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Abstract: In the present paper, the process of inverse double-Compton (IDC) scattering is considered
in the context of astrophysical applications. It is assumed that the two hard X-ray photons emitted
from an astrophysical source are scattered on a free electron and converted into a single soft photon of
optical range. Using the QED S-matrix formalism for the derivation of a cross-section of direct double-
Compton (DDC) scattering and assuming detailed balance conditions, an analytical expression for the
cross-section of the IDC process is presented. It is shown that at fixed energies of incident photons,
the inverse cross-section has no infrared divergences, and its behavior is completely defined by
the spectral characteristics of the photon source itself, in particular by the finite interaction time
of radiation with an electron. Thus, even for the direct process, the problem of resolving infrared
divergence actually refers to a real physical source of radiation in which photons are never actually
plane waves. As a result, the physical frequency profile of the scattered radiation for DDC as well as
for IDC processes is a function of both the intensity and line shape of the incident photon field.
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The object of this paper is to give an expression for the inverse double-Compton effect
(IDC), i.e., the third-order process in which two hard photons colliding with a free electron
give rise to one scattered soft photon. The interest in such calculations lies in the fact that,
though the cross-section for this process is small in comparison with ordinary Compton
scattering, nevertheless, the high-intensity X-ray photons in the vicinity of astrophysical
sources allow a possible study of these phenomena.

The ordinary direct double-Compton scattering has been repeatedly considered by
many authors [1–4]. The exact relativistic expressions for the differential cross-section of the
DC process accounting for angular correlations were obtained in [5] within the quantum
electrodynamics (QED) formalism of the S-matrix. Various proposals for laboratory studies
of the double-Compton effect have also been actively discussed in recent decades [6–8].
In addition, astrophysical applications are also of particular interest when describing the
spectral features of various astrophysical sources and comparing them with ground-based
or satellite observations [9].

The inverse double-Compton scattering is also of particular importance. Under as-
trophysical conditions, the IDC can be important for objects with a very high density of
photons (for example, X-ray sources) or the in the early universe at a high intensity of
the CMB. In these cases, the intensity of the generated high-frequency Raman radiation
can be noticeable. For example, in the presence of a powerful line in the spectrum of
the X-ray shell, in the observed spectrum, there will be an admixture of a line with a
doubled energy, which cannot be identified with any chemical element. The importance
of taking this effect into account is determined by the accuracy with which it is necessary
to describe the physical parameters of the source and to avoid false identifications and
estimates. Processes of this kind in various astronomical applications have been considered
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earlier [10]. In particular, in [10,11], the inverse processes included in the equations of
balance and radiation transfer were expressed through direct ones, following the principle
of detailed balance. However, as it is shown below, the forward process has divergence in
the infrared region that is absent in the reverse process if one performs direct calculations.

When considering the direct double-Compton effect, there is some subtle effect of a
fundamental nature—a feature of the formation of the infrared (low-frequency) end of the
spectrum of the resulting photons—the so-called infrared catastrophe [11]. In the literature,
there are a large number of versions of the solution to this problem [5,12]. To consistently
cure the issue, the DC process has to be treated together with the next-to-leading-order
(NLO) radiative corrections to the Compton process [11,13]. In this context, one is usually
interested in the total Compton scattering cross-section at fine structure-constant order α3.
The NLO corrections display a logarithmic divergence, which can be shown to cancel with
the corresponding DC one. Employing a regularization—introducing a photon mass in
the standard approach [13]—in the calculation of both cross-sections and summing the
two, the dependence on the regularization parameters drops out, leaving a finite radiative
correction at order α3. The drawback of this approach is that the radiative correction
cross-section now depends on the energy resolution of the experiment, ωres. The argument
to justify summing the two processes is that below some ωres � 1, the experiment is unable
to distinguish contributions from virtual photon emission, relevant to the computation of
the NLO correction, and from real photon emission by DC. Adding all contributions to the
total CS scattering cross-section, it was found that the correction can exceed the naive α/π
level at sufficiently high energies [14]. It is should be noted that direct and inverse process
were recently studied in laboratory conditions [15]. In [15], it was shown that measured
direct double-Compton (DDC) and IDC cross-sections are of comparable magnitudes and
agree with theoretical predictions. From this, it can be concluded that it is important to
take into account both processes in problems related to radiation transfer.

