain. This is the Gunn effect [9]. It is successfully used in Gunn diodes to
generate microwave oscillations [19].

Let us consider an idealized case of a single traveling strong-field Gunn domain
drifting with a constant velocity along an infinitely-large sample. The “strong-field domain”
means that the field outside it equals E1 (see Figure 1), while inside the domain, it is greater
than that. Then, if the voltage applied to the sample is constant, the single domain with a
fixed shape is stable, while a configuration with several domains is not. However, if an
external source fixes the current in the sample, even the single domain becomes unstable.
The instability affects the faces of the domain, which begin to move in opposite directions
with respect to the center of the traveling domain. If they move to each other, the domain
contracts and, eventually, collapses. If the faces move in the opposite direction, the domain
expands and transforms into two traveling layers [19].

Linear analysis of this secondary instability of a single traveling domain at a fixed
current in the circuit was performed by Knight and Peterson [18]. Mathematically, the
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stability problem was reduced to the calculation of a gap between the ground and the first
excited states in the one-dimensional Schrödinger equation with a complicated potential
(see below). To this end, Knight and Peterson employed the Wentzel-Kramers-Brillouin
(WKB) approximation. However, this approximation is accurate for highly excited states
when the characteristic spatial scale of the wave function oscillations is small relative to
the one for the variations of the potential. This is not the case for the ground state. Hence,
the accuracy of the results obtained in Ref. [18] through the WKB method, at least, was
questionable. The problem, posed for me by Anisimov, was to check the results of Knight
and Peterson employing for the calculations an approximation different from WKB.

If I faced this problem now, quite probably, I would have used the Ritz method
supplemented by the orthogonality condition of the wave functions of the ground and
excited states [20]. However, at that time, I was much more ignorant than I am now.
Therefore, instead of taking a simple, known way (perhaps, at that time, it was neither
simple nor known for me), I decided to go on my own one. Specifically, I decided no less
than to find a new method to obtain approximate solutions to the Schrödinger equation
opposite to the WKB-method, which could be suitable for the ground and low-excited
states. Furthermore, I succeeded in doing that! So, maybe, ignorance is not always bad.

The main idea of the developed approach is somewhat unusual for quantum me-
chanics, where approximations conventionally are targeted to a wave function, while
the potential is given and fixed. However, if one has ground and low-excited states in a
complicated potential, the potential has a sharply varying profile relative to that of the
wave functions, and the latter is not very sensitive to the fine details of the former. If so,
why does one not try to approximate the potential, with some simple shapes, say, with
square wells? Then, the Schrödinger equation becomes either exactly solvable or readily
treated by perturbation methods.

The most challenging task was to set the first step in this way. The rest was just a
matter of not so complicated calculations. I quickly did them and presented the results to
Anisimov. “Very well,” he said, “the problem is solved. Write a paper. One more point to
be made. Il’ya Mikhailovich Lifshitz has organized a periodic scientific seminar at your
Faculty. It takes place every second and fourth Thursday of a month from September to
June. I recommend you to contact Il’ya Mikhailovich and ask him to put your talk about
this study in the seminar program.”.

Up to now, I remember how difficult it was for me (a fourth-year undergraduate
student) to approach such a famous scientist as Il’ya Mikhailovich was and request a talk
at his seminar. Finally, I gathered up all my courage and did it. “Excellent,” replied Il’ya
Mikhailovich, “Please contact the seminar’s secretary, Mr. Rzhevsky, and ask him to find
the nearest free spot in the program. Will 45 minutes be enough for you?”.

To give a 45-min talk in front of an audience of top-rank experts, including a dozen of
world-class scientists! My knees turned to jelly, but there was no way to retreat.

It is remarkable that I can vividly remember any moment before and after my talk,
but nothing of the talk itself. However, it seems that I stood this test. Moreover, the talk at
this seminar was a milestone for my relationship with Il’ya Mikhailovich. Since then, every
one of my new results was discussed with him, either through a talk at the seminar or in a
private manner at his office at the Kapitza Institute. Later on, I became a close associate and
coauthor of Il’ya Mikhailovich [21]. We even had a joint Ph.D. student. Our close contact
lasted until his unexpected premature death of a heart attack in 1982.

