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Abstract: In this paper, the quantum fluctuations of the relative velocity of constituent solitons in
a Gross-Pitaevskii breather are studied. The breather is confined in a weak harmonic trap. These
fluctuations are monitored, indirectly, using a two-body correlation function measured at a quarter
of the harmonic period after the breather creation. The results of an ab initio quantum Monte Carlo
calculation, based on the Feynman-Kac path integration method, are compared with the analytical
predictions using the recently suggested approach within the Bogoliubov approximation, and a good
agreement is obtained.

Keywords: solitons; breathers; quantum fluctuations; Feynman-Kac path integration; Gross-
Pitaevskii breather

1. Introduction

A purely solitonic solution focusing on nonlinear Schrödinger equation (NLSE) con-
sists of a finite number of solitons, each parameterized by the norm, velocity, initial position,
and initial phase. A single stationary soliton is known as the fundamental soliton. When
a solution consists of two or more solitons that are at rest relative to each other and have
the same initial positions, it is commonly known as a breather. The name comes from
the fact that the density profile of this kind of solution periodically oscillates in time
(provided the constituent solitons have unequal amplitudes). Certain kinds of breathers
can be produced by quenching the strength of the nonlinear interaction. Mathematically,
this means the following: let ψ(x) be the fundamental soliton of an NLSE, at some point
of time. Suppose this ψ(x) is used as the initial condition for time propagation under
an NLSE whose interaction strength is four times that of the original NLSE. Then, one
would find that the propagated solution is a 2-breather whose constituent solitons have
norms that are in a ratio of 3:1. Experimentally, this means that a sudden increase of the
interaction strength by a factor of 4 converts a fundamental soliton to a 3:1 breather. This
was analytically predicted by Satsuma and Yajima [1] in 1974 and recently experimentally
verified in dilute Bose-Einstein condensates (BECs) [2,3]. Now, in experiments, there is
always a background trapping potential, so that the relevant equation for BEC experiments
is the NLSE plus external harmonic confinement. The resulting equation is called the
one-dimensional Gross-Pitaevskii equation (GPE). Corresponding to the NLSE breathers,
there are Gross-Pitaevskii (GP) breathers. In this paper, a correlation function, associated
with a GP breather, corresponding to the 3:1 NLSE breather, is computed using a path
integral technique.

Yurovsky et al. [4] showed that quantum many-body effects cause an NLSE breather to
disassociate into its constituent solitons. Recall that the 3:1 breather consists of two solitons
of norms N/4 and 3N/4 (where N is the number of atoms in the condensate), which, in
the mean-field approximation (i.e., at the level of the GPE), sit on the top of each other and
do not move. Using the Bethe ansatz, in [4], it was found found that quantization leads to a

Physics 2022, 4, 12–20. https://doi.org/10.3390/physics4010002 https://www.mdpi.com/journal/physics

https://www.mdpi.com/journal/physics
https://www.mdpi.com
https://doi.org/10.3390/physics4010002
https://doi.org/10.3390/physics4010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/physics4010002
https://www.mdpi.com/journal/physics
https://www.mdpi.com/article/10.3390/physics4010002?type=check_update&version=5


Physics 2022, 4 13

drift in the relative position of the constituent solitons. Unfortunately, this method cannot
be applied to more than N = 23 atoms, and the prediction for experimentally relevant,
larger N was an extrapolation. Nevertheless, it was predicted that the relative soliton-
soliton velocity in a GP breather may become experimentally observable, for empirically
realistic propagation times. Further investigations corroborated this prediction using two
different kinds of approximation: the Bogoliubov approach [5] and the truncated Wigner
approximation [6]. The predicted quantum fluctuations of macroscopic variables still to be
observed but the breather itself is already observed experimentally. From the theory side,
however, one can find that there is a need for a nonpertubative, fully quantum-mechanical
approach for building a quantum counterpart of the GP breather, an approach that can be
applied to a number of particles N that is substantially larger than 23.

