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Abstract: Transport of energetic electrons in the heliosphere is governed by resonant interaction with
plasma waves, for electrons with sub-GeV kinetic energies specifically with dispersive modes in the
whistler regime. In this paper, particle-in-cell simulations of kinetic turbulence with test-particle
electrons are performed. The pitch-angle diffusion coefficients of these test particles are analyzed and
compared to an analytical model for left-handed and right-handed polarized wave modes.
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1. Introduction

The solar wind and most phases of the interstellar medium are strongly turbulent
media with high magnetic Reynolds numbers of 1014 [1]. Turbulence manifests itself in a
spectrum of plasma waves at various length scales and frequencies. The energy distribution
as a function of the frequency follows a characteristic power law. The current understanding
of the turbulent processes is such that energy is injected at large scales, i.e., at small wave
numbers and frequencies, and then cascades to smaller spatial scales.

The energy spectrum can be divided into several regimes, each may span several
orders of magnitude in wave number or frequency. At the largest scales, the injection range
is found, which then transitions into the inertial range. The inertial range can be described
by magnetohydrodynamic (MHD) theory, and turbulence is dominated by the interaction
of Alfvén waves. At smaller scales, kinetic effects of the particles come into play.

This high wave number regime is often referred to as the kinetic, dispersive, or
dissipation range of the spectrum, since the waves become dispersive and dissipation starts
to set in. While the spectrum extends to even smaller scales, damping eventually becomes
dominant and leads to an exponential cutoff of the energy spectrum.

Power-law distributions of the fluctuating magnetic energy are expected in the injec-
tion, inertial, and dissipation range of the spectrum. However, the spectral indices may
differ among the individual regimes. Goldreich and Sridhar [2,3] presented a detailed
model of the turbulent energy cascade in the inertial regime. Their model predicts a spec-
tral index of −5/3, which actually seems to be realized in the solar wind [4]. Subsequent
models by Galtier et al. [5,6] give rise to a spectral index k−2

⊥ .
Kinetic turbulence in the dissipation range is an active field of research [7]. In particular,

the composition of the wave spectrum is subject to discussion, because a transition from
non-dispersive Alfvén waves to dispersive wave modes is expected. Possible candidates
for the waves in the dissipation range are the so-called kinetic Alfvén waves (KAWs) and
whistler waves [8].
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The impact of kinetic turbulence on the transport of energetic particles is another major
topic. The transport of energetic protons is well described by models of Alfvénic turbulence,
since the protons mainly interact with these waves at low frequencies. The theoretical
framework of quasi-linear theory (QLT) can be used to describe particle transport by a
series of resonant interactions with the magnetic fields of Alfvén waves, which leads to
scattering of the particles [9–11]. This theory describes changes of the particles’ pitch
angles (the angle of the velocity vector relative to a background magnetic field), momenta,
or positions as diffusion processes and allows to predict diffusion coefficients and other
quantities, such as the mean free path, which can be compared to observations.

Dispersive waves are more difficult to handle in (analytical) theory. Nonetheless,
QLT can also yield predictions for particle transport in a medium containing dispersive
waves [12,13]. The introduction of dispersive waves can even solve some of the problems
that are encountered if a purely Alfvénic spectrum of waves is assumed [14]. Still, the
model remains an approximation, and computer simulations are used to clarify some of the
details that are not included in the analytical theory. Different kinds of simulations are used
to study different physical regimes and processes—from the acceleration of particles [15,16]
to the transport of energetic particles—considering both non-dispersive [17] and dispersive
waves [18,19].

The key problem that has been chosen for the subject of this study is the process of
electron transport in dispersive turbulence. The transport of electrons at sub-GeV energies
has been of high interest for quite some time [20]. As mentioned above, particle acceleration
in Alfvénic turbulence in the inertial range is well understood. However, turbulence on
kinetic scales still poses problems for both observations and modeling.