However, all this will be later on. At the time I am talking about, I could not imagine
even a small part of that.

Thus, the first task (the talk) was complete, but the second remained: I had to write a
paper. It was my very first paper, and it took a lot of my time and efforts to do that. Finally,
an extended manuscript (in Russian) was submitted to Fizika i Tekhnika Poluprovodnikov
(Physics and Technology of Semiconductors).
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It was the beginning of the bad luck for this paper. At that time, a new publication
option was introduced. For some papers (especially lengthy ones), only abstracts were
published. The papers themselves were deposited in specially assigned institutions. If an
abstract of such a paper drew somebody’s attention, and he/she was interested in the
complete text, a copy of the one could be posted to him/her upon a request. Maybe it
was an attempt to reduce the printed size of scientific journals and to solve, at least partly,
the eternal Soviet problem of paper deficit. Anyway, my paper was accepted under this
condition. Its abstract was published, see Figure 2, while the full text was deposited at
Research and Development (R&D) Institute Electronics.

Since then, many events have occurred. The country named the Soviet Union does
not exist anymore. Regarding R&D Electronics, I am afraid it has shared the destiny of
the country. Now, I am residing within walking distance from the building where R&D
Electronics used to be. It is a shopping mall there. Then, it is quite probable that the full text
of my paper has ended up in a nearby scrap-heap, and the abstract reproduced in Figure 2
is the only remaining piece of the paper.

Bsrn. 10 ,IJ;8-/if6 OT 30 IIIOI-1.H 1971 r. 

06 HHRPEMEHTE HEYCToflquBOCTlf rAIIIIOBCRIIX /J.OMEHOB B PElKHME 
IIOCTOHHHOro TORA 

M. JI. TpnUe.rrbCN11ii 

Hcc.,ie)l;yeTCJI pa3llllTMC neycTo.iiqnBOCTH B nmpo1,11x rauHOBClHlX AO~iCllaX (mnp1rna 
BCpII.IHHLI MllOTO 6o;rcLHJ8 mnprnn,r q)pOHTOB) B pemnMe CTaa.noHapHoro BllClllU81'0 TORU. 

B OCHOBY pacqeTOB llOJTOmena <ficHOMOIIOJIOrnqenmJt M0/-(0Jib, B ROTOpoll TIO.TII-Ihlli TOK CRJra
IJ;blBUCTCa Il3 TORa npOBO;rl;llMOCTH H ,u:mpqly3IIOHHOro TOKa. I-IeyCTOii'lifBOCTh ;$alUl0'1UCTCH 

B TOM, qTo {pponThl )..(OM8Ha HU'lIIllUIOT CMCrn;UTLCH ll rrponrnouo::rommux narrpaB.llellJHIX. 
B1,1qncJie11 mmpcMCHT 11apacTamu1 ueycToii1nrnocTn. h'.oaip<fmu,ucaT p;1nfi<fipnn npe,u;no
JiaraJICH ne3aBIICHm;HM OT IIOJUI, 3a,u:aqa r.taTer.rnTlf'ICCRII CBCJiaCh R pcmemno ypaBnc
lUUI nma OJ:t;f10),10pnoro ypanuemrn Illpep;nnrcpa C lJ8HOTOpLU.1 CJIOmHhD-I IlOTCHu;naJIOM. 
Ilo1rnaauo, lJTO pcayJinTaThl c.rra6o aaBHCHT OT nn,n;a 3T<ffo rroTenu;na.rra. Ilo:=JTouy on 6h1JI 
3HMeHCII IlOTenr,naJlOM B BIIJI:e 1myx rrpm,wyrOJlbllhlX ff1I, 1ITO Il03BOJHI.TIO BhlIIO.TlHIITh pac-
1.Jen,1 B ROH81IHmI Bn;o;e. 3ap;a11a pemena B ABYX rrpe;u:e:IhllbTX CJiy'IaJlx: CJJMMCTplI'IllOL'O 11 

