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Abstract: The flow and heat transfer in a rotating vertical porous layer, placed far from the axis of
rotation, and subjected to internal heat generation and centrifugal jitter, is considered. The linear
stability theory is used to determine the convection threshold, in terms of the critical Rayleigh
number. Typical liquids used in engineering applications and heavy liquid metals are used to
demonstrate conditions at which the Vadasz number is sufficiently small to warrant the retention of
the time derivative in the momentum equation. When considering low amplitude and high frequency
approximation, the results show that vibration has a stabilizing effect on the onset of convection. The
impact of increasing the Vadasz number is to stabilize the convection, in addition to reducing the
transition point from synchronous to subharmonic solutions. In summary, when the Vadasz number
is large, centrifugal jitter has no impact on the convection stability criteria. In contrast, when the
Vadasz number is small, centrifugal jitter impacts the convection stability criteria.

Keywords: centrifugal jitter; rotation; Mathieu functions; internal heat generation; Vadasz number

1. Introduction

The classical problem of gravity driven free convection in fluid saturated porous
media has been widely researched for various configurations. The engineering applications
include, inter alia, nuclear reactor technology, food and chemical processing industry,
thermal storage systems, etc. Pioneering past studies for a constant basic temperature
gradient have been investigated by past researchers. Previous pioneering study [1–4] for
non-rotating porous media set the foundation for researchers in heat and mass transfer
in porous media. Later, rotation was analyzed in detail, and these studies are presented
in [5–11]. The Vadasz number was first proposed in [12], specifically for the body of study
presented in [9]. In almost all of the papers dealing with flow and heat transfer in porous
media, the Vadasz number is neglected on the basis that it is understood to be large for
the typical fluids used in engineering. The analysis in [9] considers scenarios where the
Vadasz number could assume small values, thereby warranting its retention together with
the time derivative in the momentum equation. The results presented in [9] discover that
only when the Vadasz number is small to moderate, is the oscillatory mode of convection
possible. Later study [13–16] introduced the effects of g-jitter on the stability of convection
in porous media. The study in [13,14], the shows that the transition from synchronous to
subharmonic solutions is characterized by a spike in the curve of the synchronous mode,
just prior to the transition. Furthermore [16] shows that (gravity) g-jitter effects only affect
the convection stability criteria for small to moderate Vadasz numbers. For large Vadasz
numbers, the g-jitter has no impact on the convection stability criteria, in the absence of
internal heat generation.

The focus of the current study is to consider the effects of centrifugal jitter for a vertical
porous layer with internal heat generation and placed far from the axis of rotation. The
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readers are referred to pioneering studies for flow and heat transfer with internal heat
generation with constant gravity [17,18]. Early study on g-jitter on porous media with
internal heat generation are presented in [19]. Research involving specific configurations
and internal heat generation in porous media are presented in [20–22]. The readers are
also referred to an important book in porous media and applications [23] for further
review/reading, together with an excellent reference list for further reading.

In typical engineering applications, one needs to cater for the impact of centrifugal
jitter in a design or perhaps design the system to use the effects of centrifugal jitter to
control the heat transfer. In the scenario, where the influence of centrifugal jitter on the
stability of convection needs to be dialed out, one may opt to choose a fluid that allows for
large Vadasz numbers. For large Vadasz numbers [16], vibration (g-jitter) was shown to
have no influence on the stability of convection. The current study investigates this and
determine if the same result is applicable for centrifugal jitter in the presence of internal
heat generation. There could be scenarios where the stabilizing effect of vibration (g-jitter
or centrifugal jitter) may be required in an engineering application. The fluid properties,
and perhaps even the medium, may need to be designed in such a way that the resulting
Vadasz number is small enough, to allow the effects of vibration (g-jitter or centrifugal
jitter) to influence the stability criteria for convection.