2. Theory
2.1. Turbulence Theory

From the observations, it is not entirely clear which types of plasma waves constitute
the spectrum of turbulent waves in the dispersive and dissipative regime. KAWs and
whistler waves are both possible candidates [8]. While KAWs represent the continuation
of the Alfvén mode (Equation (13) below) in the dispersive regime with very large per-
pendicular wave numbers (perpendicular wavelength in the range of proton gyroradius),
whistler waves (Equation (16) below) are right-handed polarized modes at large wave
numbers. It is reasonable to assume that non-dispersive Alfvén waves simply transition
to KAWs. However, observations reveal that whistler waves are also present in various
regions of the heliosphere, such as in the interplanetary medium [21], close to interplane-
tary shocks [22,23] or planetary bow shocks [24], and also in the Earth’s ionosphere and
foreshock region [25,26].

Whereas left-handed polarized Alfvén waves are damped by protons and cannot
cascade to frequencies above the proton cyclotron frequency, a spectrum of whistler waves
may extend to frequencies beyond the ion-cyclotron frequencies. Whistler waves primarily
interact with electrons and are also damped by electrons at higher frequencies (close to the
electron cyclotron frequency). This is an interesting aspect of kinetic turbulence, since a
population of whistler waves can heat the electrons in the solar wind or even accelerate
particles in the high-energy tail of the thermal spectrum.

Kinetic turbulence includes the smallest length scales, where the interaction of waves
and particles becomes important. Although the wave-particle interactions are not ex-
plicitly included in the theory, their effect has to be considered by allowing dispersive
waves and damping. This regime is generally more complicated and less understood than
MHD turbulence.

The general picture associated with turbulence is as follows. Energy is injected into
the system at a large outer scale, small wave numbers k. The energy is transported via the
interaction of waves to smaller spatial scales (larger wave numbers), and the (magnetic)
energy spectrum, EB(k), follows a power-law distribution. This is the inertial range. The
spectrum steepens as the kinetic regime or dissipation range is reached, but energy is
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still transported to smaller scales. First, only ion effects will start influencing the plasma
dynamics, but at even larger wave numbers, the electrons can also interact with the plasma
waves. This is where the energy spectrum is cut off. One aspect that has been discussed
in greater detail since the seminal paper of Goldreich and Sridhar [3] is the possible
anisotropy with respect to the background magnetic field: the turbulent spectrum may
behave differently depending on wave numbers parallel (k‖) or perpendicular (k⊥) to the
background magnetic field.

The special case of whistler turbulence has been discussed in greater detail. The
properties of this whistler turbulence have been analyzed using kinetic simulations in
two [27,28] and three [29–32] dimensions. These studies suggest a steeper energy spectrum
than for Alfvénic turbulence, with a spectral index s in the range between −3.7 and −5.5
and a possible break in the energy spectrum [32]. Results by Chang [30] also suggest that
the wave vector anisotropy depends on the choice of the plasma beta. A relatively isotropic
spectrum is obtained for a plasma beta β ∼ 1, whereas β < 1 yields an anisotropic cascade
which favors the transport of energy to larger k⊥. The plasma beta is the ratio of thermal
to magnetic energy. The anisotropy additionally depends on the energy deployed to the
electromagnetic fields of the turbulent whistler waves [29].

2.2. Subluminal Parallel Waves in Cold Plasmas

In warm thermal plasmas with low plasma betas, the real part of the dispersion
relation agrees well with the cold plasma dispersion relation, so, the latter is used here.
In addition, the resonance broadening effects, caused by a finite imaginary part of the
dispersion relation in warm plasmas implying a finite weak-damping rate; those effects
were considered by Schlickeiser and Achatz [33].

Using the convention of frequencies ω > 0, where ω is the real part of the generally
complex frequency, but k‖ ∈ [−∞, ∞] (here, the case k⊥ = 0, also known as slab case, is
treated), the dispersion relation of right-handed (“R”) and left-handed (“L”) polarized
undamped low-frequency (ω ≤ Ωe,0, with Ωe,0 being the electron gyrofrequency) parallel
Alfvén wave in a cold electron-proton background plasma reads [34]:

n2
L = 1−

ω2
pi

ω(ω−Ωi)
−

ω2
pe

ω(ω + Ωe)
, (1)

n2
R = 1−

ω2
pi

ω(ω + Ωi)
−

ω2
pe

ω(ω−Ωe)
, (2)

k2
‖c

2

ω2
L,R

= 1−
ω2

pi

ω(ω∓Ωi)
−

ω2
pe

ω(ω±Ωe)
, (3)

k2
‖c

2

ω2
L,R
− 1 = −

c2Ω2
i

v2
A

M + 1
(ω∓Ωi)(ω∓MΩi)

