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Abstract: The basic characteristics of cylindrical as well as spherical solitary and shock waves in
degenerate electron-nucleus plasmas are theoretically investigated. The electron species is assumed
to be cold, ultra-relativistically degenerate, negatively charged gas, whereas the nucleus species is
considered a cold, non-degenerate, positively charged, viscous fluid. The reductive perturbation
technique is utilized in order to reduce the basic equations (governing the degenerate electron-nucleus
plasmas under consideration) to the modified Korteweg-de Vries and Burgers equations. The latter
are numerically solved and analyzed to detect the basic characteristics of solitary and shock waves in
such electron-nucleus plasmas. The nonlinear nucleus-acoustic waves are found to be propagated
in the form of solitary as well as shock waves in such degenerate electron-nucleus plasmas. Their
basic properties as well as their time evolution are significantly modified by the effects of cylindrical
as well as spherical geometries. The results of this study is expected to be applicable not only to
astrophysical compact objects, but also to ultra-cold dense plasmas produced in laboratory.

Keywords: nucleus-acoustic waves; nonlinear waves; nonplanar geometries

1. Introduction

Recently, Mamun, Amina and Schlickeiser [1,2] have first used the name “nucleus-
acoustic (NA) waves” for the study of NA shock waves in strongly coupled degenerate
plasmas [1] as well as NA solitary waves in self-gravitating degenerate plasmas [2]. The
NA waves (NAWs) are degenerate pressure driven acoustic type of waves. They are
completely new since they exist in degenerate plasmas at absolute zero temperature, but
they do not exist in non-degenerate plasmas at either absolute zero or finite temperature.
The degenerate plasmas [3–5] containing negatively charged degenerate electron gas and
positively charged nucleus or ion fluid have important applications not only in astrophys-
ical compact objects [3–7], but also in ultra-cold dense plasmas produced in laboratory
devices [8–12]. The degenerate electron gas is formed by increasing its pressure more and
more so that it cannot be compressed anymore due to Pauli’s exclusion principle. This
implies that there is no extra space in electron gas for more electrons to exist, and as a result,
the space among electrons is infinitesimally small. This corresponds to an extremely high
density electron gas with ∆x → 0 and ∆p→ ∞, where ∆x and ∆p are the uncertainties in
position and momentum, respectively. This generates an extremely high pressure because
of Heisenberg’s uncertainty principle, ∆x∆p ≥ h̄/2, where h̄ is the reduced Planck constant.
This pressure is called the electron degenerate pressure [3–6]. The latter is the function of
only number density of the degenerate electron gas.

The electron degenerate pressure Pe can be expressed as [3–6,13]

Pe = Pe0

(
Ne

Ne0

)γ

, (1)
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where Ne is the number density of the degenerate electron gas, Ne0 represents Ne and
Pe0 represents Pe at equilibrium, γ = 5/3 and γ = 4/3 are, respectively, for non-
relativistically and cold ultra-relativistically degenerate electron (CUDE) gas, according to
Chandrasekhar [3–5]. However, the CUDE pressure (γ = 4/3) is of the present interest.
The CUDE pressures [5,6,13], Pe and Pe0 can, respectively, be expressed as

Pe = Pe0n
4
3
e , (2)

Pe0 '
3
4

h̄cN
4
3

e0, (3)

where ne = Ne/Ne0, and c is the speed of light in vacuum. It is clear that the CUDE
pressure Pe depends only on Ne and on its equilibrium value, Ne0.