In order to estimate the quantum fluctuations of the relative soliton-soliton velocity in
a GP breather, we adopt a quantum Monte Carlo method based on the Feynman-Kac path
integration [7]. An ab initio confirmation of the observability of the quantum fluctuations of
the relative soliton-soliton velocities is presented here using this path integral method [7].

Metropolis and Ulam [8] were the first to exploit a relationship between the
Schrödinger equation for imaginary time and the random-walk solution of the general
diffusion equation. Let us consider the initial-value problem,

∂ψ(x, t)
∂t

=

(
∆
2
−V

)
ψ(x, t), (1)

ψ(x, 0) = f (x) ,

where x ∈ Rd, d denotes the dimension, and t is the time. The solution of Equation (1) can
be written in FK representation as

ψ(x, t) = Ex

[
e−
∫ t

0 V(X(s))ds f (X(t))
]

, (2)

where X(t) is a Brownian motion trajectory, Ex is the average value of the exponential
term with respect to these trajectories, and f is the initial value of ψ, the latter being the
sought-after solution of the above Cauchy problem. This classical representation of the
time-dependent solution to the Schrödinger equation involves a Wiener measure [9] (i.e.,
the probability measure on the space of continuous functions) and, unlike the ordinary
path integration, provides a rigorous mathematical justification. The above representa-
tion is used to calculate the energies and any correlation properties associated with any
particular solution.

It is straightforward to implement numerically and does not require a trial func-
tion. This method was first applied to calculate energy eigenvalues of simple systems by
Donsker and Kac [10] (see also [11]) and was eventually extended to atomic systems by
Korzeniowski et al. [12].

It is also known that the classical FK formula provides a rather slow rate of conver-
gence due to the fact that the underlying diffusion process—Brownian motion (Wiener
process)—is non-recurrent. Specifically, in dimensions higher than two, the trajectories
of the process escape to infinity with the probability one [13]. Mathematically speaking,
for d ≥ 3, the probability P( lim

t→∞
Rt = ∞) = 1 (where Rt is the distance of the Brownian

particle from the origin) and lim
t→∞

P[X(t) ∈ B] = 0. Here B is a Borel set, i.e., the set of all

Brownian processes X(t). As a result, the sampling within the quantum-mechanical region
of intersection occurs only during a small fraction of the total simulation time and the rate
of convergence becomes prohibitively slow.

Another path integral method, known as the generalized Feynman-Kac (GFK) method,
was initiated by Soto-Equibar and Claverie [14] and was subsequently extended to the
full GFK method by Caffarel and Claverie [15]. These procedures can be considered an
application of importance sampling to the FK integral, along with the transformation of
Equation (1) into a Wiener path integral over a distribution determined by both the diffusion
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and drift terms. This transforms the difficult-to-handle branching (potential energy) term
into a more manageable path integral. The GFK method is mathematically more convenient

because the limiting distribution exists, i.e., lim
t→∞

P[X(t) ∈ B] =
∫

B
φT

2(x)dx.

In this paper, the GFK method is used to calculate the two-body correlation functions
as a measure of the quantum fluctuation of the soliton-soliton relative velocity in a GP
breather. It is found that the numerical estimate for the quantum fluctuations compares
favorably with the preliminary theoretical estimates and is consistent with the Bogoliubov
prediction [5].

2. The Model

For calculating the two-body correlation function, let us first consider the ground
state of a solitonic system consisting of bosonic atoms (for example, 7Li) with a negative
scattering length. We assume that a 2-soliton breather is created at t = 0 by quenching the
interaction strength of the initial Hamiltonian.