CHJILllO necn:ri.n.rnTpnqHoro .n;oMeHOB. B o6onx CJTY"!MlX Bhl'IHNieHhl }J;OIIOJIHHTeJibIIOe nap;e

l:l110 ttarrpmIWIIHJl Ha ,!J;OMeHC', a TUI-OKe IIIIIpHHa q>poHTOB II BepmHHbI )];01IeHa. 
Cym,eCTB0HllO, "CJTO B IWI!e'Illhrii pC3YJlhTaT 110 BXO)]J(T 1rnm1e-.'Tu60 liHTCrpa;u,llhlC xa

panTepnCTIIl{H. On 3UBIICTIT TO.'lhRO OT 3Ha~rnmrn: qlyHnu;m1: j (E) J1 dj /dE=. crd B HCKOTOpbIX 

xapaRTepllbIX TO'IIrnx. PaaBllThlll M0TO,U 6e3 cy:m;eCTBCIIHIJX 113-r.teHCHIJii MOIBCT 6bITh npn
MCHeH K llCCJie,uonamno xapawrepa neycTOii"CJHBOCTll BOJfll B BTI,[l;0 ,n;nyx 11 6oJieo p;0M0H011. 

IIocTym1Jio B Pe,uauwno 
13 MapTa 1971 r. 

Figure 2. The only ever published piece of paper [1] (in Russian).

The English translation reads:

Vol. 10 DE-416 dated 30 June 1971
On the increment of the instability of the Gunn domains in the direct current regime

M. I. Tribel’skii

The growth of instability of wide Gunn domains (the width of the top is much larger
than the widths of the faces) at the stationary external current regime is inspected. The
basis of calculations is the phenomenological model, in which the total current is composed
of the conductivity current and the diffusion one. Instability affects the domain faces
so that they begin to shift in opposite directions. The instability increment is calculated.
The diffusion coefficient is supposed to be independent of the field. Mathematically the
stability problem is reduced to a one-dimensional Schrödinger equation with a certain
complicated potential. It is shown that the results are weakly dependent on details of this
potential. Therefore, the potential is approximated by two square potential wells (separated



Physics 2021, 3 720

by a barrier), which made it possible to obtain an explicit expression for the increment.
The problem is solved in two limiting cases, namely symmetric and highly asymmetric
domains. In both cases, additional drops of voltage on the domain are calculated, as well
as the width of the faces and the top of the domain.

It is essential that the final result does not include any integral characteristics of the
problem. It depends only on the value of the functions j(E) and dj/dE ≡ σd at certain
characteristic points. A developed method without significant changes may be extended to
the study of the instability of waves in the form of two or more domains.

Received 13 March 1971.

The next attempt to publish these results I made after the defense of my Master
Science Thesis. An appointed referee of the thesis was another disciple of Landau, Igor
Ekhiel’evich Dzyaloshinskii [22]. After reading the thesis, he said that the results of this
level should be available to the international community, and I should publish them abroad
in English (when the first draft of the present paper was ready, I learned the sad news:
Igor Ekhiel’evich Dzyaloshinskii passed away on 14 July 2021).

To publish abroad, ... it was easier to say than to do. Not to mention poor English,
which I had at that time, sending a scientific paper abroad from the Soviet Union was not
simple at all. The authors themselves were not eligible to do that. A manuscript had to be
sent through specially authorized personnel. The personnel decided whether or not the
paper could be submitted abroad, and, if the decision was affirmative, they took care of
the submission.

Moreover, prior to the acceptance of the manuscript by the personnel, the authors had
to do plenty of paperwork. On top of that, it took 2–3 months on average for mail to be
delivered to the addressee. Up to now, I wonder why this was so much. Even if horses
delivered the mail; it would not have taken such a long time!

I discussed the matter with Anisimov, and we decided to submit the paper to the
East-German journal Physica Status Solidi published in English. There were two reasons for
this choice. First, sending a paper to an Eastern bloc country required less paperwork, and
chances to get permission for the submission were higher than that in the case of a Western
journal. Second, the requirement for the English quality in this journal was not as strict as
those in the West. The latter was important since my English was far from being perfect.