On the basis of Mamun, Amina and Schlickeiser [1,2], a number of theoretical in-
vestigations [14–22] on nonlinear NAWs in degenerate quantum plasmas under different
situations have been made during the last five years. However, in these studies the length
scale, phase speed and dispersion properties of the NAWs are not defined. The dependent
as well as independent variables are also not properly normalized. There are also some
studies [13,14,22], where “ion-acoustic (IA) waves (IAWs)” are used instead of the NAWs.
This is not correct, since at absolute zero temperature the degenerate electron gas does
not allow the IAWs to exist, but does allow the NAWs to exist. This fact along with the
concept of the IAWs [23,24] have lead Mamun [25] to introduce proper length scale as well
as time scale of the NAWs for the study of the linear propagation of the latter. The linear
dispersion relation for the NAWs [25], propagating in cold degenerate electron-nucleus
plasmas (CDENPs), is given by

ω =
kCq√

1 + k2λ2
Dq

, (4)

where ω is the angular frequency and k is the propagation constant of the NAWs; λDq =

(Z h̄cN 1/3
e0 /4πN0Z2e2)1/2 and τp = ω−1

p = (m/4πN0Z2e2)1/2 are, respectively, the
length scale and the time scale (inverse of the nucleus plasma frequency) of the NAWs;
Cq = λDq/τp = (γPe0/ρn)1/2 = (Z h̄cN 1/3

e0 /m)1/2 is the speed of the NAWs, in which
ρn = mN0 is the nucleus mass density, N0 = Ne0/Z is the equilibrium nucleus number
density, and m (Z) is the mass (charge state) of the nucleus species, and e is the charge of
the proton.

The dispersion relation defined by Equation (4) for the long wavelength NAWs
(kλDq � 1) becomes ω ' kCq. There is an important issue on the basic differences
between IAWs and NAWs since the form of their dispersion relations are identical. Their
basic differences can be pinpointed as follows:

• The IAWs are driven by the electron thermal pressure depending on the electron
temperature and number density, whereas the NAWs are driven by the electron
degenerate pressure depending only on the electron number density.

• The non-degenerate plasmas at finite temperature allow the IAWs to exist, but do not
allow the NAWs to exist.

• The degenerate plasmas at absolute zero temperature do not allow the IAWs to exist,
but do allow the NAWs to exist.

• The NAWs and IAWs are completely different from the view of their length scale and
phase speed.

The present paper is attempted to study the basic characteristics of cylindrical as well
as spherical solitary and shock waves associated with the NAWs (defined by Equation (4))
in the CDENPs under consideration. The paper is structured as follows. The normalized
basic equations describing the nonlinear dynamics of the NAWs in the CDENPs under
consideration are provided in Section 2. To study cylindrical and spherical solitary waves,
a modified Korteweg-de Vries (MK-dV) equation is obtained and properly examined in
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Section 3. To identify the basic features of the cylindrical and spherical shock waves, a
modified Burgers (MBurgers) equation is also obtained and critically examined in Section 4.
A brief discussion is given in Section 5.

2. Basic Equations

The CDENPs containing the CUDE gas [3–6,26,27] and the cold viscous fluid of any
nucleus like 1

1H or [3–5] or 4
2He or 12

6 C or 16
8 O [6,26,27] are considered. The macroscopic

state of such CDENPs is described in nonplanar geometry as

∂Φ
∂R

=
1

eNe

∂Pe

∂R
, (5)

∂N
∂T

+
1

Rν

∂

∂R
(RνNU ) = 0, (6)

∂U
∂T

+ U ∂U
∂R

= −Ze
m

∂Φ
∂R
− ηn

∂2U
∂R2 , (7)

1
Rν

∂

∂R

(
Rν ∂Φ

∂R

)
= 4πe(Ne −ZN ), (8)

where ν = 1 and ν = 2 represent the cylindrical and spherical geometries, respectivel, N
is the nucleus fluid number density; U is the nucleus fluid speed, Φ is the electrostatic
potential, m and Ze are, respectively, the mass and charge of the nucleus species, T and R
are the time and space variables, respectively, and ηn is the coefficient of dynamic viscosity
for the cold nucleus fluid. To note is that in Equation (5), the inertia of the CUDE gas is
negligible compared to that of the viscous nucleus fluid, and that in Equation (7) the effects
of the self-gravitational field and nucleus degeneracy are negligible in comparison with
those of the electrostatic field and electron degeneracy, respectively.

To describe the equilibrium state of the CDENPs under consideration, it is reasonably
assumed thatN = N0, U = 0, and Φ = 0 at equilibrium. Thus, the equilibrium state of the
CDENPs under consideration is described by

Ne0 = ZN0, (9)

Pe0 = K, (10)

where Equation (9) represents the equilibrium charge neutrality condition, and in
Equation (10), K is the integration constant, given by Equation (3).

