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Abstract: In this paper, a discussion of the Landau damping of Langmuir waves is presented together
with a simple derivation which does not require the application of methods of complex analysis. A
general dispersion relation is derived systematically which corresponds to a nonlinear equation. The
latter equation is solved numerically but asymptotic limits are also discussed.
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1. Introduction

In the current paper, the damping of plasma waves, also known as Langmuir waves [1],
is explored. Plasma waves are related to electron oscillations and, thus, they are sometimes
called plasma oscillations. The standard description of those waves is based on the mo-
mentum equation (Euler equation) for the electrons, their continuity equation, and Gauss’
law of electrodynamics. Furthermore, it is assumed that the electrons behave like an ideal
gas. In order to find the dispersion relation of Langmuir waves, the aforementioned fluid
equations are linearized leading to the Bohm–Gross dispersion relation (see [2–4]),

ω2 = ω2
p + 3v2

e k2. (1)

Therein, the wave number k, the plasma frequency

ωp =

√
n0e2

meε0
, (2)

and the electron thermal speed

ve =

√
kBT
me

(3)

are used in terms of the electron particle density (particles per volume), n0, the elementary
charge, e, the electron mass, me, the permittivity of free space, ε0, Boltzmann’s constant,
kB, and the absolute temperature, T (in Kelvin). Note, the electron thermal speed comes
straight from the equipartition theorem which states that each degree of freedom has the
average kinetic energy kBT/2. Therefore,

1
2

mev2
e =

1
2

kBT, (4)

is a consequence of having only one degree of freedom due to the one-dimensional motion
of the electrons. This relation can be straight rearranged to obtain Equation (3).

A useful parameter in the description of plasma waves is the Debye length corre-
sponding to the distance over which significant charge separation occurs; it is given by

λD =

√
kBTε0

n0e2 . (5)
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Then, the electron thermal speed (3) reads:

ve = ωpλD, (6)

and the plasma wave dispersion relation (1) becomes:

ω2 = ω2
p

(
1 + 3λ2

Dk2
)

. (7)

By considering linearized fluid and Maxwell equations, one can show that Langmuir
waves are longitudinal in nature.

In this paper, Landau damping, describing the damping of plasma waves due to the
interaction between the wave and the electrons in the plasma, is revisited. This is a special
case of wave–particle interactions in a plasma. According to [5], the physical mechanism
of Landau damping can be understood as follows: particles having velocities slightly less
than the phase velocity of the wave are accelerated by the wave’s electric field to move
with the wave phase velocity. Therefore, the group of particles moving slightly slower than
the phase velocity gain energy from the wave. In a collisionless plasma characterized by a
Maxwellian distribution (see Section 3), the number of slower particles is greater than the
number of faster particles. Therefore, energy gained from the waves by slower particles is
more than the energy given to the waves by faster particles, thus leading to net damping of
the waves. An example plot is given in Figure 1.
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Figure 1. Maxwellian distribution. The arrow points to the location of the phase speed ω/|k| of the
Langmuir wave. In the considered case, the wave speed is larger than the electron thermal speed.
Particles to the left of the arrow are slower, and particles to the right of the arrow are faster than the
wave. Here we have used the wave number k, the frequency ω, the electron speed v, and the electron
thermal speed ve.

The first theoretical description of Landau damping was presented in [6] and was
based on the Vlasov equation [7]. Although Landau damping was originally derived for
plasma waves, it can also be considered in the context of magnetohydrodynamic waves [8].

The derivation of traditional Landau damping, as provided in [6], is based on Laplace
transforms and complex contour integrations. In [9], it was shown that Landau damping
can also be described by using a Fourier transform and normal mode expansion. The
latter modes are usually called van Kampen modes. In [10], it was demonstrated that
Landau’s and van Kampen’s treatments of plasma oscillations are equivalent. Alternative
and simpler derivations of Landau damping can be found in textbooks, see, e.g., [11].
However, all the aforementioned descriptions are based on contour integrals and other
tools of complex analysis.
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In order to avoid using tools of complex analysis, an alternative derivation of Landau
damping is presented in the current article. This approach can be particularly useful for
teaching this topic to undergraduate and graduate students in introductory plasma physics
and magnetohydrodynamics courses.