Thus, I wrote in English an elaborated version of Ref. [1] including some new results,
did all the required paperwork, gave the bunch of documents to the “authorized personnel,”
and... lost control over the submission. Half a year elapsed, but I had not heard anything
from the Editors. Then, I sent a postcard to Physica Status Solidi asking for the status of
my paper. A reply came surprisingly fast—in just four months. However, it was pretty
unexpected. The Editors informed me that they had never received my manuscript.

By that time, on the one hand, I had already published a paper [23], where the
secondary instability of the Gunn domain was inspected just employing the Ritz method.
On the other hand, I got a job and, owing to that, was forced to abandon my study in
solid-state physics and focus on an entirely different topic.

Eventually, the results discussed in Ref. [1] have remained unpublished. Now, fifty
years later, I try to realize the advice of Dzyaloshinskii and make these results available to
the international community. Perhaps fifty years is a too long period to complete a task,
but “that is not lost that comes at last!”.

At the end of these, perhaps lengthy, remarks, I have to say that the results discussed
below are not exactly the same as those in Ref. [1]. First, it is not good to publish the same
results twice, even if the fifty years lie between the two publications. Second, I could not
do this, even if I wanted to—the original manuscript is lost, and I do not remember all
details. Last but not least: now I am a bit more experienced and educated than I was fifty
years ago. Therefore, I extracted from this old problem the essential points and generalized
them. These points are as follows: (i) the conclusion about the instability of traveling pulses
in a broad class of nonlinear diffusion-type problems and (ii) a new method to obtain
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the bottom-part spectrum of the Schrödinger equation with a complicated potential. A
discussion of these two issues is given below.

2. Problem Formulation

Thus, the problem is to find the instability increment for a single traveling Gunn
domain at a fixed current in the circuit. According to what has been said above, the current–
voltage characteristic of the semiconductor sample in question has the shape schematically
shown in Figure 1. Regarding the external current, jext, let us suppose that it satisfies the
restrictions jc1 < jext < jc2, so that the equation j(E) = jext always has three roots, E1,2,3.

It is important to stress that the curve, shown in Figure 1, is not the actual current–
voltage characteristic of the sample. As mentioned above, it would have been the one
provided E is a constant along and across the sample. Obviously, this is not the case for
the traveling domain, when E is coordinate- and time-dependent. Therefore, only the
stable branches of the presented curve with σd > 0 coincide with the actual current–voltage
characteristic. In contrast, the whole curve in Figure 1 should be regarded as the field
dependence of the normalized average electron drift velocity [17].

It is convenient to normalize the electric field over E2 and j(E) over jext introducing
the dimensionless quantities E ≡ E/E2 and u(E) ≡ j(E)/jext. Then, under certain assump-
tions, in the traveling coordinate frame connected with the domain, the normalized electric
field in the sample is described by the following equation [19]:

DE ξξ + α[s− u(E)]Eξ + [1− u(E)] = Eη(ξ, η), (1)

where the subscripts indicate the corresponding derivatives. Equation (1) is written in
dimensionless variables, whose detailed definition is not important for the subsequent
analysis (it may be found in Ref. [19]). Note only that D, s, ξ, and η stand for the diffusion
coefficient, the domain velocity in the laboratory coordinate frame, traveling coordinate,
and time, respectively; α = const > 0 is the ratio of two characteristic spatial scales of the
problem at E = E2.

Let us suppose that D = const. This assumption simplifies calculations, but it is not
crucial for the analysis. A more general case, when D = D(E), was inspected by Knight
and Peterson [18].

It is important to stress that, if the dependence u(E) is not related to the specific shape
of j(E), shown in Figure 1, Equation (1) is nothing but a nonlinear diffusion equation of
quite a general type describing a wide diversity of problems. Accordingly, the results
discussed below may be applied to a much broader class of problems, provided these
problems have traveling solitary-wave-type solutions.