The present research recovers the basic conduction flow and temperature profiles and
then use the linear stability theory to solve for the characteristic Rayleigh number, for a
rotating vertical porous layer, placed far from the axis of rotation, and subjected to internal
heat generation. The equation for the centrifugal-jitter amplitude is cast into the canonical
form of the Mathieu equation to ensure that the critical Rayleigh number (in terms of the
Vadasz number) may be determined (for the low amplitude, high frequency vibration
case). The results for the rotating vertical porous layer, placed far from the axis of rotation
and subjected to centrifugal jitter is then be compared to the case of a horizontal porous
layer subjected to g-jitter, with internal heat generation [24]. In principle, the current study
extends the study of [24] to a vertical rotating porous layer that is placed far away from the
axis of rotation, thereby allowing for a constant external centrifugal body force (that may
be likened to gravitational body force in [24]). The study developed in [11] discovered that
gravity plays a passive role in the stability of convection for the configuration studied in
the current study. Therefore, although the gravity force is be shown in the formulation, its
role is be passive. The stability criteria developed in the current study is then compared to
the previous study [24] and a few important are drawn regarding the impact of the Vadasz
number on the stability criteria. Based on the review of literature performed, the author is
unable to locate study similar to that presented in this paper.

2. Problem Formulation

In the current study, the porous layer is placed far from the axis of rotation, in order to
recover the case when the centrifugal effect is constant due to the offset distance X∗0 . When
X∗0 >> L∗, where L∗ is the porous medium length, the variation of the centrifugal force
within the porous layer is small compared to the centrifugal force due to X∗0 . From hereon,
variables with the superscript “*” refer to dimensional quantities, whilst those without the
“*” refer to dimensionless variables. For the special case of the porous layer placed far away
from the axis of rotation, the constant centrifugal force due to offset distance X∗0 is analogous
to the case of convection in a differentially heated porous layer subjected to g-jitter. In the
following, a comparison is made between the current case and the case involving gravity
only to illustrate this point. Figure 1 shows a vertical fluid saturated porous layer, placed
far away from the axis of rotation, and subjected to vibration and internal heat generation.
In addition to internal heat generation, the porous layer is also differentially heated, with a
precise definition of the boundary conditions later in this section. Internal heat generation
refers to heat generation (as a source) from within the porous layer per unit volume. A
typical example of internal heat generation in an engineering application could be a nuclear
reactor. The porous layer is sandwiched between two impermeable vertical boundaries (a



Physics 2021, 3 730

distance L∗ apart), subjected to centrifugal effects Ω∗2X∗0 , and vibration b∗ω∗2 sin(ω∗t∗).
At x∗ = 0, T∗ = T∗C, and at x∗ = L∗, T∗ = T∗H, and the Boussinesq approximation is applied
to model the effects of the density variations. Here, T∗H and T∗C are the hot wall and cold
wall temperatures, Ω∗ is the angular velocity,ω∗ represents the vibration frequency, and
t∗ is the time variable. This results in the following system of dimensional equations for
continuity, momentum, and energy:

∇∗ ·V∗ = 0, (1)(
ρ∗o
φ∗

∂

∂t∗
+ 1
)

V∗ =
χ∗

µ∗

{
−∇∗p∗ + ρ∗

[
Ω∗2X∗0 + b∗ω∗2 sin(ω∗t∗)

]
êx − ρ∗g∗êz

}
, (2)

∂T∗

∂t∗
+ V∗ · ∇∗T∗ = κ∗

(
∇∗2T∗ +

q∗

k∗m

)
. (3)

Physics 2021, 3 FOR PEER REVIEW  3 
 

 

also differentially heated, with a precise definition of the boundary conditions later in this 
section. Internal heat generation refers to heat generation (as a source) from within the 
porous layer per unit volume. A typical example of internal heat generation in an engi-
neering application could be a nuclear reactor. The porous layer is sandwiched between 
two impermeable vertical boundaries (a distance *L apart), subjected to centrifugal effects 

*2 *
0XΩ , and vibration ( )ω ω* *2 * *b sin t . At *x 0= , * *

CT T= , and at * *x L= , * *
HT T= , and 

the Boussinesq approximation is applied to model the effects of the density variations. 
Here, *

HT  and *
CT  are the hot wall and cold wall temperatures, *Ω  is the angular veloc-

ity, *ω  represents the vibration frequency, and *t is the time variable. This results in the 
following system of dimensional equations for continuity, momentum, and energy: 