We would like to perform a time propagation of the time-dependent Schrödin-
ger equation:

i
∂

∂t
|ψ(t)〉 = Ĥ0|ψ(t)〉 , (3)

with the initial condition given by the ground state of the initial Hamiltonian

Ĥ0 = −1
2

∆ + V0(x) , (4)

where

∆ =
N

∑
i=1

∂2

∂xi
2 (5)

V0 = Vint, 0 + Vtrap

Vint, 0 = −g̃0 ∑
i<j

δσ̃(xi − xj) ,

Vtrap =
1
2 ∑

i
x2

i . (6)

Here and elsewhere below, the system of units, h̄ = m = ω = 1, is used (unlike
otherwise given), where h̄ is the reduced Planck constant, m is the atomic mass, ω is the
frequency of the harmonic confinement. δσ̃(xi − xj) is the Dirac delta function, σ̃ denotes
the width of the Gaussian potential, and

g̃0 ≡
|g0|
√

m

h̄
3
2
√

ω

is the dimensionless form of the absolute value of the initial coupling constant, g0, and N
is the number of bosonic particles. We assume that a 2-soliton breather is created at t = 0.
For that to happen, the pre- and post-quench values of the coupling constant have to satisfy
the relation

g0 =
1
4

g . (7)

To estimate the quantum fluctuations of the relative velocity of the constituent solitons
in a GP breather, a path integral approach [16–18] is adopted based on the FK integral
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formalism. To find the path integral solution, let us first consider the Cauchy problem
related to the time-dependent Schrödinger equation (3):

i
∂ψ(x, t)

∂t
=

(
−∆

2
+ V

)
ψ(x, t) ,

ψ(x, 0) = f (x) ,

with a Hamiltonian,

H = −∆/2 + V(x) .

The solution of the above equation in the FK representation reads:

ψ(x, t) = Ex

[
e−
∫ t

0 V(X(s))ds f (X(t))
]

, (8)

where Ex is the expectation value of the random variables. Numerical implementation of
Equation (8) is given in Appendix A.

As was mentioned in the introduction, even though the FK formalism provides a
basis for rigorous and accurate calculations of ground-state and excited-state properties of
many-particle systems, it suffers from a slow convergence rate as soon as the underlying
diffusion process—Brownian motion (Wiener process)—is non-recurrent. To speed up the
convergence, one needs to apply the GFK formalism, as described below.

The GFK formalism employs an Ornstein-Uhlenbeck process Y(t), which has a sta-
tionary distribution and the convergence becomes much faster. The solution in the FK
representation holds for any potential V which belongs to the Kato class [19]. All the
ordinary potentials fall under this category.

One can obtain the GFK formalism from the raw FK representation by allowing a large
class of diffusions that, unlike Brownian motion, have stationary distributions. Specifically,
for any twice-differentiable positive φ(x), one defines a new potential U as a perturbation
of the potential V:

U(x) = V(x)− 1
2

∆φ(x)
φ(x)

. (9)

Then:

∂w(x, t)
∂t

=
1
2

∆w(x, t) +
∇φ(x)
φ(x)

∇w(x, t)−U(x)w(x, t) (10)

= −Lw(x, t) ,

w(x, 0) = h(x) ,

where h is the initial value of w. Equation (10) has the solution

w(x, t) = Ex

[
e−
∫ t

0 U(Y(s))dsh(Y(t))
]

, (11)

where the new diffusion Y(t) has an infinitesimal generator, A = ∆
2 + ∇φ

φ ∇ with ad-

joint, A?(·) = ∆
2 −∇

[
∇φ
φ (·)

]
. Here, φ2(x) is a stationary density of Y(t), or equivalently,

A?(φ2) = 0.
To see the connection between w(x, t) and ψ(x, t), observe that for f = 1 and h = 1,

w(x, t) =
ψ(x, t)
φ(x)

(12)

because w(x, t) satisfies Equation (10). The diffusion Y(t) solves the following stochastic
differential equation, dY(t) = ∇φ(Y(t))/φ(Y(t)) + dX(t) .
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For numerical calculations, the Gaussian representation for the delta-function potential,

δσ̃(xi − xj) =
1√
2πσ̃

exp

[
−
(xi − xj)

2

2σ̃2

]
, (13)

is used. The justification for choosing the negative Gaussian potential is given in
Appendix B.