For a steady-state traveling wave, the right-hand side of Equation (1) vanishes, and
the equation transforms into an odinary differential equation. For the problem in question,
a simple analysis reveals that its phase plane (E , E ξ) has three singular points situated at
the E axis at E = E1,2,3 corresponding to E = E1,2,3 in Figure 1. Note that, by definition,
E2 ≡ 1 since E = E/E2. In the phase plane, a single traveling domain is described by a
homoclinic path beginning in the saddle (E1, 0), making a loop around the unstable focus
(E2, 0) and ending up in the same saddle (E1, 0), see Figure 3.

It is possible to show that such a solution of Equation (1) exists at s = 1 solely [18].
Since this is the only case I am interested in, s below is always supposed to be equal to
unity. Then, the homoclinic path may be found explicitly [18]; however, I do not need this
expression for the subsequent inspection. Let us just designate the steady-state solution
of Equation (1) as E0(ξ). The goal of this paper is to analyze the stability of this solution
against small time-dependent perturbations δE(ξ, η).
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Figure 3. Phase plane (E , E ξ) (schematically). Three singular points are marked with red. The blue
curve designates the homoclinic path corresponding to a single traveling domain. If the point (Em, 0)
merges with (E3, 0), the homoclinic path is split into two independent heteroclinic ones (the upper
and lower parts of the homoclinic path, respectively). See text for details.

3. Stability Analysis

The stability analysis performed in Ref. [18] generalizes a brilliant approach by Zel-
dovich and Barenblatt for the inspection of the stability of a slow combustion front [24].
The main idea is as follows. Let us suppose that δE(ξ, η) = E (1)(ξ) exp(−λη), where λ is
an eigenvalue of the stability problem. If there is a negative λ in the problem’s spectrum, it
means instability.

Substituting E(ξ, η) = E (0)(ξ) + E (1)(ξ) exp(−λη) in Equation (1) and linearizing the
result in small E (1), one arrives at the eigenvalue problem:

DE (1)ξξ + α[1− u(E (0)(ξ))]E (1)ξ − uE (E (0)(ξ))E (1) = −λE (1), (2)

supplemented with the boundary conditions E (1) → 0 at ξ → ±∞. Then, introducing a
new function ψ(ξ) connected with E (1)(ξ) by the relation,

ψ(ξ) = exp
(

α

2D

∫
(1− u(E (0)(ξ))dξ

)
E (1)(ξ) ≡ F(ξ)E (1)(ξ), (3)

one reduces Equation (2) to the standard Schrödinger equation:

Ĥψ = Λψ, (4)

Ĥ = − d2

dξ2 + V(ξ), (5)

V(ξ) =

(
α(1− u(E (0)(ξ))

2D

)2

+

1−
αE (0)ξ (ξ)

2

uE (E (0)(ξ))
D , (6)

where Λ ≡ λ/D. Let us remark that there is a misprint in the expression for V(ξ) in
Ref. [19] corrected in Equation (6).

Note that, since the homoclinic path begins and ends up at the same singular point
(E1, 0) and u(E1) = 1, the considered steady-state traveling domain solution satisfies the
condition u(E (0)(ξ))→ 1 at ξ → ±∞. Therefore, as it follows from Equation (3), ψ(ξ) and
E (1)(ξ), both have the same asymptotic behavior at ξ → ±∞. This is important since it
means that none of the solutions of the Schrödinger equation generate “false” solutions of
the initial stability problem, which may not satisfy the boundary conditions E (1)(ξ)→ 0 at
ξ → ±∞.
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Now, the most essential part of the stability analysis begins. If E (0)(ξ) is a solution of
the steady-state version of Equation (2), then, owing to the translational invariance of the
problem E (0)(ξ + ξ0), where ξ0 is any constant, also is its solution, i.e., being substituted in
the left-hand side of Equation (2), E (0)(ξ + ξ0), turns it to zero identically.