However, all of the regularization procedures are related to the consideration of the
final state of the system [13]. In this paper, a different physical approach is proposed for
solving this problem based on the analysis of the input photon—taking into account its
finiteness in time. Indeed, the standard consideration assumes that the incident photon is
taken in the form of a plane wave infinite in time and space [16–19]. Only in this case, there
is the possibility to form an arbitrarily low-frequency photon at the end of the process.
However, in reality, there are no such waves in nature. There are only real photons, which
are formed by some radiation mechanism during a finite time interval [20]. As a result,
the scattering of such a photon by an electron leads to a finite spectrum that is completely
finite in the entire frequency range. From the point of view of observational astrophysics,
this provides an alternative way to determine the parameters of an incident photon from
the spectrum of the low-frequency wing. Thus, we obtain a new independent channel of
information about the mechanism of radiation formation in the source.

Below, it is shown that in real physical conditions, the problem of eliminating the
infrared divergence in the cross-section of the direct process refers to the finite interaction
time of radiation with an electron, which can be introduced at least phenomenologically
within the QED formalism. For these purposes, first, the cross-section of the reverse process
is considered in the context of its astrophysical application. it is assumed that two photons
emitted in the vicinity of some object are scattered on a free electron and convert into a
single photon γ(k1) + γ(k2) + e− → γ(k) + e−. It is also assumed that this process, along
with a direct one, can leave significant distortions in the spectrum of some astrophysical
source in the vicinity of which the events of collisions of photons with an electron gas occur.
The characteristic behavior of the cross-section of the inverse double-Compton scattering is
derived within the framework of the rigorous QED approach.

To begin with, let us recall a brief derivation of the scattering cross-section of the direct
process γ(k) + e− → γ(k1) + γ(k2) + e− [21]. Following [22], the DDC is described by the
third-order S-matrix element (here and below, relativistic units h̄ = c = 1, α = e2/4π are
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used, where h̄ is the reduced Planck constant, c is the speed of light, and e is the electron
charge; the electron mass me is written explicitly):

S(3)
f i = (2π)4δ(4)(p f + k1 + k2 − pi − k) (1)

× mee3√
8V5EiE f ωω1ω2

M(k, k1, k2),

where pi = (Ei, pi), p f = (E f , p f ) are the four-vectors of initial and final electron momenta,
respectively; k = (ω, k) is the four-vector of incident photon with frequency ω and wave
vector k, k1 = (ω1, k1) and k2 = (ω2, k2) are the four-vectors of two outgoing photons,
andM is the Feynman amplitude of the process:

M(k, k1, k2) = u(p f )

{
ε̂(k)

p̂ f − k̂ + me

(k− p f )2 −m2
e

ε̂∗(k1)
−k̂ + k̂1 + p̂ f + me

(k− k1 − p f )2 −m2
e

ε̂∗(k2) + (1↔ 2) (2)

+ε̂∗(k1)
k̂1 + p̂ f + me

(−k1 − p f )2 −m2
e

ε̂(k)
−k̂ + k̂1 + p̂ f + me

(k− k1 − p f )2 −m2
e

ε̂∗(k2) + (1↔ 2)

+ε̂∗(k1)
k̂1 + p̂ f + me

(−k1 − p f )2 −m2
e

ε̂∗(k2)
k̂1 + k̂2 + p̂ f + me

(−k1 − k2 − p f )2 −m2
e

ε̂(k) + (1↔ 2)

}
u(pi).

Here, u(p) is the Dirac spinor for free electron with its Dirac adjoint defined as
u(p) = u†(p)γ0, γµ (µ = 0, 1, 2, 3) are the Dirac matrices, and ε(k) is the polarization
four-vector of a photon k. The contraction of γµ matrices with four-vector a is given by
â = γµaµ.