To find the expression for the normalized ultra-relativistically degenerate electron
number density ne in terms of the normalized electrostatic potential, φ = 3eNe0Φ/4Pe0,
first, substitute Equation (2) and R = rλDq (where r is the normalized space variable) into
Equation (5). Thus, Equation (5) reduces to

∂φ

∂r
= n−

2
3

e
∂ne

∂r
= 3

∂n
1
3
e

∂r
. (11)

Next, integrating Equation (11), and obtaining the integration constant as 3 (since
φ = 0 and ne = 1 at equilibrium), ne can finally be expressed as

ne =

(
1 +

φ

3

)3
. (12)

To normalize Equations (6)–(8), N = nN0, U = uCq, Φ = 4φPe0/3Ne0e, T = tτp,
R = rλDq, ηn = ηλDqCq, and Equation (12) are substituted into Equations (6)–(8). The
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nonlinear propagation of the NAWs in CDENPs is, therefore, governed by the following
normalized equations:

∂n
∂t

+
1
rν

∂

∂r
(rνnu) = 0, (13)

∂u
∂t

+ u
∂u
∂r

= −∂φ

∂r
− η

∂2u
∂r2 , (14)

1
rν

∂

∂r

(
rν ∂φ

∂r

)
= 1 + φ +

φ2

3
+

φ3

27
− n. (15)

Let us note that the length scale, (λDq), and the NA speed, (Cq), depend on the CUDE
pressure, which is given by Equation (3), and that the simple form of the normalized
basic equations given by Equations (13)–(15) are obtained by the special choice of the
normalization used.

3. MK-dV Equation

The MK-dV equation for the nonlinear propagation of the NAWs in the CDENPs is
derived by the reductive perturbation technique (RPT) which requires first the stretching
of the independent variables, r and t as [28]

ξ = ε
1
2 (r− Vpt), (16)

τ = ε
3
2 t, (17)

and next the expansion of the dependent variables, n, u and φ as [28]

n = 1 + εn(1) + ε2n(2) + · · ·, (18)

u = εu(1) + ε2u(2) + · · ·, (19)

φ = εφ(1) + ε2φ(2) + · · ·, (20)

where Vp = ω/kCq is the normalized NAW phase speed, ξ is normalized by λDq, τ is
normalized by τp, and ε is a smallness parameter satisfying 0 < ε < 1.

Using Equations (16)–(20) in the system (13)–(15), taking the coefficients of ε3/2 from
Equation (13) as well as from Equation (14), and the coefficients of ε from Equation (15),
one obtains:

n(1) =
u(1)

Vp
, (21)

u(1) =
φ(1)

Vp
, (22)

Vp = 1. (23)

The relation (23), representing ω = kCq, is the linear dispersion relation for the long
wavelength NAWs, which can also be obtained from Equation (4) for a long wavelength
limit, kλDq � 1. This means that the RPT, utilized here, is valid for the long wavelength
NAWs, and that the phase speed of the long wavelength NAWs is directly proportional to
the square root of the degenerate pressure of the CUDE gas, while inversely proportional to
the square root of the mass density of cold nucleus fluid. Thus, in the NAWs, the pressure
of the CUDE gas gives rise to the restoring force, and the mass density of the nucleus fluid
gives rise to the inertia.
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Again, using Equations (16)–(20) in Equations (13)–(15), keeping the coefficients of
ε5/2 from Equation (13) as well as from Equation (14), and keeping the coefficients of ε2

from Equation (15), one obtains:

∂n(1)

∂τ
+

∂

∂ξ

[
u(2) + n(1)u(1) − Vpn(2)

]
+

ν

Vpτ
u(1) = 0, (24)

∂u(1)

∂τ
+

∂

∂ξ

[
φ(2) +

1
2
[u(1)]2 − Vpu(2)

]
= 0, (25)

∂2φ(1)