The reminder of this paper is organized as follows. Section 2 lists the basic equations
used to describe Landau damping. This includes the Vlasov equation, Gauss’ law, and
linearizing those equations. Section 3 contains the derivation of a nonlinear equation for
the dispersion relation, ω = ω(k). Numerical and analytical solutions of this nonlinear
relation are discussed in Sections 4 and 5, respectively. Finally, Section 6 discusses and
summarizes the findings.

2. Basic Equations

In order to describe the statistical behavior of a physical system not in a state of
equilibrium the Boltzmann equation is used. Let us assume that the plasma electrons are
described via the distribution function f (~x,~v, t) which depends on position, ~x, and velocity,
~v, of the particles, as well as the time, t. Furthermore, the considered particles experience
an external force, ~F, and collisions. With the help of Liouville’s theorem [12], one finds:

d
dt

f
(
~x,~v, t

)
= S

(
~x,~v, t

)
, (8)

where S
(
~x,~v, t

)
describes the collisions. For the total time-derivative of the distribu-

tion function,
d
dt

f
(
~x,~v, t

)
=

∂ f
∂t

+ ∑
n

ẋn
∂ f
∂xn

+ ∑
n

v̇n
∂ f
∂vn

, (9)

can be used. Here, the dot defines time derivative.
Equations (8) and (9) can be combined to find the Boltzmann equation. The collision-

less Boltzmann equation, on the other hand, is given by

∂ f
∂t

+ ∑
n

ẋn
∂ f
∂xn

+ ∑
n

v̇n
∂ f
∂vn

= 0. (10)

In what follows, only this collisionless case is considered. Furthermore, v̇n is replaced
by using Newton’s second law, Fn = mv̇n, to find:

∂ f
∂t

+ ∑
n

vn
∂ f
∂xn

+
1
m ∑

n
Fn

∂ f
∂vn

= 0, (11)

with m being the particle mass.
For the case considered in this paper, where Fn describes Coulomb interactions,

Equation (11) is usually called the Vlasov equation [7]. The Vlasov equation, discussed
here, is commonly used to investigate the interaction between particles and fields. In the
case of Landau damping, this equation describes the interaction between Langmuir waves
and the electrons of the plasma. However, the Vlasov equation is also used as a starting
point to describe the interaction between magnetic turbulence and energetic particles such
as cosmic rays (see, e.g., [13–15]).

For the investigations, presented here, it is sufficient to consider the one-dimensional
case for which the Vlasov equation reads:

∂ f
∂t

+ v
∂ f
∂x

+
1
m

F
∂ f
∂v

= 0. (12)

In the case considered, the force is just the electric force and, thus,

F = qE = qδE, (13)
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can be used, where q is the electric charge of the particle. The electric field, δE, therein is
the wave field of the plasma wave. Using this in Equation (12) yields:

∂ f
∂t

+ v
∂ f
∂x

+
q
m

δE
∂ f
∂v

= 0. (14)

In order to solve the Vlasov equation, a perturbation approach of the form,

f
(
x, v, t

)
= f0

(
v
)
+ δ f

(
x, v, t

)
, (15)

is employed.
Here, f0 is the unperturbed distribution often assumed to be Maxwellian (see Section 3

below). The quantity δ f describes the fluctuations corresponding to the deviations from
the unperturbed distributions. These fluctuations are a consequence of the interactions
with the electric field of the wave and are assumed to be small so that the perturbation
approach can be justified. Using Equation (15) in Equation (14) yields in first-order:

∂δ f
∂t

+ v
∂δ f
∂x

+
q
m

δE
∂ f0

∂v
= 0. (16)

Equation (16) is called the linearized Vlasov equation. As a second equation, Gauss’ law,

~∇ · ~E =
1
ε0

ρe, (17)

is employed.
Note that SI units are used here rather than Gaussian or cgs units. In the one-

dimensional case considered, Equation (17) becomes:

∂

∂x
δE =

1
ε0

δρe =
q
ε0

∫ +∞

−∞
dv δ f

(
x, v, t

)
, (18)

where the electric charge density δρe is replaced by the velocity integral over the fluctuations
δ f . In order to solve Vlasov and Gauss equations, a Fourier ansatz,

δ f
(
x, v, t

)
∝ δ f

(
k, v, ω

)
ei(kx−ωt),

δE
(

x, t
)