The transition rate per unit time to one defined state can be found according to the
definition:

w =
|S(3)

f i |
2

T
= V(2π)4δ(4)(p f + k1 + k2 − pi − k) (3)

× m2
e e6

8V5EiE f ωω1ω2
|M(k, k1, k2)|2,

where T → ∞ is the observation time and V is the phase volume. Since we are interested in
a transition rate dw to a group of final states with momenta in the intervals (p f , p f + dp f ),
(k1, k1 + dk1), and (k2, k2 + dk2), Equation (3) has to be multiplied by the number of these
states, which is:

V3d3p f d3k1d3k2

(2π)9 . (4)

With the chosen normalization for the states, the volume V contains one scattering
center and the incident photon flux is F = c/V [23]. Then, the corresponding differential
DDC cross-section can be found as follows:

dσDDC =
dw
F

= δ(4)(p f + k1 + k2 − pi − k) (5)

× m2
e e6

8EiE f ωω1ω2
|M(k, k1, k2)|2

d3p f d3k1d3k2

(2π)5 .
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Integration over final electron momenta in Equation (5) can be written in a four-
dimensional form with the use of the equality [17]:

d3p f

2E f
=
∫

d4 p f δ(p2
f −m2

e )θ(p0
f ), (6)

where m2
e = E2

f − p f and θ(p0
f ) is the Heaviside step function. Finally, performing integra-

tion over d4 p f with the use of delta function properties, one finds [5,7]:

dσDDC = δ((pi + k− k1 − k2)
2 −m2

e ) (7)

× m2
e e6

4Eiωω1ω2
|M(k, k1, k2)|2

d3k1d3k2

(2π)5 .

Let us now specialize to a reference frame where the electron is initially at rest,
i.e., pi = 0 and Ei = me. Then, the argument of the delta function in Equation (7) becomes:

(pi + k− k1 − k2)
2 −m2

e (8)

= 2me(ω−ω1 −ω2)− 2ωω1(1− cos χ1)

−2ωω2(1− cos χ2) + 2ω1ω2(1− cos χ12) = 0,

where χ1 is the angle between vectors k and k1, χ2 is the angle between vectors k and k2,
and χ12 is the angle between vectors k1 and k2. Here, p2

i = m2
e , and k2 = k2

1 = k2
2 = 0 are

assumed. Then, the energy conservation law has the form:

ω2 =
me(ω−ω1)−ωω1(1− cos χ1)

me + ω(1− cos χ2)−ω1(1− cos χ12)
. (9)

Taking into account that in spherical coordinates d3k1(2) = ω2
1(2)dω1(2)dΩ1(2) (where

dΩ1(2) = sin θ1(2)dθ1(2)dφ1(2) and θ1(2), φ1(2) are the spherical angles of vector k1(2)), per-
forming integration over dω2 in Equation (7) with the use of the equality:

∫
dxδ( f (x)) =

∣∣∣∣d f (x)
dx

∣∣∣∣−1

, (10)

and summing over the photon polarizations and electron spin in the initial and final states,
one finds:

dσDDC =
mee6

28π5

(ω1

ω

) me(ω−ω1)−ωω1(1− cos χ1)

(me + ω(1− cos χ2)−ω1(1− cos χ12))2 X(ω, ω1)dω1dΩ1dΩ2, (11)

where:

X(ω, ω1) =
1
4

Tr ∑
polarizations

|M(ω, ω1)|2. (12)

Summation in Equation (11) and algebra with Dirac matrices can be performed in a
fully analytical way with the use of the FeynCalc software [24,25].

To describe the stimulated DDC cross-section, magnitude Equation (2) has to be also
multiplied by the factor

√
Nke

√
Nk1e1 + 1

√
Nk2e2 + 1, where Nke is the number of photons

with a wave vector k and polarization e. In this case, the corresponding flux of incident
photons is F = cNke/V [23]. Then, the number of incident photons vanishes in the cross-
section. If the intensity of the Jke radiation is known, then Nke can be obtained with the
use of the following relation:

Nke =
8π3c2

h̄ω3 Jke. (13)
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It is known that DDC cross-section Equation (11) has infrared divergence of the type
ω−1

1 [5]. In [13], it was shown that accounting of QED radiative corrections leads to the
natural cut-off of the lower limit of frequency ω1, which can be attributed to the minimal
resolution of the detector in the experiment. Below, it is shown that for the inverse process,
the divergence is moved from the problem of the resolution detector of photons in final
states to the source of initial photons.