∂ξ2 − φ(2) − 1
3

[
φ(1)

]2
+ n(2) = 0. (26)

Now, using Equations (21)–(26), φ(2), u(2) and n(2) can be eliminated to obtain the
MK-dV equation in the form:

∂φ(1)

∂τ
+

ν

2τ
φ(1) +Aφ(1) ∂φ(1)

∂ξ
+ B ∂3φ(1)

∂ξ3 = 0, (27)

where A = 7/6 and B = 1/2 are the nonlinear and dispersion coefficients, respectively.
Let us note that the second term of the MK-dV Equation (27) is due to the effect of

cylindrical or spherical geometry, which disappears for a large value of τ. To examine the
effects of cylindrical and spherical geometries on the NA solitary waves in the CDENPs
under consideration, one has to solve the MK-dV Equation (27) numerically by using the
stationary solitary wave solution [29] of Equation (27) with ν = 0 as an initial profile,

φ = φ0 sech2
(

ζ

∆

)
, (28)

where φ = φ(1), ζ = ξ −U0τ with U0 and ζ being normalized by Cq and λDq, respectively,
and φ0 = 3U0/A and ∆ = 2

√
B/U0 are the normalized amplitude and width of the initial

pulse, respectively.
The positive values of A and B along with Equation (28) (with φ0 = 3U0/A,

∆ = 2
√
B/U0 and U0 > 0) indicate that the CDENPs under consideration support cylindri-

cal as well as spherical solitary waves with φ > 0. The MK-dV Equation (27) is numerically
solved and analyzed for nonplanar (ν = 1 and ν = 2) geometries. Let us notice that
τ < 0 means that the solitary waves propagate inward the direction of the cylinder or
sphere [30]. It is also used to converse the numerical solution of the MK-dV equation given
by Equation (27). The results are displayed in Figure 1.
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Figure 1. Time evolution of (left panel) cylindrical (ν = 1) and (right panel) spherical (ν = 2.0)
nucleus-acoustic (NA) solitary waves in the cold degenerate electron-nucleus plasmas (CDENPs)
under consideration for U0 = 0.1, τ = −20 (solid line), −10 (dotted line), −5 (dashed line), and −2.5
(dashed-dotted line). See text for details.
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It shows that the time evolution of the solitary waves in the CDENPs under considera-
tion are significantly modified by the effects of cylindrical and spherical geometries. It is
observed from Figure 1 that the amplitude of the spherical solitary waves is approximately
two times higher than that of the cylindrical ones, and that the time evolution of the
spherical solitary waves is faster than that of the cylindrical ones.

4. MBurgers Equation

To derive the MBurgers equation for the nonlinear propagation of the NAWs, one can
again employ the RPT [28], but exploit different stretching of the independent variables r
and t as [31,32]

ξ = ε(r− Vpt), (29)

τ = ε2t. (30)

Now, using Equations (29), (30) and (18)–(20) in the system (13)–(15), and taking the
coefficients of ε2 from Equations (13) and (14), and the coefficients of ε from Equation (15),
a set of Equations (21)–(23) is obtained. However, using Equations (29), (30), (18)–(20) in
Equations (13)–(15), and again taking the coefficients of ε3 from Equations (13) and (14),
and the coefficients of ε2 from Equation (15), one obtains:

∂n(1)

∂τ
+

∂

∂ξ

[
u(2) + n(1)u(1) − Vpn(2)

]
+

ν

Vpτ
u(1) = 0, (31)

∂u(1)

∂τ
+

∂

∂ξ

[
φ(2) +

1
2
[u(1)]2 − Vpu(2)

]
= η

∂2u(1)

∂r2 , (32)

φ(2) +
1
3

[
φ(1)

]2
− n(2) = 0. (33)

Using Equations (21)–(23) and (31)–(33), φ(2), u(2) and n(2) can be eliminated to obtain
the MBurgers Equation (34) in the form:

∂φ(1)

∂τ
+

ν

2τ
φ(1) +Aφ(1) ∂φ(1)

∂ξ
= C ∂2φ(1)

∂ξ2 , (34)

where C = η/2 is the dissipation coefficient. One can also see that the second term of the
MBurgers Equation (34) is due to the effect of cylindrical or spherical geometry, which
disappears for a large value of τ.