∝ δE
(
k, ω

)
ei(kx−ωt),

(19)

is used.
Using Equation (19) in Equations (16) and (18) yields:

− iωδ f + ivkδ f +
q
m

δE
∂ f0

∂v
= 0, (20)

and
ikδE =

q
ε0

∫ +∞

−∞
dv δ f

(
k, v, ω

)
. (21)

The first equation can be rearranged to read:

δ f = −i
q
m

δE
ω− vk

∂ f0

∂v
. (22)

Using this in Equation (21) yields:

ikδE = −i
q2

ε0m

∫ +∞

−∞
dv

δE
ω− vk

∂ f0

∂v
. (23)
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As the electric field does not depend on the particle velocity v, one can cancel δE in
the latter equation. Therefore, the following dispersion relation,

1 = − q2

ε0mk

∫ +∞

−∞
dv

1
ω− vk

∂ f0

∂v
, (24)

is obtained.
The function f0 therein corresponds to the unperturbed particle density per volume.

In the following, the replacement f0 → f0n0 is made and the plasma frequency, defined via
Equation (2), is used. This leads Equation (24) to be rewritten as:

1 +
ω2

p

k2

∫ +∞

−∞
dv

1
ω/k− v

∂ f0

∂v
= 0. (25)

Note, f0 is now the number of particles per velocity meaning that due to normalization,
one needs: ∫ +∞

−∞
dv f0

(
v
)
= 1, (26)

which fixes constants in the distribution function f0.

3. The Dispersion Relation

Let us now discuss the obtained dispersion relation as given by Equation (25). In order
to evaluate this further, the Maxwellian distribution,

f0
(
v
)
=

1√
2π

1
ve

e−v2/(2v2
e ), (27)

is employed.
The latter function is visualized via Figure 1. Note, this is a Maxwellian distribution

in one dimension and, therefore, it is in coincidence with a Gaussian distribution. The
used form is correctly normalized meaning that it satisfies Equation (26). Furthermore, the
electron thermal speed, given by Equation (3), is used. From Equation (27), it follows that:

∂ f0

∂v
= − 1√

2π

v
v3

e
e−v2/(2v2

e ). (28)

Using this, Equation (25) reads:

1 =
ω2

p√
2πkv3

e

∫ +∞

−∞
dv

v
ω− vk

e−v2/(2v2
e ). (29)

Note that it looks like there is a singularity at ω = vk. However, this is not so as long
as ω is a complex number with non-vanishing imaginary part.

The aim here is to derive the dispersion relation ω = ω(k). To this end, let us rewrite
the integral occurring in Equation (29) as:

I
(
ω, k

)
=
∫ +∞

−∞
dv

v
ω− vk

e−v2/(2v2
e ). (30)

To continue,

∫ +∞
−∞ dv e−v2/(2v2

e ) =
∫ +∞
−∞ dv ω−vk

ω−vk e−v2/(2v2
e )

= ω
∫ +∞
−∞ dv 1

ω−vk e−v2/(2v2
e )

− k
∫ +∞
−∞ dv v

ω−vk e−v2/(2v2
e ),

(31)
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is considered.
The integral on the left-hand-side of Equation (31) is a usual Gaussian integral which

can be solved via ∫ +∞

−∞
dx e−cx2

=

√
π

c
if Re(c) > 0. (32)

The second integral on the right-hand-side of Equation (31) is the desired integral
I(ω, k) as defined via Equation (30).

Thus, Equation (31) can be rewritten as:

√
2πve = ω

∫ +∞

−∞
dv

1
ω− vk

e−v2/(2v2
e ) − kI

(
ω, k

)
. (33)

Alternatively, this can be written as;

I
(
ω, k

)
=

ω

k

∫ +∞

−∞
dv

1
ω− vk

e−v2/(2v2
e ) −
√

2πve

k
. (34)

Therewith the dispersion relation (29) becomes:

1 =
ω2

p√
2πkv3

e

[
ω

k

∫ +∞

−∞
dv

1
ω− vk

e−v2/(2v2
e ) −
√

2πve

k

]
.