Using the definition for transition rate Equation (2), one can write the equation for the
cross-section of the inverse double-Compton scattering (IDC) as follows:

dσIDC =
dw
F

= δ(4)(p f + k− pi − k1 − k2) (14)

× m2
e e6

8EiE f ωω1ω2
|M(−k,−k1,−k2)|2

d3p f d3k

(2π)2 .

In the reference frame where the electron is initially at rest (pi = 0), the frequency of
outgoing photon ω takes the form:

ω =
ω1ω2(1− cos χ12) + me(ω1 + ω2)

me + ω1(1− cos χ1) + ω2(1− cos χ2)
. (15)

The scalar products of the four-vectors included in Equation (15) are given by the
following equalities: pik = meω, pik1 = meω1, pik2 = meω2, kk1 = ωω1(1− cos χ1), kk2 =
ωω2(1 − cos χ2), k1k2 = ω1ω2(1 − cos χ12), p f k = meω + ωω1(1 − cos χ1) + ωω2(1 −
cos χ2), p f k1 = meω − ωω1(1 − cos χ1) + ω1ω2(1 − cos χ12), p f k2 = meω − ωω2(1 −
cos χ2) + ω1ω2(1− cos χ12), and p f pi = me(ω1 + ω2 −ω) + m2

e
Then, integration over d3p f , dω and summation over the photon polarizations and

electron spin in the initial and final states gives:

dσIDC =
mee6

28π2

(
1

ω1ω2

)
ω1ω2(1− cos χ12) + me(ω1 + ω2)

(me + ω1(1− cos χ1) + ω2(1− cos χ2))2 X̃(ω1, ω2)dΩ, (16)

where:

X̃(ω1, ω2) =
1
4

Tr ∑
polarizations

|M(−k1,−k2)|2. (17)

The magnitude M for the inverse process in Equation (17) differs from the di-
rect one only in the use of a different expression for the energy conservation law (see
Equations (9) and (15)) and by the replacement k↔ −k, k1 ↔ −k1, and k2 ↔ −k2.

Following [5], one can consider the particular case when particles are moving nearly
in the forward direction. Then, introducing notations x = 1− cos χ1, y = 1− cos χ2, and
z = 1− cos χ12, one finds:

dσIDC = 2παr2
0

(
ω2

1
ω2

2
+

ω2
2

ω2
1
+

2ω1

ω2
+

2ω2

ω1
+ 3

)
(18)

×
(

x
ω2

+
y

ω1
− z

ω1 + ω2

)
dΩ,

where χ1, χ2, and χ12 are assumed to be small, r0 = e2/4πme = 2.8× 10−15 m. As well
as the DDC cross-section, Equation (18) vanishes for scattering in the forward direction,
i.e., when χ1 = χ2 = 0 (i.e., x = y = z = 0 in Equation (18)). From Equation (18), its is
seen that the IDC scattering cross-section (as well as the DDC) is the order α smaller than
single-Compton scattering.
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The dependence on angles χ1, χ1, χ12 in Equation (18) can be expressed in terms of
spherical angles (θ, φ), (θ1, φ1), and (θ2, φ2) with the use of relations:

x = 1− cos φ cos φ1 − cos(θ − θ1) sin φ sin φ1 (19)

y = 1− cos φ cos φ2 − cos(θ − θ2) sin φ sin φ2 (20)

z = 1− cos φ1 cos φ2 − cos(θ1 − θ2) sin φ1 sin φ2 (21)

For a particular case, when two incident photons k1 and k2 are propagating parallel
with each other, it is convenient to choose the z-axis of the spherical coordinate system
along this direction. Then, setting θ1 = θ2 = 0, φ1 = φ2 = 0 and performing integration
over dΩ = sin θdθdφ in the Equations (18), one finds:

σIDC = 8π3αr2
0F(ω1, ω2), (22)

F(ω1, ω2) =

(
ω2

1
ω2

2
+

ω2
2

ω2
1
+

2ω1

ω2
+

2ω2

ω1
+ 3

)
(23)

×
(

1
ω2

+
1

ω1

)
The function F(ω1, ω2) is drawn in Figure 1. To note is that ω1, ω2 are the input

parameters of the cross-section, and they never turn to zero for the real source of photons.