For the purpose of the path-integral Monte Carlo, the system is represented by a
d-dimensional particle, with d = N, subject to the boundary conditions,

ψ|~x=±∞ = 0 ,
∂ψ

∂~x
|~x=±∞ = 0 .

The raw FK equation [7] provides a Cauchy-type solution and a guided random walk
is adopted here using a trial function that satisfies the required boundary conditions. Using
Equation (10) and the GFK path integral representation [15], the solution for Equation (3)
can be represented as [16]

ψ(x, t) = w(x, t)φ(x) = φ(x)Ex

[
e−U(Y(s))ds

]
. (14)

Equation (14) contains the two sums: the modified potential U(Y(s)) is summed
over all the steps in a given trajectory, and then, exp[−U(Y(s)]ds is summed over all the
trajectories. Here, in this computational problem, a soliton can be viewed as a bound state
of 7Li atoms interacting through a strong attractive potential, described in Equation (13).
The nonnegative function φ(x) can be chosen as a trial function consistent with the sym-
metry of the problem. In the present case, the following function is used for φ(x) and is
denoted as φ0(x):

φ0(x) = Ce−bx2
, (15)

where C is a normalization constant and b is a variational parameter. Let us now introduce
a new perturbed potential,

Vp(x) = e0 −U(x) = e0 −V(x)− 1
2

∆φ0(x)
φ0(x)

, (16)

in terms of U(x) and the energy e0, associated with the trial function φ0.
The Ornstein-Uhlenbeck process Y(t) is related to the Brownian process X(t)

as follows:
dY(t) = ∇φ(Y(t))/φ(Y(t)) + dX(t) . (17)

In Equation (17), the first and second terms represent the drift and diffusion, respec-
tively, and the presence of these terms enables the trajectory Y(t) to be highly localized.
As a result, the important regions of the potential are frequently sampled and Equation (14)
converges rapidly. Similarly, the expectation value of the operator A is given by [15]

〈Y|A|Y〉 =
limt→∞

∫
dY(t)A(Y(t))e−

∫
Vp(Y(s))ds∫

dY(t)e−
∫

Vp(Y(s))ds
. (18)

Equation (18) is the key formula used here to calculate the quantum fluctuations of
the soliton-soliton velocity.

The goal is to compute the second moment of the two-body relative distance
at t = T/4:

〈ψ(t = T/4)|(x1 − x2)
2|ψ(t = T/4)〉 .
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The reason we are interested in is that this particular correlator is sensitive to the
quantum fluctuations of the relative soliton-soliton velocity being itself a macroscopic
variable. The large-N analytic predictions for the velocity fluctuations is [5]:

〈ψ(t = 0)|V2
rel.|ψ(t = 0)〉 = 0.0429 g̃2N ,

where the numerical prefactor comes from a numerically computed integral. This ex-
pression neglects the zero-point quantum fluctuations that are induced by the harmonic
confinement. In turn, the variance of the relative distance between the centers of mass of
the two solitons, after a quarter of a period, is given by

〈ψ(t = T/4)|X2
rel.|ψ(t = T/4)〉 = 〈ψ(t = 0)|V2

rel.|ψ(t = 0)〉 .

The mean occupations of the two constituent solitons are N/4 and 3N/4. Therefore,
the probability that two detected particles 1 and 2 of the two different solitons is 6/16.
Furthermore, assume that at T/4, the distance between the solitons exceeds their width,
and therefore the 1 to 2 distance will be dominated by the distance between the centers of
mass of the two solitons. Since (6/16)× 0.0429 = 0.0161, one obtains:

〈ψ(t = T/4)|(x1 − x2)
2|ψ(t = T/4)〉 ≈ 0.0161g̃2N . (19)

As mentioned above, this estimate assumes that (a) the interaction-induced fluctua-
tions in the relative velocity of the solitons exceed those generated by the zero-point fluctu-
ations of the trap, and (b) the soliton-soliton separation at the quarter of the period exceeds
the size of the initial density distribution. Let us check the validity of these assumptions.