In the remaining integral, the substitution,

x =
v√
2ve

(35)

is employed to derive

1 =
ω2

p√
2πkv3

e

[
ω

k

√
2ve

∫ +∞

−∞
dx

e−x2

ω−
√

2vekx
−
√

2πve

k

]
. (36)

To continue, the parameter,

α :=
ω√
2vek

, (37)

is defined.
Note that the latter parameter is a complex number in the general case. Therewith,

one can write Equation (36) as:

1 =
ω3

p√
2πk3v3

e

[
ω

ωp

∫ +∞

−∞
dx

1
α− x

e−x2 −
√

2πvek
ωp

]
. (38)

In the result obtained, Equation (6) can be now used to finally arrive at

1 +
1

√
2π
(
λDk

)3

[√
2π
(
λDk

)
− ω

ωp
J
(
α
)]

= 0, (39)

where the integral,

J
(
α
)
=
∫ +∞

−∞
dx

1
α− x

e−x2
, (40)

is used.
Let us solve this integral. First, the integral is generalized via

J
(
α, β
)
= e−α2

∫ +∞

−∞
dx

1
α− x

eβ(α2−x2). (41)
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Note, we are looking for J
(
α, β = 1

)
≡ J
(
α
)
. One can derive that

d
dβ J(α, β) = e−α2 ∫ +∞

−∞ dx α2−x2

α−x eβ(α2−x2)

= e−α2 ∫ +∞
−∞ dx

(
α + x

)
eβ(α2−x2)

= αe−α2 ∫ +∞
−∞ dx eβ(α2−x2).

(42)

Here, the symmetry of the integral is used and, at the end, one would only need to
solve a Gaussian integral. With the help of Equation (32), one finally derives:

d
dβ

J(α, β) = α
√

πe−α2
β−1/2eβα2

. (43)

Note, here and above, β is assumed to be a positive real number. To continue, the
result is integrated over β:

J
(
α, β = 1

)
= J
(
α, β = 0

)
+ α
√

πe−α2
∫ 1

0
dβ β−1/2eβα2

. (44)

In the integral therein the substitution β = ξ2 is used:

dβ√
β
= 2dξ. (45)

Therewith:

J
(
α, β = 1

)
= J
(
α, β = 0

)
+ 2α
√

πe−α2
∫ 1

0
dξ eα2ξ2

. (46)

In Appendix A, it is demonstrated that

J
(
α, β = 0

)
= −iπe−α2

. (47)

Furthermore, J
(
α, β = 1

)
= J
(
α
)

and, thus, Equation (46) reads:

J
(
α
)
= 2α

√
πe−α2

∫ 1

0
dξ eα2ξ2 − iπe−α2

. (48)

Then, using the substitution t = αξ:

J
(
α
)
= 2
√

πe−α2
∫ α

0
dt et2 − iπe−α2

. (49)

The remaining integral corresponds to an imaginary error function (see, e.g., [16]):

Erfi
(
α
)
=

2√
π

∫ α

0
dt et2

. (50)

Using this in Equation (49) finally yields:

J
(
α
)
= πe−α2[

Erfi
(
α
)
− i
]
. (51)

After using Equation (51) in Equation (39), one finds for the dispersion relation:

1 +
1

√
2π
(
λDk

)3

{√
2π
(
λDk

)
− π

ω

ωp

[
Erfi

(
α
)
− i
]
e−α2

}
= 0, (52)
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where the parameter α is given by Equation (37). Alternatively, the result obtained can be
written as:

1 + 1(
λDk
)2 −

√
π
2

ω

ωp
(

λDk
)3 Erfi

(
α
)
e−α2

+ i
√

π
2

ω

ωp
(

λDk
)3 e−α2

= 0.
(53)

Furthermore, the parameter α can be rewritten as:

α =
1√
2

ω

ωp

1
λDk

. (54)

Equation (53) is a nonlinear equation for the dispersion relation ω = ω(k). It de-
pends only on two parameters: ωp and λD. Below, numerical and analytical solutions of
Equation (53) are considered.

4. Numerical Solution for the General Case

Instead of dealing with Equation (53), let us return and use Equation (39) as starting
point for numerical investigations. Equation (48) can be written as:

J
(
α
)
= 2α

√
πe−α2

K
(
α
)
− iπe−α2

, (55)

where

K
(
α
)
=
∫ 1

0
dξ eα2ξ2

(56)

is used.
Substituting these equations into Equation (39) gives:

1 + 1
√

2π
(

λDk
)3

[√
2π
(
λDk

)
− ω

ωp
2α
√

πe−α2
K
(
α
)
+ iπ ω

ωp
e−α2

]
= 0.