(4)

with the proton-to-electron mass ratio, M = mp/me = 1836, and the Alfvén speed,
vA = βAc = 2.18× 1011B[G]n−1/2

i [cm−3] Here, ωpi is the ion plasma frequency, ωpe is
the electron plasma frequency, Ωi is the ion gyrofrequency, Ωe is the electron gyrofrequency,
B is the magnetic field, β is the plasma beta, and c is the speed of light. For subluminal
wave phase speeds,

∣∣∣Vphase

∣∣∣ = ∣∣∣∣∣ωL,R

k‖

∣∣∣∣∣� c, (5)

which has to be checked a posteriori, the dispersion relation (4) simplifies to

k2
‖c

2

ω2
L,R
' −

(M + 1)Ω2
i ω2

L,R

v2
A(ω∓Ωi)(ω∓MΩi)

. (6)
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It is convenient to introduce dimensionless frequencies and parallel wave numbers
by defining

yL,R =
ωL,R

Ωi
> 0 and k =

k‖
kc

, (7)

respectively, with

kc =
Ωi
vA

, (8)

so that the subluminal dispersion relation becomes

k2 = −
(M + 1)y2

L,R

(yL,R ∓ 1)(yL,R ±M)
(9)

with the two solutions,

k1,2 = −
√
(M + 1)yL,R√

(yL,R ∓ 1)(yL,R ±M)
. (10)

As yL,R is always positive, the solution k1 > 0 describes forward-moving waves with
positive phase speed, whereas the negative solution k2 = −k1 < 0 describes backward-
moving waves.

2.2.1. Left-Handed Modes

Equation (9) indicates that no left-handed polarized solution with yL > 1 exists, so, a
further simplification of Equation (9) for left-handed polarized waves is possible, assuming
that M� 1:

k2 '
y2

L
1− yL

(11)

with the solutions,

yL(k) =
k2

2
±
√

k
2

√
k2 − 4 '

{
|k| for k� 1,
1− 1/k2 for k� 1,

(12)

corresponding to

ωL '
{

VA|k‖| for k‖ � kc ,

Ωi

(
1− k2

c /k2
‖

)
for k‖ � kc .

(13)

2.2.2. Right-Handed Modes

The right-handed solutions of Equation (9),

k2 = −
(M + 1)y2

R
(yR + 1)(yR + M)

, (14)

can be approximated under the assumption that M� 1:

yR =
(M + 1)k2

2(1 + k2 + M)

(
1− 2

M + 1
+

√
1 +

4M
k2(M + 1)

)
. (15)

Depending on k, different regimes can be identified:

ωR =


VA|k‖| for |k‖| < kc ,

Ωi +
V2

Ak2
‖

Ωi
for kc ≤ |k‖| ≤ M1/2kc ,

Ωe

(
1− Mk2

c
k2
‖

)
for |k‖| > M1/2kc .

(16)
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The first range describes the linear dispersion regime, the second range is the whistler
regime, and the last range is the electron–cyclotron range. While these approximate
solutions provide good estimates to the real solution, there is a major problem: the solutions
do not provide continuous coverage. An alternative approximation is

yR(k) ' |k|(1 + |k|). (17)

In the following, the particle scattering by parallel waves at electron or ion cyclotron
frequencies are ignored as soon as these are highly damped in a realistic warm thermal
plasma, so that the resonant interaction does not apply; see [33] for a discussion of wave-
particle interactions with damped waves. For left-handed and right-handed polarized waves,
this restricts the normalized wave numbers to values of k ≤ 1 and k ≤ M, respectively.