∇ ⋅ =* 0*V , (1)

( ){ } ρ ∂ χ  + = −∇ + ρ Ω + ω ω − ρ    φ ∂ μ 

* *
* * * *2 * * *2 * * * *o

0 x z* * *
ˆ ˆ1 p X b sin t g

t
*V e e , (2)

 ∂ + ⋅∇ = κ ∇ +  ∂  

**
* * * *2 *

* *
m

qT T T
t k

*V . (3)

 
Figure 1. Vertical rotating porous layer, placed far from axis of rotation, and subjected to centrifugal 
jitter and internal heat generation. *

HT  and *
CT  are the dimensional hot wall temperature and cold 

wall temperatures, *t  is the dimensional time variable, and *Ω  and *ω  are the rotational speed 
and vibration frequency. The length the porous layer is *L  and the offset distance is *

0X  whilst 

the gravity is defined as *g . 

In the system (1)–(3), *V  is the fluid velocity, *p  is the pressure, the density is de-
noted by *ρ , the temperature is denoted by *T , the permeability of the porous medium 

is denoted by *χ , *μ  is the dynamic viscosity, *
mk  is the fluid thermal conductivity, and 
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Figure 1. Vertical rotating porous layer, placed far from axis of rotation, and subjected to centrifugal
jitter and internal heat generation. T∗H and T∗C are the dimensional hot wall temperature and cold
wall temperatures, t∗ is the dimensional time variable, and Ω∗ andω∗ are the rotational speed and
vibration frequency. The length the porous layer is L∗ and the offset distance is X∗0 whilst the gravity
is defined as g∗.

In the system (1)–(3), V∗ is the fluid velocity, p∗ is the pressure, the density is denoted
by ρ∗, the temperature is denoted by T∗, the permeability of the porous medium is denoted
by χ∗, µ∗ is the dynamic viscosity, k∗m is the fluid thermal conductivity, and êx and êz are
the unit vectors in the x- and z- directions.

The governing equations may be non-dimensionalized using the scaling variables
κ∗/L∗, µ∗κ∗/k∗0 , and ∆T∗ = T∗H − T∗C for the filtration velocity components (u∗, v∗, w∗),
reduced pressure (p∗), and the temperature variations T∗ − T∗C. For this scaling, κ∗ is
the thermal diffusivity, and k∗0 is a characteristic permeability associated with the porous
medium. The height of the porous medium L∗ is used to scale all the spatial lengths
according to the relations x = x∗/L∗, y = y∗/H∗, and z = z∗/L∗. Applying the scaling
factors to Equations (1)–(3) yields the following governing equations for the specific case of
constant permeability (i.e., χ = 1):

∇ ·V = 0, (4)(
1

Va
∂

∂t
+ 1
)

V = {−∇p− Raω0[1 + δ sin(ωt)]}Têx + RagTêz, (5)

∂T
∂t

+ V · ∇T = ∇2T + 1. (6)
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The key non-dimensional parameters that emanate from the rescaling of the Equations
(1)–(3) are the gravitational Rayleigh number, Rag = [ρ∗0β

∗g∗H∗k∗0/(µ∗κ∗)]
(

q∗H∗2/k∗m
)

;

the centrifugal Rayleigh number, Raω0 =
[
ρ∗0β

∗Ω∗2X∗0H∗k∗0/(µ∗κ∗)
](

q∗H∗2/k∗m
)

; and

the vibration amplitude δ = ηFrω2, where η = b∗/H∗ and the Froude number Fr =

κ∗2/
(

Ω∗2X∗0H∗3
)

. Here, H∗ is the height of the horizontal porous layer. In Equation (5), Va
is the Vadasz number, defined as Va = φ∗Pr/Da (where Pr is the Prandtl number and Da
is the Darcy number, defined as Da = k∗0/L∗2); and the symbols V, T, and pr represent the
dimensionless filtration velocity vector, temperature, and reduced pressure, respectively.
In a previous study [9], the author has put forward a motivation for specific cases when
the Vadasz number is small and is retained. In the current study, typical fluids used in
engineering applications and selected heavy liquid metals were considered to determine
the Vadasz number, Va, as a function of the porosity, as shown in Figures 2 and 3. Here,
we use the Kozeny equation of the form k∗ = L∗2φ∗3/

[
172.8(1−φ∗)2

]
to estimate the

permeability when calculating the Darcy number, and the Vadasz number.
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Figure 3. Vadasz number, illustrated for heavy liquid metals. Here, φ is the porosity.