To define shock wave solution clearly, first, consider ν = 0 in the MBurgers
Equation (34). The latter (for ν = 0) can be expressed as:

∂φ(1)

∂τ
+Aφ(1) ∂φ(1)

∂ξ
= C ∂2φ(1)

∂ξ2 , (35)

which is the standard Burgers equation. To obtain the stationary shock wave solution of
this standard Burgers equation, a frame moving (ζ = ξ − U0τ; τ′ = τ) with the constant
speed U0, the steady state condition (∂φ(1)/∂τ′ = 0) and φ(1) = φ are assumed. These
assumptions reduce Equation (35) to

dφ

dζ
= −U0

C
φ +

A
2C

φ2, (36)

where the integration constant is found to be zero, since φ→ 0 and dφ/dζ → 0 at ζ → ∞.
Now, skipping few steps of mathematics of undergraduate level, the shock wave solution
of Equation (6) is given by [31]

φ =
1
2

φm

[
1− tanh

(
ζ

δ

)]
, (37)
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where φm = 2U0/A and δ = 2C/U0 are, respectively, the amplitude and thickness of the
shock waves. Equation (37) represents the stationary shock wave solution of the MBurgers
Equation (35).

The positive values of A and C along with Equation (37) imply that the CDENPs
under consideration support cylindrical as well as spherical shock waves with φ > 0.

To examine the effects of cylindrical and spherical geometries on the NA shock waves
in the CDENPs under consideration, one has to solve the MBurgers Equation (34) nu-
merically by using the stationary shock wave solution of Equation (34) with ν = 0 as the
initial profile given by Equation (37). The MBurgers equation is numerically solved for
cylindrical and spherical geometries. Let us again notice that τ < 0 means that the shock
waves propagate inward direction of the cylinder and sphere [30], and that τ < 0 is used
to converse its numerical solution. The results are shown in Figure 2.
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Figure 2. Time evolution of (left panel) cylindrical (ν = 1) and (right panel) spherical (ν = 2) NA
shock waves in the CDENPs under consideration for U0 = 0.1, η = 1, τ = −20 (solid line), −10
(dotted line), −5.0 (dashed line), and −2.5 (dashed-dotted line). See text for details.

The numerical results, shown in Figure 2, point out that the time evolution of the NA
shock waves in the CDENPs under consideration are significantly modified by the effects
of the cylindrical and spherical geometries. The numerical results observed in Figure 2
indicate that the amplitude of the spherical shock waves is approximately two times higher
than that of the cylindrical ones, and that the time evolution of the spherical shock waves
is faster than that of the cylindrical ones.

The profiles represented by the analytic solution of the standard Burgers Equation (37)
or those obtained from the numerical solutions of the MBurgers Equation (34) are known
as shock waves. The latter are formed when the effect of this dissipation represented
by the term containing C is balanced by that of the nonlinearity represented by the term
containing A.

5. Discussion

The nonlinear propagation of the NAWs in the CDENPs composed of CUDE gas [3–5]
and the viscous fluid of nucleus of any element like 1

1H [3–5] or 4
2He or 12

6 C or 16
8 O [6,26,27]

has been considered to identify the characteristics of the nonlinear waves formed in the
CDENPs under consideration. The results obtained from current study study are as follows:

• The phase speed of the NAWs is given by

Cq =

√
γPe0

ρn
=

√
Z h̄c
mΛe

, (38)

where Equation (3) is used, and Λe = N−1/3
e0 is the inter-electron distance. This

expression indicates that C2
q is inversely proportional to Λe and the mass, m, of a

nucleus species, but is directly proportional to the number of protons, Z , in the
nucleus species. The phase speed does not depend on the temperature of the electron
or nucleus species. This is an unique feature of the NAWs by which the NAWs
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appeared as new waves, and are completely different from the IAWs [23,24] which do
not exist at absolute zero-temperature.