2.3. Particle Transport

Any charged particle of given velocity v, Lorentz factor γ = (1− (v2/c2))−1/2, pitch-
angle cosine µ = v‖/v, mass m, charge qi = e|Zi|Q with Q = sgn(Zi), Zi being the ion
charge number, and relativistic gyrofrequency Ω′ = QΩ/γ with positive Ω = |q|B0/(mc)
with Ω being the particle’s non-relativistic gyrofrequency, q being the electric charge, and
B0 being the magnetic background field, interacts with parallel right-handed and left-
handed polarized plasma waves whose wave number, k, and real frequency, ωR,L, obey the
resonance condition,

vµk‖ −ωR,L(k‖)∓
QΩ

γ
= 0. (18)

Introducing

x =
p

mec
, ε =

vA
v

= βA
(1 + x2)1/2

x
, (19)

with the particle momentum p and the dimensionless frequency and wave number (7), the
resonance condition (18) reads:

Ω
(

µk
ε
− yR,L(k)∓ Si

)
= 0 (20)

with

Si =
Q|Zi|mp

mγ
=

1
γ

{
1 for protons,
−M for electrons.

(21)

The quasilinear Fokker–Planck coefficient for the pitch-angle cosine, µ, is given by

Dµµ(µ) =
π2Ω2(1− µ2)

B2
0

∫ ∞

−∞
dk‖

×

gR(k‖) δ(vk‖ −ωR −Ω′)

(
1− µωR

k‖v

)2

(22)

+ gL(k‖) δ(vk‖ −ωL + Ω′)

(
1− µωL

k‖v

)2


with the magnetic fluctuation spectra of right/left-handed polarized waves gR,L(k‖), where
the total magnetic field fluctuations are determined as in [35]:

(δB)2 = 2π
∫ ∞

−∞
dk‖[gL(k‖) + gR(k‖)]. (23)

In Equation (22), the frequencies ωR,L(k‖) are determined by the solutions of the disper-
sion relations, discussed in Section 2.2 above. The function δ(x) is the Dirac delta function.
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In terms of the normalized wave number, k‖ = kck, and frequency, ωR,L = ΩiyR,L, the
Fokker–Planck coefficient (22) reads:

Dµµ(µ) =
π2Ω2kc(1− µ2)

Ω2
i B2

0

∫ ∞

−∞
dk‖

×

gR(k‖) δ(kµ/ε− yR(k)− Si)

(
1− µωR

k‖v

)2

(24)

+ gL(k‖) δ(kµ/ε− yL + Si)

(
1− µωL

k‖v

)2
.

The calculation of the Fokker–Planck coefficient requires a knowledge of the magnetic
fluctuation spectra. The correct theoretical description is complicated, as described in
Section 2.1 above, but results from numerical calculations can be inferred.

Deriving the Fokker–Planck coefficients in general is quite an involved task but one
can derive some limiting cases. It is helpful to account for the relative abundance of forward-
moving and backward-moving waves and the corresponding polarization states. Let us
introduce the cross helicities, HL,R ∈ [−1, 1] for left/right-handed polarized waves to ex-
press the spectra (23) of backward-propagating (“b”) and forward-propagating (“f”) waves:

gb
L,R =

1− HL,R

2
gL,R(k)Θ(−k), (25)

g f
L,R =

1 + HL,R

2
gL,R(k)Θ(k). (26)

The step function Θ(±k) appears because backward-moving and forward-moving
waves only occur at negative and positive wave numbers, respectively. In general, these cross
helicities can depend on the wave number, but throughout this article isospectral turbulence is
adopted, where HL,R are constants (independent of k). The magnetic helicity σ(k) ∈ [−1, 1]
characterizes the relative abundances of left-handed and right-handed polarized waves:

gL(k) =
1 + σ(k)

2
gtot(k), (27)

gR(k) =
1− σ(k)

2
gtot(k) (28)

where gtot(k) is the total wave abundance at a specific wave number. For parallel plasma
waves, σ(y > 1) = −1 as soon as no left-handed polarized waves exist at these
normalized frequencies.