For (a), the separation (19) is compared with the zero-point fluctuations of the relative
distance,

√
(8/3)/N. For (b), the worst-case scenario is considered and it is assumed that

the detected atoms 1 and 2 were found on the opposite wings of their respective solitons.
That would require that the soliton-soliton distance, given by (19), exceeds the resulting
correction to the distance, `N/4 + `3N/4, where `N′ ≡ 2/(g̃N′) is the size of a soliton with
N′ atoms. One gets:

1
(g̃N)2 � 0.06 , (20)

1
(g̃N)2 �

0.01√
N

, (21)

for the conditions (a) and (b), respectively.
The left-hand side of Equation (19) is numerically calculated here using Equation (18),

where A = (x1− x2)
2 is set. Here, T ≡ 2π is the dimensionless form of the trapping period.

3. Results

The variance in the particle-particle distance that is of interest here is shown in
Table 1. The agreement between the theoretical predictions and the numerical results is
good, with the exception of the g̃ = 0.78 case. Meantime, the condition (21) is barely
satisfied, and it is likely that the solitons’ width still contributes to the variance in the
interparticle distance.
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Table 1. Quantum fluctuations of the relative velocity of constituent solitons obtained from numerical
calculations and from theory. N is the number of atoms, “scale” represents

√
(number of steps)/t

with t being the simulation time, “npi” stays for the number of trajectories, g̃ and σ̃ denote the
dimensionless forms of the interaction strength and the width of the Gaussian potential, respectively.
See text for details.

N Scale npi g̃ σ̃ 〈(xi− xj)
2〉 (Numerics) 〈(xi− xj)

2〉 (Theory)

100 30 50 0.5 0.016 0.5884±0.1647 0.4025
0.55 0.015 0.5309±0.1486 0.487
0.61 0.015 0.6209±0.1738 0.599
0.78 0.012 0.4389±0.1229 0.9795
0.83 0.01 1.6773±0.4696 1.1091
0.85 0.01 1.8155±0.5083 1.632

In order to make a connection with experiments with 7Li [3], it was assumed that the
mass of an individual atom is m = 7.016 u (in unified atomic mass units), the post-quench
scattering length, asc = −16.2 a0 (a0 is the Bohr radius), and the frequency of the radial
trapping potential, ωr = 2π× 297 Hz. The coupling constant is given by g = 2h̄ωr asc. This
set reproduces the conditions of the Rice experiment [3] verbatim, with the exception of
the scattering length asc. The different value of asc accounts for the difference between
the number of atoms in the experiment and that in the current study. In particular, asc
is adjusted so that the ratio between the number of atoms and the condensate collapse
threshold, Nc = 0.67ar/|asc| [20], is the same as it was in the experiment. The second
line of Table 1, g̃ = 0.55, would correspond to a one-dimensional trapping frequency of
ω = g2m/(g̃2h̄3) = 3.7× 10−3 Hz with a propagation time of T/4 = 4.3× 102 s.

The propagation time obtained appears to be much larger than the estimate of 4.7 s
in [5], for N = 3× 103. However, the former corresponds to a conservative estimate, based
on a soliton-soliton separation exceeding six half-widths of the broader soliton. For a less
conservative requirement, used in [5], the propagation time will be as short as T/4 = 0.83 s,
reached with ω = 1.9 Hz (accordingly, g̃ = 0.024) and other experimental conditions
kept intact.