Figure 2 shows that when the porosity is low, the Vadasz number is very large, and
this leads to the neglect of the time derivative in Equation (5). In the instance when the
Vadasz number is very large, the presence of centrifugal jitter has no effect on the stability
of convection. Figure 2 also shows that when the porosity is large, the Vadasz number could
attain values that allow for the retention of the time derivative in Equation (5). In the case
of high porosity media, the Brinkman model may need to be adopted in the formulation
of the momentum equation. The introduction of the Brinkman term in Equation (2) is
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the subject of current study, and the study presented in [25] for a rotating vertical porous
layer, excluding gravity and Coriolis effects (for both the Darcy and Brinkman models), is
consulted in that analysis.

In contrast, for heavy liquid metals, it is clearly demonstrated in Figure 3 that that
Vadasz number is orders of magnitude smaller across the entire range of porosity values.
Figure 3 shows that across the range of porosity values indicated, the Vadasz number is of
an order of magnitude that allows for the retention of the time derivative in Equation (5).

Therefore, for systems using typical liquids with high porosity media, liquid metals
allow for the retention of the time derivative in Equation (5), which, in turn, allows the cen-
trifugal jitter to impact the convection stability criteria. The solutions for the basic temper-
ature and flow field are given as TB = 1/2

(
3x− x2) and wB = −1/2Rag

(
x2 − 3x + 7/6

)
.

In providing a solution to the system of equations, it is convenient to apply the curl op-
erator (∇×) twice on Equation (5) and, using Equation (4), consider only the horizontal
x-component of the result to yield,(

1
Va

∂

∂t
+ 1
)
∇2u− Raω0[1 + δ sin(ωt)]∇2

VT + Rag
∂2T
∂x∂z

= 0, (7)

where ∇2
V = ∂2/∂y2 + ∂2/∂z2.

3. Linear Stability Analysis

Assuming small perturbations around the basic solution of the form T = TB + T′ and
w = wB + w′, the linearizing Equations (4)–(7) yield the following equations:(

1
Va

∂

∂t
+ 1
)
∇2u′ − Raω0[1 + δ sin(ωt)]∇2

VT′ + Rag
∂2T′

∂x∂z
= 0, (8)

dTB

dz
u′ =

(
∇2T′ − ∂T′

∂t
−wB

∂T′

∂z

)
. (9)

In Equations (8) and (9), the primes denote the perturbed quantities. Here, in any
event, the cases of large and small to moderate Vadasz numbers are considered separately
to demonstrate the effect of the Vadasz number on the stability of convection.

3.1. Large Vadasz Numbers

When using typical engineering working fluids in systems with low porosity, large
Vadasz numbers result. For large Vadasz numbers, Equations (8) and (9) may be written as
follows:

∇2u′ − Raω0[1 + δ sin(ωt)]∇2
VT′ + Rag

∂2T′

∂x∂z
= 0, (10)

dTB

dz
u′ =

(
∇2T′ − ∂T′

∂t
−wB

∂T′

∂z

)
. (11)

Substituting Equation (11) in Equation (10) and simplifying yields the following
equation for T′:

∇2

(
∇2T′ − ∂T′

∂t −wB
∂T′
∂z

dTB
dz

)
− Raω0[1 + δ sin(ωt)]∇2

VT′ + Rag
∂2T′

∂x∂z
= 0. (12)

Assuming an expansion into normal modes in the y- and z-directions of the form
yields the following:

T′ = exp
(
isyy + iszz

) N

∑
k=1

ak(t) sin(kπx). (13)
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which satisfies the boundary conditions T′ = 0 and w′ = 0 at x = 0 and x = 1. In
Equation (10). s2 = s2

y + s2
z, and k = 1, 2, 3, . . . N. It was shown in [11] that Equation (12)

only yields real solutions when sz = 0, thus indicating that gravity plays a passive role
in the convection threshold criteria. Taking note of the findings in [11], substituting
Equation (13) into Equation (12), and then multiplying the result by orthogonal functions
and integrating over x ∈ [0, 1] yields the following system of equations:

N
∑

k=1

{(
k2π2 + s2 + ∂

∂t

)(
− 1

2 +
(

k2π2 + s2
)(

D
2 (D− 1) + 1

6 −
1

π2(k+l)2

))
−

Raω0s2(1 + δ sin(ωt))
(

1
2 (D− 1)

(
D2 − D

2 + 1
2

)
+ 1

8 + 3
2

(1−2D)

π2(l+k)2

)}
ξlkak+

N
∑

k=1

{(
k2π2 + s2

)(
k2π2 + s2 + ∂

∂t

)
2kl(2D−1)

π2(k2−l2)
2−

Raω0s2(1 + δ sin(ωt))
(

6kl(D−1)2

π2 − 3kl(1−2D)
π2 − 6

π4

(
1

(l−k)4 − 1
(l+k)4

))}
ξl+k,2p−1ak = 0.

(14)

where a is the vibration amplitude, D = 3/2, ξ is the Kronecker delta function defined as
ξlk = 1 when l = k, and ξl+k,2p−1 is 1 when (l + k) is odd, and zero otherwise. As can be
observed, the system shown in Equation (14) becomes rather complicated when solved to
higher ranks of N. A numerical solver may be used to solve Equation (14) to higher ranks,
but that is outside the scope of the research. Useful information may be drawn from rank
N = 1. For the current study, we consider rank N = 1, and Equation (14) may be presented
as follows:

da1

dt
+ F0s2[−(Raω0 − R0)− Raω0δ sin(ωt)]a1 = 0, (15)

where

F0 =
5
8 −

3
4π2[

(s2 + π2)
(

13
24 −

1
4π2

)
− 1
] , (16)

and

R0 =

(
s2 + π2)[(s2 + π2)( 13

24 −
1

4π2

)
− 1
]

s2
(

5
8 −

3
4π2

) , (17)

where Equation (17), incidentally, represents the Rayleigh number corresponding to in-
ternal heat generation with no vibration. Solving the first order differential equation in
Equation (15) yields the following:

a1 = b0 exp
{

F0s2
[
σt− Raω0δ

ω
cos(ωt)

]}
, (18)

where b0 is an integration constant and σ = Raω0 − R0. For stationary convection, σ = 0,
therefore,

Raω0 = R0, (19)

and
a1 = b0 exp

[
−F0s2Ra0κFrω cos(ωt)

]
. (20)

In Equation (19), R0 represents the Rayleigh number when the vibration frequency
is zero. From Equation (19) it is clear that for large Vadasz numbers, the stability criteria
for convection are the same as that for the case of no vibration. This simply means
that vibration has no effect on the stability criteria for a porous layer with internal heat
generation when the Vadasz number, is large. In engineering practice, if the centrifugal
jitter effect is required to stabilize the convection, then for a given fluid (as per Figure 2), one
would need to increase the porosity of the matrix to reduce the Vadasz number. Conversely,
if the effects of centrifugal jitter are present and one does not want it to affect the convection
threshold, then one may choose a working fluid and porosity combination to ensure that a
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large Vadasz number, results to ensure that the time derivative is neglected, thus resulting
in the criteria presented by Equation (19).