Using the helicities introduced, the Fokker–Planck coefficient (24) reads:

Dµµ(µ) =
π2Ω2kc(1− µ2)

Ω2
i B2

0

∫ ∞

−∞
dk‖gtot(k)

×
[
(1− HR)(1− σ(k)) δ(kµ/ε + yR + Si)

(
1 +

εµyR(k)
k

)2

+ (1− HL)(1 + σ(k)) δ(kµ/ε + yR(k)− Si)

(
1 +

εµyL(k)
k

)2

(29)

+ (1 + HR)(1 + σ(k)) δ(−kµ/ε + yR + Si)

(
1− εµyR(k)

k

)2

+ (1 + HL)(1− σ(k)) δ(−kµ/ε + yR(k)− Si)

(
1− εµyL(k)

k

)2
]

.
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2.3.1. Interactions in the Whistler Regime

For frequencies above the ion cyclotron frequency, only right-handed waves exist
obeying the dispersive whistler mode dispersion relation. As discussed above, the turbulent
spectrum typically has a much softer spectral index than 2 (theoretical values are in the
range of 3 to 6 [7,36]) in this case.

We consider the case HR = −1 and σ(k) = −1, only backward-moving right-handed
polarized waves, which reduces the Fokker–Planck coefficient (29) to

Dµµ(µ) =
π2Ω2kc(1− µ2)

Ω2
i B2

0

∫ ∞

k0

dk‖gtot(k) (30)

×
[

δ(kµ/ε + yR + Si)

(
1 +

εµyR(k)
k

)2
]

.

The result for forward-moving waves is similar:

Dµµ(µ) =
π2Ω2kc(1− µ2)

Ω2
i B2

0

∫ ∞

k0

dk‖gtot(k) (31)

×
[

δ(−kµ/ε + yR + Si)

(
1− εµyR(k)

k

)2
]

.

With Equation (17), the resonance condition with positive values of k reads:

0 = Si + k
µ

ε
+

{
|k| for k ≤ 1,
k2, for 1 ≤ k ≤ M1/2 = 43.

(32)

It can be shown that this equation for protons and electrons has only one solution
kr > 0. In the Alfvénic wave number range (k ≤ 1), this is trivial: kr = −Si/(1 + (µ/ε)),
which can be positive depending on the signs of Si and µ.

In the whistler wave number range (0 ≤ k ≤ 43), the proof is a bit more involved.
Here, Equation (32) has two solutions:

k1 =
1
2

(√
µ2

ε2 − 4Si −
µ

ε

)
, (33)

k2 = −1
2

(√
µ2

ε2 − 4Si +
µ

ε

)
. (34)

To obtain real-valued solutions (33) and (34), the condition µ2 ≥ 4Siε
2 must be fulfilled.

Assuming that this is fulfilled, one notes that for non-negative values of µ ≥ 0, the solution
k2(µ ≥ 0) < 0 is always negative, leaving only one solution for kr = k1(µ ≥ 0) > 0.
Alternatively, for negative values of µ = −|µ| the solutions (33) and (34) become

k1(µ < 0) =
1
2

(√
µ2

ε2 − 4Si −
|µ|
ε

)
, (35)

k2(µ < 0) =
1
2

(
|µ|
ε
−
√

µ2

ε2 − 4Si

)
. (36)

To further evaluate the solution, it is necessary to distinguish between positive (for
protons) and negative values (for electrons) of Si. For electrons the solution k2(µ < 0) < 0
is again always negative. For protons, both solutions (35) and (36) are positive, but the
second one is

k2(µ < 0, Si > 0) ≤ S1/2
i =

1
2γ

< 1 (37)
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always (for protons Si = 1/
√

2γ). This solution is positive but is in contradiction with the
above-made assumption of the modes in the whistler regime with k > 1. This leaves us
with only one solution for the resonant wave number kr = k1(µ < 0, Si > 0) in the whistler
wave number range.

