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Abstract: In this paper, conformal invariant gravitation, based on Weyl geometry, is considered. In
addition to the gravitational and matter action integrals, the interaction between the Weyl vector
(entered in Weyl geometry) and the vector, representing the world line of the independent observer,
are introduced. It is shown that the very existence of such an interaction selects the exponentially
growing scale factor solutions among the cosmological vacua.
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1. Introduction

In the present paper, following Roger Penrose [1–3] and Gerard ‘t Hooft [4–6], it is
suggested that the universe is conformal invariant. Furthermore, it is suggested that the
conformal invariace is described by Weyl geometry. The main problem of any conformal
invariant gravitational theory is how to choose the “correct gauge”. G. ’t Hooft [6] proposed
that different observers may see different pictures, i.e., different geometries. Evidently, this
becomes possible only if the observer interacts somehow with the geometry. Furthermore,
it is Weyl geometry that provides us with such a possibility. The observer is considered
as being independent, i.e., the observer is not a dynamical variable and is not subject to
variation. However, after the variation procedure, it is possible, in principle, to identify the
observer with the matter flow.

2. Basics of Weyl Geometry and Weyl Conformal Gravity

The elements of Weyl geometry [7,8] are the metric tensor gµν (like in Riemann
geometry) and the vector field Aµ(x), which is called the “Weyl vector” here on. The
indices, denoted by Greek letters, take on the values 0 (time), 1, 2, 3 (space), x are the
observable four space-time coordinates. The Weyl vector defines the covariant derivative
of the metric tensor, namely,

∇λgµν(x) = Aλ(x)gµν(x). (1)

This relation leads to the connections provided Γλ
µν = Γλ

νµ:

Γλ
µν = Cλ

µν + Wλ
µν, (2)

where Cλ
µν are familiar Christoffel symbols,

Cλ
µν =

1
2

gλκ(gκµ,ν + gκν,µ − gµκ,ν) (3)

and Wλ
µν are

Wλ
µν = −1

2
(Aµδλ

ν + Aνδλ
µ − Aλgµν) . (4)
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Here, δλ
ν is the Kronecker symbol (unit tensor), gλκ is the inverse metric tensor defined

by gλκ gκν = δλ
ν , and the comma “,”denotes a coordinate partial derivative. The curvature

tensor is defined as:

Rµ
νλσ =

∂Γµ
νσ

∂xλ
−

∂Γµ
νλ

∂xσ
+ Γµ

κλΓκ
νσ − Γµ

κσΓκ
νλ, (5)

along with the convolutions, the Ricci tensor Rµν = Rλ
µλσ and the curvature scalar Rλ

λ.
Note that, in Weyl geometry, there are no familiar symmetry relations for the curvature

and Ricci tensor.
In 1918, Hermann Weyl constructed the unified theory of electromagnetic and gravita-

tional fields [7]. He noticed that Maxwell equations are invariant under local conformal
transformations (outside the sources) and claimed that the unified theory must posses the
same property. The local conformal transformation with the conformal factor Ω(x) is

ds2 = Ω2(x)dŝ2 = gµνdxµdxν = Ω2(x)ĝµνdxµdxν; (6)

which does not involve the coordinates, but the measures. If one demands Aµ to be the
gauge field that transforms as:

Aµ = Âµ + 2
Ω,µ

Ω
, (7)

then the connections Γλ
µν become conformal invariant,

Γλ
µν = Γ̂λ

µν . (8)

Consequently, the curvature tensor and the Ricci tensor are also conformal invariant,

Rµ
νλσ = R̂µ

νλσ, Rµν = R̂µν . (9)

Evidently, one has yet another conformal invariant antisymmetric tensor,

Fµν = Aν,µ − Aµ,ν = ∇µ Aν −∇ν Aµ . (10)

This was the reason why Weyl declared Aµ to be the electromagnetic vector potential,
and Fµν — the electromagnetic strength tensor. In what follows, Aµ is considered as only a
part of Weyl symmetry.