• The dimensional amplitudes of both types of nonlinear waves are determined by
using Equations (3) and (38), and are expressed as:

9
7

√
h̄c
Λe

mV2
0

Ze2 and
27
28

√
h̄c
Λe

mV2
0

Ze2 , (39)

where V0 is the dimensional speed of the frame of reference. These expressions imply
that the amplitudes of the both types of nonlinear waves are directly proportional
to V0, and to the square root of the mass of the nucleus species,

√
m, but inversely

proportional to the square root of the inter-electron distance,
√

Λe, and the number of
the proton,

√
Z , in a nucleus species.

• The dimensional widths of both types of nonlinear waves are given by

√
2λDq

√
Cq

V0
and

ηn

V0
. (40)

These expressions imply that the width of the solitary waves is the order of a fraction
of the length scale, λDq, of the waves, since Cq is a fraction of V0 for the formation of the
NA solitary waves. The width of the NA shock waves increases with the dynamical
viscosity coefficient, ηn, of the nucleus fluid, but decreases with the speed, V0.

• The amplitude (width) of the cylindrical NA solitary and shock waves is smaller
(larger) than that of the spherical NA solitary and shock waves. The time evolution of
the spherical solitary and shock waves is faster than that of the NA cylindrical solitary
and shock waves.

• The amplitude (width) of the NA solitary waves is minimum (maximum) for a very
large value of τ, which causes to neglect the effect of cylindrical and spherical geome-
tries, and gives rise to one dimensional (1D) planar NA solitary and shock waves.
Thus, for a large value of τ, 1D planar, cylindrical and spherical solitary and shock
waves are found to be identical.

• The length scale as well as the phase speed, height, and thickness of the NA solitary
and shock waves are completely independent of temperature. These are completely
new linear and nonlinear features of the NAWs under consideration.

The exact analytical solutions of Equations (27) and (34) are difficult to be obtained
because of the nonplanar term (containing ν), where a singularity arises at τ = 0. A
class of analytical solutions of Equation (27) was obtained from the solution of the stan-
dard K-dV equation [33,34]. However, we are interested to find a solitary wave solu-
tion of Equation (27) with the standard boundary condition, viz., lim ξ→−∞ φ(ξ, τ) =
lim ξ→∞ φ(ξ, τ). Therefore, Equation (27) was solved numerically in order to find the spa-
tiotemporal evolution of an initially imposed solitary profile at τ = τmin < 0 with the
standard boundary conditions in (ξ, τ) domain. It was also assumed that the solution
φ(ξ, τ) along with its derivative tends to zero as ξ → ±∞. Further, the solutions of Equa-
tions (27) and (34) with ν = 0 as an initial profiles (i.e., φ(ξ, τmin < 0) = φ0 sech2(ξ/∆)
for Equation (27) and φ(ξ, τmin < 0) = (φm/2)(1− tanh [ξ/δ]) for Equation (34)) were
used. The finite difference method was used for numerical solutions. On the other hand,
the traveling wave solutions [35] of combined K-dV-modified K-dV equations as well as
complexly coupled-K-dV equation are obtained by utilizing the technique of the Bäcklund
transformation.

Recently, the trace of nuclei of massive elements, such as 56
26Fe, 85

37Rb, 96
42Mo, etc. in

white dwarf and neutron stars has also been predicted [36,37]. The densities of the stars
are small to neglect their roles in the formation of the NA solitary and shock waves in the
CDENPs [3–6,26,27] under consideration.
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Let us add here that the roles of magnetic field and rotation of neutron stars in the
formation of the NA solitary and shock waves are also important problems, but those are
beyond. the scope of the present study. However, the theory, presented here, is valid for
the long wavelength electrostatic NAWs propagating along the magnetic lines of force of
white dwarfs and non-rotating neutron stars.

Funding: This research received no external funding.