(57)

For numerical investigations, it is useful to define the dimensionless quantities,

x := λDk and y := ω/ωp, (58)

so that the parameter α, defined via Equation (54), becomes:

α =
y√
2x

. (59)

Therewith, Equation (57) can be written as:

1 +
1
x2 −

y2

x4 e−y2/(2x2)K
(

y√
2x

)
+ i
√

π

2
y
x3 e−y2/(2x2) = 0. (60)

The solution of the latter equation is the complex quantity y as a function of the real
variable x. It is straightforward to solve Equation (60) by using a standard Newton-solver in
combination with MATLAB; the details are given in Appendix B. The numerical solutions
are shown in Figure 2, where the analytical solution obtained for asymptotic limits is also
given. This analytical solution is derived in Section 5 below.
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Figure 2. Visualized is the numerical solution of Equation (60). Shown are the real part of y = ω/ωp

(top two lines) as well as its imaginary part (bottom two lines) versus the variable x = λDk. Compared
are the numerical solution (solid lines) with the analytical limits (dotted lines) given by Equations (82)
and (91), respectively. ωp is the plasma frequency and λD is the Debye length.

5. Analytical Solutions in Asymptotic Limits

In Section 3, the nonlinear Equation (53) was derived and solved numerically. In order
to obtain pure analytical solutions, we consider the case of

|α| ≡ |ω|√
2vek

� 1, (61)

meaning that the phase speed of the wave, ω/k, is assumed to be much larger than
the electron thermal speed, ve. Due to this assumption, one can employ the following
asymptotic expansion (see, e.g., [16]),

Erfi
(
α
)
≈ 1√

πα
eα2
[
1 +

(
2α2)−1

+ 3
(
2α2)−2

]
. (62)

Using the expansion (62) in Equation (53) yields:

1 + 1(
λDk
)2 −

√
π
2

ω

ωp
(

λDk
)3

1√
πα

[
1 + 1

2α2 +
3

4α4

]
+ i

√
π
2

ω

ωp
(

λDk
)3 e−α2

= 0.
(63)

With the help of Equation (54) this equation can be rewritten as:

1− 1(
λDk

)2
1

2α2

[
1 +

3
2α2

]
+ i
√

π
α(

λDk
)2 e−α2

= 0.

(64)

Using definition (58) of x in Equation (64) gives:

x2 − 1
2α2 −

3
4α4 + i

√
παe−α2

= 0. (65)

To further evaluate Equation (65), let us write

ω = ωR + iδω, (66)
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and, therefore,
α = αR + iδα. (67)

In the following, it is assumed that δω and δα are small. As δω corresponds to the
imaginary part of ω, it describes the damping of the Langmuir wave. Thus, the assumption
of small δω and δα corresponds to weak damping.

To continue, let us Taylor-expand and take into account only terms linear in δα:

1
α2 = 1(

αR+iδα
)2 ≈ 1

α2
R
− 2i

α3
R

δα,

1
α4 = 1(

αR+iδα
)4 ≈ 1

α4
R
− 4i

α5
R

δα,

e−α2
= e−(αR+iδα)2

≈ (1− 2iαRδα)e−α2
R .

(68)

Using the above equations in Equation (65) yields:

x2 − 1
2α2

R
+ iδα

α3
R
− 3

4α4
R
+ 3iδα

α5
R

+ i
√

π
(
αR − 2α2

Riδα + iδα
)
e−α2

R = 0.
(69)

Taking the real part of the latter equation gives:

x2 − 1
2α2

R
− 3

4α4
R
+
(

2
√

πα2
Rδα−

√
πδα

)
e−α2

R = 0. (70)

As soon as αR � 1 is focused on (see, e.g., Equation (61)), the term with the exponential
function can be neglected. Thus, in the lowest-order:

x2 − 1
2α2

R
− 3

4α4
R
= 0. (71)

Due to Equation (37), one gets:

αR =
ωR√
2vek

. (72)

Furthermore, one finds
x = λDk =

ve

ωp
k (73)

as a consequence of Equation (6).
Combining all the above findings, allows us to finally derive from Equation (71):

1−
ω2

p

ω2
R

(
1 + 3

v2
e k2

ω2
R

)
= 0. (74)