Following Weyl, let us write the gravitational action integral SW as

SW =
∫
LW
√
−g d4x , (11)

LW = α1RµνλσRµνλσ + α2RµνRµν + α3R2 + α4FµνFµν , (12)

which is manifestly conformal invariant, since
√−g = Ω4√−ĝ, g is the determinant of

the metric tensor. and α1, α2, α3, and α4 are constants.

3. Setting the Problem

When dealing with the conformal invariant theory, the most important question that
readily arises is how to fix the gauge. The solution could be as follows [1–6]. Different
observers see the around world differently. To realize such a scenario, one needs an
observer interacting somehow with the space–time geometry. Let us choose a simplest
possible interaction Lagrangian:

Sint =
∫
Lint

√
−g d4x, (13)

Lint = −Aµξµ, (14)
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where ξµ describes the observer which is called, as in the title of this paper, “the supervisor”.
An important note to be made: the supervisor ξµ is not a dynamical variable and, thus, is
not subject to variation.

The total action integral,

Stot = SW + Sint + Sm, (15)

where Sm is the action integral for some matter fields. Another rather important note to be
made: the gravitational part, SW, is conformal invariant, but the remaining parts, Sint and
Sm, do not need to have the same property. However, the variation, δSint + δSm, does.

The conformal invariance means that, under the variations of conformal factor, Ω,

δStot

δΩ
= 0. (16)

Here, δΩ enters both δ
√−g = 2ΩĝµνδΩ = 2(δΩ/Ω)gµν and δAµ = 2δ(Ω,µ/Ω).

Hence,

δSint = −2
∫

ξµ

(
δΩ
Ω

)√
−g d4x−

∫
(Aµξµ)gνλgνλ

(
δΩ
Ω

)√
−g d4x, (17)

then
δSint = 2ξ

µ
;µ − 4(Aµξµ). (18)

Further on, by definition (Gµ = −δSint/δAµ):

δSm = −1
2

∫
Tµν(δgµν)

√
−g d4x−

∫
Gµ(δAµ)

√
−g d4x +

∫
δLW

δΨ
(δΨ)

√
−g d4x, (19)

where Ψ is the collective matter fields variable, and Tµν is the energy-momentum tensor.
Hence,

δSm

δΩ
= 2Gµ

;µ − Trace(Tµν). (20)

Finally, one obtains the following self-consistency condition:

2(ξµ
;µ + Gµ

;µ) = 4Aµξµ + Tµ
µ , (21)

from where the “Weyl current” Gµ may come.To clarify this, let us consider the specific
example, namely, the perfect fluid. The perfect fluid consists of particles interacting with
each other directly and gravitationally. In Riemann geometry, the gravitational interaction
is due to the metric tensor field only. Meantime, Weyl geometry involves, in addition, the
Weyl vector Aµ. Therefore, the additional invariant, B = Aµuµ, exists for describing the
gravitational interaction of the particle with the four-velocity uµ [9,10].

The action integral for the perfect fluid in Riemann geometry can be written as [11,12]:

Sm = −
∫

ε(X, n)
√
−g d4x +

∫
λ0(uµuµ − 1)

√
−g d4x

+
∫

λ1(nuµ);µ
√
−g d4x +

∫
λ2X,µuµ

√
−g d4x , (22)

with the dynamical variables: uµ, n(x) being the invariant particle number density, X being
the auxiliary variable numbering the particle trajectories. ε is the invariant energy density,
λ0, λ1, and λ2 are the Lagrange multipliers, and the semicolon “;” denotes the covariant
derivative with metric connections (Christoffel symbols).