4. Conclusions and Outlook

In the study presented here, it is justified that quantum fluctuations of a macroscopic
observable—represented by the relative velocity of two solitons in a harmonically trapped
Gross-Pitaevskii breather—can be observed in a predominantly mean-field environment.
The scheme involves a harmonic quarter-period propagation of the breather: this time turns
out to be sufficient for the breather to dissociate through purely quantum effects. As a com-
putational method, the path integral Monte Carlo is used, the numerical results of which
are consistent with the earlier predictions, based on the Bogoliubov approximation [5].

In further studies, stronger interactions to be considered both to move closer to the
experimental conditions and to suppress the residual effects of the soliton width. We expect
that then Table 1 will exhibit a closer correspondence between the theory predictions and
the numerical calculations.
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Appendix A. Details of Numerical Calculations

The formalism, described in Section 2, can include any generalized potential [21] and
is valid for any arbitrary dimension d (d = 3N). To implement Equation (3) numerically,
the 3N-dimensional Brownian motion can be replaced by properly scaled one-dimensional
random walks as follows [12,17,22]:

W(l) ≡W(t, n, l) = w1
1(t, n, l), w2

1(t, n, l), w3
1(t, n, l), (A1)

. . . , w1
N(t, n, l), w2

N(t, n, l), w3
N(t, n, l),

where

wj
i(t, n, l) =

l

∑
k=1

εi
jk√
n

, (A2)

with wj
i(0, n, l) = 0 for i = 1, 2, . . . , N, j = 1, 2, 3, and l = 1, 2, . . . , nt. Here, εs denote the

binomially distributed random variables, which are chosen independently and randomly
with probability P for all i, j, k such that P(εi

jk = 1) = P(εi
jk = −1) = 1/2, and t is the

simulation time. It is known (from an invariance principle [23]) that for every ν and W(l),
defined in Equation (A2),

lim
n→∞

P

[
1
n

nt

∑
l=1

V(W(l))

]
= P

 t∫
0

V[X(s)]ds

 ≤ ν . (A3)

Consequently, for large n,

P

exp

− t∫
0

V(X(s))ds

 ≈ P

{
exp

[
− 1

n

nt

∑
l=1

V(W(l))

]}
≤ ν . (A4)

Finally, by generating Nrep independent realization Z1, Z2, . . . , ZNrep of

Zm = exp

{
−
[
− 1

n

nt

∑
l=1

V(W(l)

]}
, (A5)

and using the law of large numbers, with regard to Equation (A3), one concludes that

(Z1 + Z2 + . . . + ZNrep)/Nrep = Z(t) (A6)

is an approximation of Equation (8). Here, Wm(l), m = 1, 2, . . . Nrep, denotes the mth

realization of W(l) out of Nrep independently run simulations. In the limit of large t and
Nrep, this approximation approaches an equality and forms the basis of a computational
scheme for the lowest energy of a many-particle system with a prescribed symmetry.

Appendix B. Validity of the Gaussian Approximation for the δ-Function

To ensure that the pairwise Gaussian potential correctly describes the intended delta
potential, the following has to be checked: (i) the potential supports only one bound state,
and (ii) the energy of the bound state is less than the potential depth. To prove that the
Gaussian potential with the parameters chosen in the current study supports only one
bound state the prescriptions in [24] was folowed. In one dimension, the Wentzel–Kramers–
Brillouin (WKB) integral for the energy E is given by

∫ x2
x1

√
2[E−V(x)]dx = (n− 1

2 )π [25],
where x1 and x2 are the turning points of the classical motion. For the Gaussian potential,
the quantum number N of the last bound state can be obtained by using the above WKB
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equation for E = 0:
√

2V0
∫ +∞
−∞ e−αx2/2dx = (N − 1

2 )π ,V = V0e−αx2
(α is a parameter

related to width of the Gaussian potential), which leads to N = (2/
√

π)
√

V0/α + 1/2.
For finite V0 and α, N is also finite. Therefore, the number of bound states is finite for the
Gaussian well.
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