Acknowledgments: The work is dedicated to an eminent space and astrophysicist, Reinhard Schlick-
eiser, who supervised the author during his research stay at Ruhr Universität Bochum (Germany) as
a Friedrich Wilhelm Bessel Research Awardee, on the occasion of his 70th Birth Anniversary. The
author wishes him a very long active and cherished life on the same occasion.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Mamun, A.A.; Amina, M.; Schlickeiser, R. Nucleus-acoustic shock (waves in a strongly coupled self-gravitating degenerate

quantum plasma. Phys. Plasmas 2016, 23, 094503. [CrossRef]
2. Mamun, A.A.; Amina, M.; Schlickeiser, R. Heavy NA spherical solitons in self-gravitating super-dense plasmas. Phys. Plasmas

2017, 24, 042307. [CrossRef]
3. Chandrasekhar, S. The highly collapsed configurations of a stellar mass. Mon. Not. R. Astron. Soc. 1931, 91, 456–4566. [CrossRef]
4. Chandrasekhar, S. The maximum mass of ideal white dwarfs. Astrophys. J. 1931, 74, 81–82. [CrossRef]
5. Chandrasekhar, S. The pressure in the interior of a star. Mon. Not. R. Astron. Soc. 1936, 96, 644–646. [CrossRef]
6. Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects, 1st ed.; Wiley-VCH Verlag:

Weinheim, Germany, 1983; pp. 15–375.
7. Potekhin, A.Y.; Chabrier, G. Thermodynamic functions of dense plasmas: Analytic approximations for astrophysical applications.

Contrib. Plasma Phys. 2010, 50, 82–87. [CrossRef]
8. Fletcher, R.S.; Zhang, X.L.; Rolston, S.L. Observation of collective modes of ultracold plasmas. Phys. Rev. Lett. 2006, 96, 105003.

[CrossRef]
9. Glenzer, S.H.; Redmer, R. X-ray Thomson scattering in high energy density plasmas. Rev. Mod. Phys. 2009, 81, 1625. [CrossRef]
10. Drake, R.P. Perspectives on high-energy-density physics. Phys. Plasmas 2009, 16, 055501. [CrossRef]
11. Drake, R.P. High-energy-density physics. Phys. Today 2010, 63, 18. [CrossRef]
12. Hu, S.X.; Collins, L.A.; Boehly, T.R.; Kress, J.D.; Goncharov, V.N.; Skupsky, S. First-principles thermal conductivity of warm-dense

deuterium plasmas for inertial confinement fusion applications. Phys. Rev. E 2014, 89, 04105. [CrossRef]
13. Shukla, P.K.; Mamun, A.A.; Mendis, D.A. Nonlinear ion modes in a dense plasma with strongly coupled ions and degenerate

electron fluids. Phys. Rev. E 2011, 84, 026405. [CrossRef]
14. Sultana, S.; Schlickeiser, R. Fully nonlinear heavy ion-acoustic solitary waves in astrophysical degenerate relativistic quantum

plasmas. Astrophys. Space Sci. 2018, 363, 1–9. [CrossRef]
15. Sultana S.; Schlickeiser, R. Arbitrary amplitude nucleus-acoustic solitons in multi-ion quantum plasmas with relativistically

degenerate electrons. Phys. Plasmas 2018, 25, 022110. [CrossRef]
16. Sultana, S.; Islam S.; Mamun, A.A.; Schlickeiser, R. Modulated heavy nucleus-acoustic waves and associated rogue waves in a

degenerate relativistic quantum plasma system. Phys. Plasmas 2018, 25, 012113. [CrossRef]
17. Chowdhury, N.A.; Hasan, M.M.; Mannan, A.; Mamun, A.A. Nucleus-acoustic envelope solitons and their modulational instability

in a degenerate quantum plasma system. Vacuum 2018, 147, 31–37. [CrossRef]
18. Karmakar, P.K.; Das, P. Nucleus-acoustic waves: Excitation, propagation, and stability. Phys. Plasmas 2018, 25, 082902. [CrossRef]
19. Das, P.; Karmakar, P.K. Nonlinear nucleus-acoustic waves in strongly coupled degenerate quantum plasmas. Europhys. Lett. 2019,