This can be rewritten as:

ω4
R −ω2

pω2
R − 3ω2

pv2
e k2 = 0, (75)

which can be understood as a quadratic equation for ω2
R. It has the solutions

ω2
R =

1
2

[
ω2

p ±
√

ω4
p + 12v2

e k2ω2
p

]
. (76)

Therein, taking the plus-sign and employing Equation (6), one finds:

ω2
R =

1
2

ω2
p

[
1 +

√
1 + 12λ2

Dk2
]
. (77)
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So far it was assumed that the restriction, given by Equation (61), is valid. Furthermore,
the damping effect was assumed to be small meaning that δω is small. This essentially
means that ωR � δω. Furthermore, the condition, given by Equation (61), turns into

α2
R ≡

ω2
R

2v2
e k2 � 1. (78)

Using therein Equations (6) and (77) allows us to rewrite this condition:

1 +
√

1 + 12λ2
Dk2 � 4(λDk)2. (79)

It is clear that this can only be valid if

λDk� 1. (80)

Using condition (80) in Equation (77) allows us to Taylor-expand so that one obtains:

ω2
R = ω2

p

(
1 + 3λ2

Dk2
)

. (81)

One can find that the result obtained concides with the plasma wave dispersion
relation of Equation (7). In dimensionless quantities (58):

yR =
√

1 + 3x2. (82)

Considering the imaginary part of Equation (69), one finds:

δα

α3
R
+

3δα

α5
R

+
√

παRe−α2
R = 0. (83)

This equation can be rearranged:

δα = −
√

π
α6

R
3 + α2

R
e−α2

R . (84)

As soon as αR � 1:
δα = −

√
πα4

Re−α2
R . (85)

From Equation (54) it follows that

αR =
1√
2

ωR
ωp

1
λDk

and δα =
1√
2

δω

ωp

1
λDk

. (86)

Therefore, one finds:

δω = −
√

π

8
ω4

R
ω3

p

1(
λDk

)3 e−α2
R . (87)

Combining Equation (81) and condition (80), one gets ωR ≈ ωp in the lowest order.
Therewith, the result obtained for δω reads:

δω = −
√

π

8
ωp(

λDk
)3 e−α2

R . (88)
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Therein one can use Equations (81) and (86):

α2
R =

ω2
R

2ω2
p

1
(λDk)2

= 1

2
(

λDk
)2

(
1 + 3λ2

Dk2)
= 1

2
(

λDk
)2 +

3
2 ,

(89)

and finds:

δω = −
√

π

8
ωp(

λDk
)3 e
− 1

2λ2
Dk2−

3
2
. (90)

In dimensionless quantities (58), one gets:

δy = −
√

π

8
1
x3 e−

1
2x2−

3
2 . (91)

Equations (82) and (91) are visualized in Figure 2 together with the numerical solution
discussed in Section 4. One can immediately see that the agreement between the numerical
solution and the analytical one is much better for smaller values of x corresponding to
small wave numbers. The assumption of small wave numbers is part of the analytical
calculation presented above (see, e.g., Equation (80)) and, therefore, the deviation between
the analytical and numerical solutions for larger wave numbers was predictable.

Note that as soon as the case λDk � 1 is considered, one can further approximate
Equation (90) by

δω = −
√

π

8
ωp(

λDk
)3 e
− 1

2λ2
Dk2 , (92)

which is in perfect agreement with Equation (17) of [6]. A discussion about the validity
and possible improvements of asymptotic formulas for the Landau damping rates of
electrostatic waves can be found in [17].

Using the form (66) in the electric field given by Equation (19), yields:

δE
(

x, t
)

∝ δE
(
k, ω

)
ei(kx−ωt) ∝ e−iωRt+δωt. (93)

As δω < 0 was derived, one finds damping of the electric field associated with the
wave. This damping is the renowned Landau damping and the corresponding damping
rate is given by Equations (90) or (92) depending on the desired accuracy.

6. Discussion and Conclusions

The derivations and discussions, presented in the current paper, are based on lecture
notes I have developed for a course about magnetohydrodynamics. The aim was to obtain
a mathematically simpler description of Landau damping compared to what Landau
originally developed in his seminal paper [6]. This means, in particular, that tools of
complex analysis, such as contour integrals, are avoided and one just solves standard
integrals in combination with imaginary error functions.