3.2. Small to Moderate Vadasz Numbers

When using non-traditional working fluids, such as liquid metals (Figure 3), small to
moderate Vadasz numbers result across the range of porosity values. For small to moderate
Vadasz numbers, substituting Equation (9) in Equation (8) and simplifying yields the
following equation for T′:

(
1

Va
∂

∂t
+ 1
)
∇2

(
∇2T′ − ∂T′

∂t −wB
∂T′
∂z

dTB
dz

)
− Raω0[1 + δ sin(ωt)]∇2

VT′ + Rag
∂2T′

∂x∂z
= 0. (21)

We assume an expansion into normal modes in the y- and z- directions as per
Equation (13); substituting in Equation (21) and then multiplying the result by orthog-
onal functions and integrating over x ∈ [0, 1] yields the following system of equations:

N
∑

k=1

{(
1

Va
∂
∂t + 1

)(
k2π2 + s2 + ∂

∂t

)(
− 1

2 +
(

k2π2 + s2
)(

D
2 (D− 1) + 1

6 −
1

π2(k+l)2

))
−

Raω0s2(1 + δ sin(ωt))
(

1
2 (D− 1)

(
D2 − D

2 + 1
2

)
+ 1

8 + 3
2

(1−2D)

π2(l+k)2

)}
ξlkak+

N
∑

k=1

{(
k2π2 + s2

)(
1

Va
∂
∂t + 1

)(
k2π2 + s2 + ∂

∂t

)
2kl(2D−1)

π2(k2−l2)
2−

Raω0s2(1 + δ sin(ωt))
(

6kl(D−1)2

π2 − 3kl(1−2D)
π2 − 6

π4

(
1

(l−k)4 − 1
(l+k)4

))}
ξl+k,2p−1ak = 0.

(22)

As before, useful information may be drawn from rank N = 1, which may be presented
as follows:

d2a1

dt2 +
(

Va + s2 + π2
)da1

dt
+ VaF0s2[−(Raω0 − R0)− Raω0δ sin(ωt)]a1 = 0, (23)

where F0 and Ra0 are as defined before. Equation (23) may be transformed into the Mathieu
equation by taking a1 = e−στX1(τ) to ensure that the resulting equation may be presented
as follows:

X′′ 1 + [A + 2Q cos(2τ)]X1 = 0. (24)

In Equation (24), the coefficients A and 2Q are defined for stationary convection as
follows:

A = −
4Vas2

(
5
8 −

3
4π2

)
ω2
[
(s2 + π2)

(
13
24 −

1
4π2

)
− 1
] (Raω0 − R0), (25)

2Q =
4Vas2

(
5
8 −

3
4π2

)
Raω0δ

ω2
[
(s2 + π2)

(
13
24 −

1
4π2

)
− 1
] . (26)

In previous studies [14,20], authors have related A and Q in Equations (25) and (26)
via an indirect numerical method. Whilst that method recovers both the synchronous
and subharmonic modes, it is quite cumbersome. In this paper, we propose the following
asymptotic expansions for low amplitude and high frequency vibrations in an attempt to
link A and Q:

X1 = X0 + QX1 + Q2X2 + . . . , (27)

A = A0 + QA1 + Q2A2 + . . . , (28)

where Q, as defined in Equation (26), assumes small values for high vibration frequencies.
The methodology used in the derivation of Equations (29) and (30) involves the use of
simple asymptotic expansions, i.e., Equations (27) and (28), that are then applied on the
Mathieu equation, Equation (24). The resulting equations are solved to the various orders
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in Q, noting that one needs to apply the solvability condition to the resulting differential
equations. The result shown in Equation (30), therefore, is the solvability condition. The
relation between A and Q are then used in conjunction with their definitions in Equations
(25) and (26) to yield the characteristic equation for the Rayleigh number. In the derivation
of Equations (29) and (30), the coefficients of the exponential growth terms are set to zero
and the constant, c0 > 0, is an integration constant (and a real number). The resulting
solutions to rank N = 1 and the solvability condition may be represented as follows:

a1 = X1 = c0

[
1− Q

2
cos(2τ)

]
, (29)

A = −1
2

Q2. (30)

Using Equations (25) and (26) and substituting in Equation (30) yields the following
characteristic equation for the Rayleigh number:

Vas2
(

5
16 −

3
8π2

)
ω2
[
(s2 + π2)

(
13
24 −

1
4π2

)
− 1
] (κFrω)2Ra2

ω0 − Raω0 + Ra0 = 0. (31)

From Equation (31), one may observe that for the case when the vibration frequency
approaches zero, i.e., ω→ 0 , the Rayleigh number approaches the definition, Raω0 → Ra0 .
Equation (31) is solved for both zero and non-zero vibration frequencies. The Vadasz
number and the Rayleigh numbers are henceforth scaled as γ = Va/π2, R = Raω0/π2,
and R0 = Ra0/π2.