The Lagrange multipliers, λi, provide us with the constraints: the normalization
condition for four velocities, particle number conservation and the constant value of
X along the trajectories. Evidently, one can easily insert the new invariant B into ε:
ε(X, n) → ε(X, B, n). It can be shown that the constraint (nuµ);µ = 0 is not conformal
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invariant. Indeed, by construction (see, e.g., [13]), gµν is transformed under the conformal
transformation, gµν = Ω2(x)ĝµν and, respectively,

n =
n̂

Ω4 , uµ =
1

Ω4 ûµ,
√
−g = Ω4√−ĝ. (23)

Therefore,

(nuµ);µ
√
−g = (nuµ

√
−g),µ =

(
n̂
Ω

ûµ
√
−ĝ
)

,µ

=
1
Ω
(n̂
√
−ĝuµ),µ −

Ω,µ

Ω2 (n
√
−ĝûµ). (24)

At the same time, if (nuµ√−g),µ = 0, then (n̂ûµ
√
−ĝ),µ = 0 as well, because the

number of particles can simply be counted. Thus, one can see that the conformal invariance
requires the particle number conservation. Let us choose the simplest possible form for the
particle creation rate: (nuµ);µ = Φ(B, n). Then, the action integral for the perfect fluid in
the Weyl geometry reads:

Sm = −
∫

ε(X, ϕ(B)n)
√
−g d4x +

∫
λ0(uµuµ − 1)

√
−g d4x

+
∫

λ1
(
(ϕ1(B)nuµ);µ −Φ(B, n)

)√
−g d4x +

∫
λ2X,µuµ

√
−g d4x. (25)

Not all the field equations and equations of motion in general form are given here,
being postponed, to Section 4 of. cosmological applications. Here, only the expressions for
Gµ and Tµν are given:

Gµ =
∂ε

∂B
uµ + λ1

∂Φ
∂B

uµ, (26)

Tµν =

{
(ε + p) + λ1(Φ + Π)− B

(
∂ε

∂B
+ λ1

∂Φ
∂B

)}
uµuν

+{p + λ1Π}gµν, (27)

where the hydrodynamical pressure, p = n∂ε/∂n− ε, and Π = n∂Φ/∂n−Φ.

4. Application to Cosmology

By cosmology, we understand any homogeneous and isotropic space–time manifold
with the Robertson–Walker metric:

ds2 = dt2 − a2(t)
(

dr2

1− kr2 + r2(dθ2 + sin2 θdϕ2)

)
, (28)

where k = 0,±1, a(t) is the scale factor, and t is the cosmological time. Because of
the symmetry, the Weyl vector Aµ has one nonzero component only, depending on the
cosmological time, Aµ = (A0, 0, 0, 0).

It follows then, that
Fµν ≡ 0. (29)

Moreover, by choosing a suitable conformal factor, one can always set Aµ = 0, and

B = Aµuµ = 0. (30)

The solutions in this special gauge will be called "the basic solutions”.



Physics 2021, 3 818

Let us introduce the following notations:

ε0(X, n) = ε(X, 0, n), (31)

ε1(X, n) =
∂ε

∂B
(X, 0, n), (32)

Φ0(n) = Φ(0, n), (33)

Φ1(n) =
∂Φ
∂B

(0, n). (34)

The equations of motion for the perfect fluid can be reduced to the only equation:

− (ε0 + p0)− λ1(Φ0 + Π0)− nλ̇1 = 0, (35)

(u0 = 1, ui = 0, X = const), and the remaining constraint is:

(na3 )̇

a3 = Φ0(n). (36)

The energy–momentum tensor, Tν
µ = (T0

0 , T1
1 = T2

2 = T3
3 ), is:

T0
0 = ε0 + λ1Φ0, (37)

T1
1 = −(p0 + λ1Π0). (38)

The Weyl current, Gµ, has only one nonzero component,

G0 = ε1 + λ1Φ1, (39)

and the self-consistency condition becomes:

2
(
(ξ0a3 )̇

a3 +
(G0a3 )̇

a3

)
= ε0 + λ1Φ0 − 3(p0 + λ1Π0). (40)

The gravitational field equations are divided into the vector and tensor parts. The
vector equations are reduced to

− 6γṘ = ξ0 + G0, (41)

while tensor equations become:

−12γ

{
ȧ
a

Ṙ + R
(

R
12

+
ȧ2 + k

a2

)}
= T0

0 , (42)

−4γ

{
R̈ + 2

ȧ
a

Ṙ− R
(

R
12

+
ȧ2 + k

a2

)}
= T1

1 . (43)

Here, γ = (α1 + α2 + 3α3)/3, the dot defines the time-derivative, and R is the curva-
ture scalar:

R = −6
(

ä
a
+

ȧ2+k
a2

)
. (44)

One can show that the self-consistency condition is, actually, the consequence of the
field Equations (41)–(43). Note also that in the special gauge used here, the supervisor does
not enter the right hand side of the tensor equations. In total, there are five equations for
seven unknown functions.
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5. Basic Solutions

Let us start with vacuum solutions. The main question one would like to answer is
whether or not the supervisor may exist in the absence of matter fields, or in other words,
as “the ethereal ghost”.

Since in the vacuum T0
0 = T1

1 = ε0 = Φ0 = Φ1 = G0 = 0, one gets ξ0 = −6γb/a3,
b = const, and

Ṙ =
b
a3 , (45)

ȧ
a

Ṙ + R
(

R
12

+
ȧ2 + k

a2

)
= 0, (46)

R = −6
(

ä
a
+

ȧ2 + k
a2

)
= 0. (47)

Fortunately, this seemingly overdetermined set of equations has the following solution:

az
dz
da

= ±
√
(z2 + k2)− 1

3
zb, (48)

where x(a) = ȧ. No detailed investigation of Equation (48) to be given here. Two points
are of most importance here.

1. The supervisor survives in the vacuum.
2. For large enough a (a� a0),

ȧ =

(
|b|
12

)1/3 a
a0

, (49)

i.e., one obtains the exponential growth (due to the presence of the supervisor). In the same
regime, the curvature scalar tends to the limiting value,

R0 = −121/3 |b|2/3

a 2
0

< 0. (50)

One can show that the basic solutions with a nonzero but traceless energy–momentum
tensor will have the same properties, i.e., the solutions exponentially expand for large
enough scale factors. Furthermore, the same is true in quite general cases provided the
invariant particle number density n(a) is an decreasing function.

6. Conclusions

In the present paper, an attempt to introduce an outside (external) observer in the least
action integral, called "the supervisor’, is made’. Since such an observer is naturally de-
scribed by some world line, the simplest geometry for the observer incorporation appeared
to be Weyl geometry, which contains both the metric tensor and the vector field.

The main feature of the presented approach is that the supervisor is not the dynamical
variable and, then, is not subject to the variation. After the variation procedure, it can be
chosen freely and even identified with all the inhabitants of the universe. Here, only the
cosmological applications is considered.

It appeared that on cosmological scale, one can always find an appropriate conformal
factor that makes the Weyl gauge field equal zero. The corresponding solutions called
here the basic ones and it is found that the scale factor for all of the solutions exhibit
the exponential growth. The same is true for the non-vacuum solutions with a traceless
energy–momentum tensoras well asin the more general case of the perfect fluid, when the
invariant particle number density is a decreasing function of the scale factor.

No data are pretended to be explained here. The aim of this study is just to study
some cosmological features of Weyl geometry by presenting the exact vacuum solution.
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In regard to the reasons and motivations for introducing Weyl geometry and a new con-
cept, “the supervisor of the Universe”, let us to clarify the aim of this paper. Only Weyl
geometry is considered which differs radically from the Enstein conformal gravity, and it is
demonstrated that Weyl geometry permits the existence of the independent observer (“the
supervisor”) at least in the very early Universe. The word “independent” is used here in
order to emphasize that the vector describing the “observer” is not subject to variation. It
can be identified physically with some matter flow, but already in the field equations.

Any further detailed investigation is postponed for the future, especially the for case
when Maxim Khlopov, whose 70th anniversary we are celebrating now, may take part as
one of the supervisors.
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