Although using methods of complex analysis was avoided throughout the current
paper, one still arrives at the correct Langmuir dispersion relation as given by Equation (81)
as well as the correct Landau damping rate as given by Equation (90). These results were
obtained analytically by employing Equations (61) and (80). The more general dispersion
relation is given by Equation (57) corresponding to a nonlinear equation. However, it can
be solved by using standard tools of computational physics. All findings are visualized
in Figure 2.

Although the main intention behind the current paper was to present a simpler
derivation of known results, Equation (53) is quite general since it does not require to
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consider asymptotic limits. Therefore, the method, proposed in this paper, could lead to an
improved understanding of Landau damping in some other limits. Furthermore, it could
be possible that the method developed here can be used to explore other effects such as the
dispersion relation of electron-acoustic waves.

It needs to be emphasized that the exploration of Landau damping is still an active
field of research pursued both in mathematics and in theoretical physics. A comprehensive
overviews of Landau damping which includes some historical remarks, derivations, and
mathematical details can be found in [18,19].
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Appendix A. Some Mathematical Details

Equation (41) can be written as

J
(
α, β
)
= e(β−1)α2

∫ +∞

−∞
dz

1
α− z

e−βz2
. (A1)

Note that α is a complex number, given by Equation (37), and β is a positive real
number. Equation (A1) can be rewritten as:

J
(
α, β
)

= e(β−1)α2 ∫ +∞
−∞ dz α+z

α2−z2 e−βz2

= e(β−1)α2 ∫ +∞
−∞ dz α

α2−z2 e−βz2
,

(A2)

where the symmetry properties of one of the integrals is used. In the limit β→ 0,

J
(
α, β→ 0

)
= e−α2

∫ +∞

−∞
dz

α

α2 − z2 . (A3)

The remaining integral can be solved via substitution:

z = α tanh
(
y
)
, (A4)

and then,
dz = α

[
1− tanh2 (y)]dy, (A5)

in the integral. Furthermore, for the inverse hyperbolic tangent function, the relations,

tanh−1 (+ ∞
)
= −1

2
iπ, (A6)

and
tanh−1 (−∞

)
=

1
2

iπ, (A7)

are employed. Therefore, one gets:∫ +∞

−∞
dz

α

α2 − z2 = −iπ, (A8)

and, thus:
J
(
α, β→ 0

)
= −iπe−α2

. (A9)
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Appendix B. The Newton-Solver

The task is to solve the nonlinear relation given by Equation (60). For convenience, let
us write this equation down again:

1 +
1
x2 −

y2

x4 e−y2/(2x2)K
(
α
)
+ i
√

π

2
y
x3 e−y2/(2x2) = 0. (A10)

In the latter, the function,

K
(
α
)
=
∫ 1

0
dz eα2z2

, (A11)

is used, as well as:

x = λDk, y = ω/ωp, and α =
y√
2x

. (A12)

Therewith, one can write:

K
(
x, y
)
=
∫ 1

0
dz e

y2

2x2 z2
. (A13)

The nonlinear relation above is solved via a standard Newton method; see, e.g., in [20].
The task is to find y for a given x; therefore, it is needed to compute y for each x. This y is
obtained via the iteration method,

yn+1 = yn −
f (yn)

f ′(yn)
, (A14)

where, in the case considered here,

f (y) = 1 +
1
x2 −

y2

x4 e−y2/(2x2)K(x, y) + i
√

π

2
y
x3 e−y2/(2x2). (A15)

Furthermore, one also needs to compute the derivative of the latter function with
respect to y. One derives:

f ′(y) ≡ ∂ f
∂y = −2 y

x4 e−y2/(2x2)K
(

x, y
)
+

y3

x6 e−y2/(2x2)K
(

x, y
)
− y2

x4 e−y2/(2x2)K′
(

x, y
)

+ i
√

π
2

1
x3 e−y2/(2x2) − i

√
π
2

y2

x5 e−y2/(2x2),
(A16)

where

K′
(
x, y
)
=
∫ 1

0
dz

yz2

x2 e
y2

2x2 z2
(A17)

is used.
Combining Equations (A14)–(A17) determines y for a given x numerically. Performing

these calculations for a set of x values yields the dispersion relation y(x) which was
looked for.
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