126, 10001. [CrossRef]
20. Mannan, A.; Sultana, S.; Mamun, A.A. Arbitrary amplitude heavy nucleus-acoustic solitary waves in thermally degenerate

plasmas. IEEE Trans. Plasma Sci. 2020, 48, 4093–4102. [CrossRef]
21. Kaur, R.; Singh, K.; Saini, N.S. Heavy-and light-nuclei acoustic dressed shock waves in white dwarfs. Chin. J. Phys. 2021,

72, 286–298. [CrossRef]
22. Saini, N.S.; Kaur, R. Ion-acoustic solitary, breathers, and freak waves in a degenerate quantum plasma. Waves Random Complex

Media 2021, 1–22. [CrossRef]
23. Tonks, L.; Langmuir, I. Oscillations in ionized gases. Phys. Rev. 1929, 33, 95–210. [CrossRef]
24. Revans, R.W. The transmission of waves through an ionized gas. Phys. Rev. 1933, 44, 798–902. [CrossRef]
25. Mamun, A.A. Degenerate pressure driven modified nucleus-acoustic waves in degenerate plasmas. Phys. Plasmas 2018, 25, 024502.

[CrossRef]
26. Koester, D.; Chanmugam, G. Physics of white dwarf stars. Rep. Prog. Phys. 1990, 53, 837–915. [CrossRef]
27. Koester, D. White dwarfs: Recent developments. Astron. Astrophys. Rev. 2002, 11, 33–66. [CrossRef]

http://doi.org/10.1063/1.4962686
http://dx.doi.org/10.1063/1.4981262
http://dx.doi.org/10.1093/mnras/91.5.456
http://dx.doi.org/10.1086/143324
http://dx.doi.org/10.1093/mnras/96.7.644
http://dx.doi.org/10.1002/ctpp.201010017
http://dx.doi.org/10.1103/PhysRevLett.96.105003
http://dx.doi.org/10.1103/RevModPhys.81.1625
http://dx.doi.org/10.1063/1.3078101
http://dx.doi.org/10.1063/1.3455249
http://dx.doi.org/10.1103/PhysRevE.89.043105
http://dx.doi.org/10.1103/PhysRevE.84.026405
http://dx.doi.org/10.1007/s10509-018-3317-y
http://dx.doi.org/10.1063/1.5023302
http://dx.doi.org/10.1063/1.5005605
http://dx.doi.org/10.1016/j.vacuum.2017.10.004
http://dx.doi.org/10.1063/1.5044610
http://dx.doi.org/10.1209/0295-5075/126/10001
http://dx.doi.org/10.1109/TPS.2020.3038251
http://dx.doi.org/10.1016/j.cjph.2021.05.008
http://dx.doi.org/10.1080/17455030.2021.1912435
http://dx.doi.org/10.1103/PhysRev.33.195
http://dx.doi.org/10.1103/PhysRev.44.798
http://dx.doi.org/10.1063/1.5022554
http://dx.doi.org/10.1088/0034-4885/53/7/001
http://dx.doi.org/10.1007/s001590100015


Physics 2021, 3 1097

28. Washimi, H.; Taniuti, T. Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 1966, 17, 996–997.
[CrossRef]

29. Mamun, A.A.; Shukla, P.K. Effects of nonthermal distribution of electrons and polarity of net dust-charge number density on
nonplanar dust-ion-acoustic solitary waves. Phys. Rev. E 2009, 80, 037401. [CrossRef] [PubMed]

30. Maxon, S.; Viecelli, J. Spherical solitons. Phys. Rev. Lett. 1974, 32, 4–6. [CrossRef]
31. Mamun, A.A.; Cairns, R.A. Dust-acoustic shock waves due to strong correlation among arbitrarily charged dust. Phys. Rev. E 2009,

79, 055401. [CrossRef]
32. Mamun, A.A. On stretching of plasma parameters and related open issues for the study of dust-ion-acoustic and dust-acoustic

shock waves in dusty plasmas. Phys. Plasmas 2019, 26, 084501. [CrossRef]
33. Hirota, R. Exact solutions to the equation describing “cylindrical solitons”. Phys. Lett. A 1979, 71, 393–394. [CrossRef]
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