Let us consider the limit ξ0 → 0. In this case, E (0)(ξ + ξ0) ≈ E (0)(ξ) + E
(0)
ξ (ξ)ξ0, and

E (0)ξ (ξ)ξ0 here may be regarded as an infinitesimal perturbation to E (0)(ξ). The perturba-
tion transforms the steady-state solution into another steady-state solution. This means
that such a perturbation is neutrally-stable and should not evolve in time. In other words, it
means that E (0)ξ (ξ) is an eigenfunction of the stability problem with zero eigenvalue.

Note that we obtain this result based on the translational invariance solely, without the
employment of a specific form of the differential operator in Equation (2). These neutrally-
stable modes generated by a transformation of a continuous group of symmetry are called
Goldstone modes. Since 2008, when the implementation of such a mode in strong-interaction
physics (do you remember my remark about interconnections of different fields in physics?)
resulted in the Nobel Prize being awarded to Prof. Yoichiro Nambu, they have also been
called Nambu–Goldstone modes.

It is interesting to note that, twenty-five years after the publication of Ref. [1], I
returned to the inspection of the role of Goldstone modes in stability problems. This study
resulted in the discovery of a new type of chaos at the onset analogous to the second-order
phase transitions in statistical physics, where the mean amplitudes of the turbulent modes
played the role of the order parameter [25–27].

However, I have departed from the stability analysis of the Gunn domain. It is
high time to be back. Actually, not so much remains to be done. Collecting together all
mentioned above, one can conclude that

ψ(ξ) = F(ξ)E (0)ξ (ξ) (7)

is the eigenfunction of the Schrödinger equation, Equations (4)–(6) with zero eigenvalue.
Recall now the oscillation theorem [20]. The theorem states that, in a one-dimensional

Schrödinger equation, the nth wave function of a discrete spectrum should vanish n times.
Then, it is not a complicated task to show that the integral in the exponent in Equation (3)
always remains finite, i.e., F(ξ) never vanishes. Thus, all zeros of ψ(ξ), if any, coincide
with those of E (0)ξ (ξ). Finally, since for the traveling domain the profile E (0)(ξ) has a single
maximum (the homoclinic path in the phase plane (E , E ξ) crosses the E -axis at E = Em,

situated in between E2 and E3, see Figure 3), the product F(ξ)E (0)ξ (ξ) has a single zero at
the value of ξ corresponding to the maximal field achieved in the domain, Em. It means
that the wave function (3) is the one for the first excited state. The “energy” of the ground
state should be lower than those for excited states. Since the first excited state has zero
“energy” this gives rise to the conclusion that the ground state has negative “energy”,
i.e., the spectrum of Equations (4)–(6) has a single negative eigenvalue. In other words,
the solution E (0)(ξ) is unstable with the instability increment equal to the modulus of λ,
corresponding to the ground state of the Schrödinger equation.

Though the problem in question has several parameters, the actual control parameter,
which relatively easily may be varied in an experiment, is the current in the circuit, jext.
Varying jext, one can change the values of E1,2,3 and hence the shape of the traveling domain.

At a certain value of jext = j0, the maximal field in the domain, Em merges with E3,
and the homoclinic path in the plane (E , E ξ) is split into two independent heteroclinic paths
connecting the singular points (E1, 0) and (E3, 0). One of these paths lies entirely in the
upper semi-plane. For this solution, E (0)ξ is always positive at any finite ξ. The other lies

entirely in the lower semi-plane and, for it, E (0)ξ < 0 at any finite ξ, see Figure 3. Each of
these solutions corresponds to a traveling charge layer transferring the sample from one
steady-state to another steady-state.
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It is important that, since, for the layers, E (0)ξ does not vanish at any finite ξ, the
corresponding wave function given by Equation (7) is the one of the ground state of the
Schrödinger equation. This means that, in contrast to the traveling domain, the traveling
layers are stable [18,19].

4. Spectrum of Schrödinger Equation

Thus, to get the value of the instability increment and, hence, the characteristic time
for the traveling domain decomposition, one has to obtain the energy level for the ground
state in the Schrödinger equation with the complicated potential given by Equation (6).
As it has been mentioned above, the main idea employed in Ref. [1] to fulfill this task is
to approximate the actual smooth potential by a superposition of square potential wells.
The parameters of the wells are selected so that the approximated potential keeps all main
features of the initial smooth profile. One of the approximation parameters remains free. It
is fixed by the condition that, for the first excited state, Λ = 0.