One then obtains:

Dµµ(µ) =
π2Ω2kc(1− µ2)

Ω2
i B2

0
Θ(kr − k0)Θ(M1/2 − kr)

× gtot(kr)∣∣∣dyR
dk + µ

ε

∣∣∣
k=kr

(
1 +

εµyR(kr)

kr

)2

. (38)

The case of forward-moving right-handed polarized waves is similar to the backward-
moving ones. The main difference is the resonant wave number,

kr =
1
2

(√
µ2

ε2 − 4Si +
µ

ε

)
. (39)

2.3.2. Alfvén and Whistler Contributions

The total Fokker–Planck coefficient can be written as a sum of Alfvén and
whistler contributions:

Dµµ(µ) = DA
µµ + DW

µµ. (40)

For the Alfvén wave Fokker–Planck coefficient, inserting the asymptotic expansions
yR,L(k ≤ 1) ' k of Equations (12) and (15) one obtains:

DA
µµ(µ) =

π2Ω2kc(1− µ2)

Ω2
i B2

0

∫ 1

k0

dk‖gtot(k)

× {(1 + εµ)2[(1− HR)(1− σ) δ(k(1 + µ/ε) + Si)

+ (1− HL)(1 + σ) δ(k(1 + µ/ε)− Si)] (41)

+ (1− εµ)2[(1 + HR)(1− σ) δ(k(1− µ/ε) + Si)

+ (1 + HL)(1 + σ) δ(k(1− µ/ε)− Si)]}.

The whistler contribution is calculated above, while for completeness is given here in
the same form:

DW
µµ(µ) =

π2Ω2kc(1− µ2)

Ω2
i B2

0

∫ M1/2

1
dk‖gtot(k)

×
[
(1 + εµ)2(1− HR)(1− σ) δ(k2 + kµ/ε + Si) (42)

+ (1− εµ)2(1 + HR)(1− σ) δ(k2 − kµ/ε + Si)
]
.

2.3.3. Electrons

The Fokker–Planck coefficient derived in the previous section hold for any particle.
In general, the integration is not complicated as the delta function of the resonance condition
helps to simplify the calculations. However, a specific turbulent spectrum has to be defined.
We refrain from performing the integral here but point out which interaction will take place.
There is a clear difference between electrons and protons, and the discussion in this Section
is limited to the electron case.

For Alfvén waves, one can distinguish the interaction of electrons with forward/backward-
moving left/right-handed modes. Defining
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µR(x) =
βA(M−

√
1 + x2)

x
, (43)

µL(x) =
βA(M +

√
1 + x2)

x
, (44)

one can constrain the waves for which the resonant interaction with electrons is possible:

1. backward-moving right-handed polarized Alfvén waves for all pitch-angle cosines with
µ ≥ µR(x) and µ ≥ −ε = −βA

√
1 + x2/x;

2. backward-moving left-handed polarized Alfvén waves for all pitch-angle cosines with
µ ≤ µL(x); and µ ≤ −ε = −βA

√
1 + x2/x

3. forward-moving right-handed polarized Alfvén waves for all pitch-angle cosines with
µ ≤ µR(x) and µ ≥ ε = βA

√
1 + x2/x;

4. forward-moving left-handed polarized Alfvén waves for all pitch-angle cosines with
µ ≥ µL(x) and µ ≥ ε = βA

√
1 + x2/x.

For whistler waves, additionally

µ0(x) =
βA M1/2(

√
1 + x2 − 1)

x
(45)

is defined. The resonant interaction takes place within the following range:

− µ0(x) ≤ µ ≤ µR(x), (46)

The resulting total Fokker–Planck scattering coefficient is shown in Figure 1.
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Figure 1. The pitch-angle dependence of the Fokker–Planck scattering coefficient model calculation
for electrons at extreme ends. A power-law spectrum with with spectral index s = 3 in the wave
number range 0.01 < k < M1/2, where M is the proton-to-electron mass ratio, is assumed. Electrons at
80 keV and 3 MeV are considered. The proton gyrofrequency Ωp = 5× 104 Hz, and the Alfvén speed
vA = 0.001c in fractions of the speed of light c.

3. Numerical Methods
3.1. Particle-in-Cell Simulations

To be able to model dispersive waves of different kinds and to obtain a self-consistent
description of electromagnetic fields and charged particles in the plasma, a fully kinetic
particle-in-cell (PiC) approach [37] is employed here. In particular, the explicit second-order
PiC code ACRONYM [38] is used which is fully relativistic, parallelized and three-dimensional.
Although the PiC method might not be the most efficient numerical technique when dealing
with proton effects, we still favor this approach because of its versatility. A more detailed
discussion of advantages and drawbacks as well as a direct comparison of PiC and MHD
approaches with the specific problem of the interaction of protons and left-handed polarized
waves can be found in Sections 3 and 6 of Ref. [39]. However, the PiC approach is well-suited
for the study of electron scattering as soon as the time and length scales of electron interactions
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are closer to the scales of time step lengths and cell sizes in PiC simulations, thus reducing
computing time compared to simulations, in which proton interactions are studied.