4. Results and Discussion

When the vibration is zero, the critical Rayleigh number for internal heat generation
to rank N = 1 for the horizontal porous layer subjected to gravity (and no rotation) is
R0,cr. = 3.819π2, whilst the critical wavenumber is scr. = 0.49π. In contrast, for the vertical
rotating porous layer, placed far from the axis of rotation and subjected to internal heat
generation, the critical Rayleigh number is R0,cr. = 3.391π2 and the critical wavenumber is
scr. = 0.81π. These critical Rayleigh and wavenumbers are then compared to the critical
Rayleigh number and wavenumber for the classical Benard convection stated as R0,cr. = 4π2

and scr. = π. Figure 4 shows the three mentioned cases for comparison purposes, and
it is clear from the results that the critical Rayleigh number for the rotating porous layer
presents the most unstable case in terms of the convection threshold.
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Previously, the authors [24] showed that for the horizontal porous layer, subjected
to internal heat generation and g-jitter, the critical Rayleigh number is significantly lower
than the modified internal Rayleigh number of 470

(
47.621π2) predicted in [17]. When

comparing the critical Rayleigh number for the rotating porous layer, placed far from
the axis of rotation and subjected to internal heat generation, one observes that although
comparable to [24], the magnitude is still significantly smaller than [17].

Figure 5 shows the critical Rayleigh number versus the vibration frequency for selected
values of the scaled Vadasz number, for the vertical porous layer placed far away from the
axis of rotation and subjected to internal heat generation (black lines). Superimposed on
Figure 5 are the data generated in [24] for a horizontal porous layer subjected to gravity (no
rotation) and internal heat generation (gray lines). It is observed in Figure 5 that each of
the curves end abruptly at specific frequency asymptotes, beyond which there are no more
real solutions. These points also denote the end of the synchronous frequencies and the
start of the subharmonic frequencies. As stated initially, the current solution approach does
not recover solutions corresponding to subharmonic frequencies. The solution approach
and methodology presented in [13,14] recovers the transition point from synchronous to
subharmonic solutions. The impact of increasing the Vadasz number causes the onset of
the subharmonic solutions at lower frequency values, as indicated in Figure 5. At very
low-scaled Vadasz numbers, circa γ = 0.01, the onset of the subharmonic frequencies
occurs at very large vibration frequencies.
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The results show that the onset of convection for the vertical rotating porous layer
placed far from the axis of rotation and subjected to centrifugal jitter occurs sooner across
the bandwidth of vibration frequencies for a particular Vadasz number. As observed in
Figure 5, increasing the Vadasz number stabilizes the convection.

5. Conclusions

The results for internal heat generation within a rotating porous layer placed far from
the axis of rotation and subjected to centrifugal jitter is presented. Both the typical fluids
used on engineering applications and heavy liquid metals were analyzed in the current
study. The results of this analysis showed that for the typical fluids used in engineering
applications, when the porosity is medium to low, the Vadasz number is large, thus
neglecting the effects of the time derivative in the momentum equation. In principle, for
large Vadasz numbers, the presence of centrifugal jitter has no impact on the stability
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criteria for convection. However, even with typical engineering working fluids, it was
established that a small Vadasz number could result when the porosity is high. In the
instance of high porosity media, the Brinkman model may need to be considered when
determining the stability criteria. For the instance when heavy liquid metals are considered,
it was established that the Vadasz number is many orders of magnitude smaller across the
entire range of porosity values when compared to the case of typical engineering working
fluids. For large Vadasz numbers, it was shown that the convection stability criteria are
independent of the centrifugal jitter.

For small to moderate Vadasz numbers, the results show that in comparison to the
case of the horizontal (non-rotating porous layer) subjected to internal heat generation [24],
the convection occurs sooner (i.e., at a lower Rayleigh number). However, although these
two cases are comparable, the magnitude of the Rayleigh numbers are still significantly
smaller than those predicted in [17].
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