Figure 1. The IDC distribution function F(ω1, ω2); see Equations (22) and (23).

For an incident photon with equal energies, ω1 = ω2, Equation (18) turns into:

σIDC =
144π3αr2

0
ω1

. (24)

In the case the IDC, the accounting of the stimulated scattering can be taken into
account by multiplying the magnitude of the process by the factor

√
Nk1e1

√
Nk2e2

√
Nke + 1

and dividing by the photon flux F = cNk2e2 Nk1e1 /V [23]. Assuming that for a direct
process, there is a system of electron + photon field with Nke photons, the following
relation between the transition rates of direct and inverse processes can be found [23,26]:

dwDDC

dwIDC
=

Nk1e1 Nk2e2(Nk,e + 1)
Nk,e(Nk1e1 + 1)(Nk2e2 + 1)

. (25)

The equation above was used in [10,11] when the evolution of the photon occupation
number was considered. Let us note that the behavior of the left side of Equation (25) in
the infrared region depends on the ratio of the photon occupation numbers on the right
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side of this equation. Since all Nke in Equation (25) are defined by the properties of a real
source, one can conclude that the divergence problem is actually solved by the constraints
on the source.

Performing the analytical evaluation of cross-section Equation (16), we find that the
cross-section of the IDC has no infrared divergence in variable ω, and as a result, the total
cross-section becomes finite in contrast to the direct process. However, there is another
divergence of the type (ωa

1ωb
2)
−1 (a and b are some integers > 1) that depends now only

on input parameters. The cross-section becomes infinite for the unphysical situation when
two incident photons have zero energy. Since the real source of photons always has a finite
width, the frequencies ω1 and ω2 in Equation (16) are also finite. Similarly, for a direct
process, the solution to the problem of infrared divergence can be resolved by taking into
account the fact that, under the real physical conditions, the photon wave function cannot
be described by a plane wave. As a result, the physical frequency profile of the scattered
radiation for direct, as well as inverse DC processes is a function of both the intensity and
line shape of the incident photon field [20]. The monochromatic limit, while it may exist as
a mathematical exercise, is not germane to the physical scattering problem. The shape and
extent of the external field are fundamental aspects of the problem.

Thus, one can that the problem of divergence can be solved not only by imposing
restrictions on the detector and its resolution, but also by taking into account the spectral
characteristics of the source itself, in particular taking into account the finite interaction
time of radiation with an electron. The latter circumstance for the theory of free particles
can be taken into account phenomenologically by analogy with the quantum-mechanical
description of photon scattering processes on atoms, where singular denominators are
regularized by the introduction of atomic level widths [27–29]. Then, following [27], the
infrared behavior ω−1

1 of the DDC scattering can be naively regularized as follows:

dσDDC ∼
Γ

ω2
1 + Γ2/4

, (26)

where Γ = τ−1 and τ is the interaction time of the incident photon with the electron. For the
inverse process, there is no divergence, and such regularization is not needed. However,
the introduction of Γ in this case is also possible and should lead to the correct infrared
asymptotic behavior when two incident photons are soft.

In conclusion, it must be added that with the sufficient intensity of an external as-
trophysical radiation source, the inverse process can also be of interest in the study and
analysis of scattering spectra by electrons [11]. As shown in this study, the cross-section
of the inverse process has no infrared features and is determined entirely by the spectral
density of incident photons. We leave the application to the study of different astronomical
situations for the future work. The presented calculations represent only the first step
towards solving the complete problem of the radiation transfer equation, where incident
photons interact with an electron for a finite period of time.
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