This procedure reduces the solution of the complicated initial problem to finding the
roots of a set of transcendental equations. In the worst case, the latter may be readily done
numerically. To illustrate this rather general approach, a simple case of a broad traveling
domain is discussed below.

The domain becomes broad when jext approaches j0. In the phase plane, it corresponds
to the shift of the regular point of the path (Em, 0) toward the saddle (E3, 0). In this case, the
domain approximately may be presented as a nonlinear superposition of two layers with
opposite charges, and the potential (6) has a shape of two wells separated by a barrier.

Each well is associated with the corresponding layer. The width of the barrier equals
the distance between the layers and is large in the case under consideration. Then, the
tunneling through the barrier is exponentially weak. If the tunneling were suppressed
entirely, each well would have corresponded to the potential generated by a single layer
and, in accordance with the mentioned above, had the ground state with Λ = 0. Thus, it is
clear that the level with Λ < 0 for the domain occurs due to the finite tunneling resulting in
the splitting of the ground states in the two wells with the same value of Λ = 0. Therefore,
instead of the employment of a rather cumbersome general procedure of the solution of an
entire problem with the finite tunneling, let us, first, neglect the tunneling and consider
the solutions of the Schrödinger equation in each square well separately. Then, the finite
tunneling is taken into account with the help of perturbation theory.

The values of the parameters of the square wells approximating the smooth profile
of the potential may be obtained by inspection of Equation (6). For example, bearing in
mind that at ξ → ±∞, the solution E (0)(ξ) describing the domain satisfies the conditions
E (0) → E1; E (0)ξ → 0 and that, by definition, u(E1,2,3) = 1, one immediately obtains that
both outer walls of the wells have a height equal to uE (E1)/D. Similarly, the barrier height
is uE (Em)/D ≈ uE (E3)/D. The widths of the wells and the barrier are estimated based on
the exact solution describing the domain path in the phase plane obtained in Ref. [18]. The
last remaining parameters are the depths of the wells. They are fixed by the conditions that
the ground state in each well has Λ = 0.

I do not present here these simple but cumbersome calculations. Just note that the
problem is rather robust against errors in the approximation of V(ξ). The robustness is
related to the smallness of the split of the ground levels in the wells due to the tunneling
and the fact that, at the employed approach, the important condition Λ = 0 for the ground
state in each separate well holds automatically.

Let us suppose that the wave functions, |1, 2〉, of the ground state for each well are
known and that these wave functions satisfy the equations Ĥ1,2|1, 2〉 = 0. Here, Ĥ1,2
designates the Hamiltonians, whose potentials, U1,2 are the corresponding single-well
potentials. Let us look for the wave function of the complete problem with the two-well
potential in a form of a linear superposition of |1, 2〉:
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|ψ〉 = c1|1〉+ c2|2〉, (8)

where c1,2 are constants, which should be defined in the course of calculations. Then, since
|ψ〉 is an eigenfunction of the complete Hamiltonian Ĥ,

c1Ĥ|1〉+ c2Ĥ|2〉 = Λ(c1|1〉+ c2|2〉). (9)

Making scalar products with 〈1, 2| and taking into account the normalization condi-
tions 〈1|1〉 = 〈2|2〉 = 1, one arrives from Equation (9) to the following equations for c1,2:

(H11 −Λ)c1 + (H12 −Λ〈1|2〉)c2 = 0, (10)

(H21 −Λ〈2|1〉)c1 + (H22 −Λ)c2 = 0, (11)

where H11, H12, H21 and H22 stand for the corresponding matrix elements. Note that
the wave functions |1〉 and |2〉 are not orthogonal since they are the eigenfunctions of the
different Hamiltonians, namely, Ĥ1 and Ĥ2 6= Ĥ1.

The solvability condition requires vanishing of the determinant of Equations (10) and (11).
This results in a quadratic equation for Λ. The difference, ∆ = |Λ1 −Λ2|, between the two
roots of this equation approximately equals the desired instability increment.

This result has completed the instability analysis. However, the exact expression
for ∆ is rather cumbersome. Therefore, it is worth simplifying this result, employing the
smallness of certain parameters in Equations (10) and (11). To this end, I have to estimate
the matrix elements and the overlap integrals 〈1, 2|2, 1〉.

To calculate the matrix elements, it is convenient to single out from the full double-
well square potential, VDWS(ξ), the part corresponding to a single well, i.e., to suppose
that VDWS(ξ) = U1,2 − V1,2, see Figure 4, where for the first well (left side of Figure 4),
V1 = 0 at ξ < ξ3, while, at ξ > ξ3, the sum of VDWS and V1 equals the height of the barrier.
Similarly, for the second well (right), the sum VDWS + V2 equals the height of the barrier at
ξ < ξ2, while, at ξ > ξ2, the potential V2 = 0. Thus, U1,2 are the single-well potentials, and
the corresponding Hamiltonians acting on their wave functions produce zero. Then, the
leading terms in the matrix elements are estimated as follows:

H11 = −〈1|V1|1〉 ∼ H22 = −〈1|V2|1〉 ∼ exp[−2db

√
uE (E3)/D], (12)

where db = ξ3 − ξ2 is the barrier width. The same estimate is true for H22 (for the sake of
simplicity, the widths of the corresponding wells, d1,2

√
uE (E3)/D, are supposed to be not

small). In the same manner, one obtains

H12 ∼ H21 ∼ 〈2|1〉 ∼ 〈1|2〉 ∼ exp[−db

√
uE (E3)/D], (13)

Then, in the leading approximation,

∆ ≈ H12 + H21 ∼ exp[−db

√
uE (E3)/D]. (14)

Thus, as it could be expected, the value of the instability increment for the broad
domain is exponentially small indeed.

Finally, note that, for each single square well, the normalized wave functions |1, 2〉
may be readily obtained in the explicit form, including the normalization constant. Then, it
is just a matter of more or less routine calculations to improve the accuracy of Equation (14),
taking into account the prefactors and dropped higher-order exponentially small terms.
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Figure 4. Schematically: The actual double-well potential V(ξ) (smooth blue line). The approximation
of V(ξ) by the double-well square potential, VDWS(ξ), is shown in black; ξ1,2,3,4 designate the
coordinates of the walls of the wells. U1,2(ξ) = VDWS(ξ) + V1,2(ξ) are the potentials of the single-
well approximation, when tunneling is neglected.

5. Conclusions

Summarizing and generalizing the discussed above, one arrives at the following
conclusions:

• The analysis of the linear stability of traveling wave solutions in a wide class of
nonlinear diffusion problems is reduced to inspection of a bottom part of the spectrum
of the associated Schrödinger equation, whose potential is generated by the profile of
the analyzed solution.

• The translational invariance transformation generates in the stability spectrum a
neutrally-stable (Goldstone) mode.

• The qualitative answer to the question about the stability of the solution is readily
obtained based on the oscillation theorem—if the Goldstone mode does not have any
nodes, the solution is stable. Otherwise, it is unstable.

• To quantitatively characterize the instability (if any), the “energy” level of the ground
state of the Schrödinger equation should be obtained.

• A powerful tool to make the problem of a bottom part of the Schrödinger equation
spectrum tractable is to approximate the potential by square wells.

These conclusions are rather general. They are valid far beyond the frameworks of the
Gunn effect and, hopefully, may help to analyze the stability of traveling waves in a broad
class of nonlinear diffusion problems.

The developed approach to find an approximate solution and spectrum of the Schrö-
dinger equation with a complicated potential valid for ground and low-excited states may
be regarded as a complement to the known Wentzel-Kramers-Brillouin (WKB) method,
which is good in the opposite case of high-excited states. A common disadvantage of both
approaches is the approximation error, which is difficult to improve and even to control.
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