The details of the PiC code are not discussed here. The simulation technique used
here does not differ from standard techniques. Two points, however, to be mentioned: the
initialization of turbulence and the tracking of test particles. Turbulence is discussed in
Section 3.1.1 just below, because the numerical treatment is inherently connected to the
physical processes of turbulence. The treatment of energetic particles is divided into to two
parts: the injection of particles and the analysis of the particle data.

3.1.1. Setup of Turbulence Simulations

Here, a simulation setup that was inspired by Gary et al. [27] is used. Waves are
initialized at low k, k < Ωi/VA. The layout of the initial waves in the wave number space
is explained below and is drawn in Figure 2 for the two-dimensional setup. However, in
the PiC simulation, the velocity space and the electromagnetic fields are considered three-
dimensional. As shown below, the two-dimensional simulations give an energy cascade
similar to that of the three-dimensional simulations. As highlighted by Gary et al. [29],
the three-dimensional case differs mainly in the anisotropy and a break at k⊥c/Ωe. The
question whether particle transport is different in two and three dimensions may be
understood from the fact that particle motion is still three-dimensional. The theoretical
description is assuming gyrotropy anyway, so the different perpendicular directions are
therefore averaged out.

In the simulations, the natural mass ratio, mp/me = 1836, is used. Waves are initialized
with equal amplitudes and a random phase angle. The total magnetic energy density of the
initial waves is set to 10% of the energy density of the background magnetic field. This can
be expressed by δB2/B2

0 = 0.1, where δB2 = ∑j δB2
j and j denotes individual waves.

To analyze the simulations, the spectra of the magnetic energy density, EB = |~B2(~k)|/(8 π),
in wave number space are considered. A two-dimensional energy spectrum, EB(k‖, k⊥),
can be obtained by Fourier transforming the field data to obtain the perpendicular coordi-
nate k⊥. The parallel direction is equivalent to the z-direction of the simulation, whereas
the perpendicular direction is represented by the x-direction in a two-dimensional simula-
tion or by the x-y-plane in a three-dimensional simulation. A one-dimensional spectrum
EB(k) can be obtained by integrating over the angle θ in the k‖-k⊥-plane. Additional one-
dimensional spectra, EB(k‖) and EB(k⊥), are obtained by integrating EB(k‖, k⊥) over k⊥
and k‖, respectively.

Electron transport is studied in two simulations, S1 and S2. The aim is to resolve
several wave numbers in both the undamped and damped regimes of the whistler mode.
This should allow us to see differences in the spectral slope or the anisotropy in both
regimes. To resolve the relatively large spatial scales of the undamped regime, large
simulation boxes are required. Thus, the decision was taken to restrict the investigations to
two-dimensional setups.

Simulations S1 and S2 are characterized by the physical and numerical parameters
listed in Tables 1 and 2, respectively.

The setups are aimed to simulate decaying turbulence with a set of 42 initially excited
whistler waves according to Figure 2.

Table 1. Physical parameters for simulations S1 and S2: electron plasma frequency, ωp,e electron
cyclotron frequency, Ωe, and thermal speed, vth,e of electrons, sum δB2 of the squares of the magnetic
field amplitudes of the individual waves, and plasma beta β.

Simulation ωp,e (rad/s) |Ωe| (ωp,e) vth,e δB2/B2
0 β

S1 1.966 × 108 0.447 0.10 c 0.10 0.20
S2 1.966× 108 0.447 0.05 c 0.10 0.05
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Table 2. Numerical parameters for the two-dimensional simulations S1 and S2: number of cells, N‖
and N⊥, in the directions parallel and perpendicular to the background magnetic field, respectively;
number of time steps, Nt, grid spacing, ∆x, time step length ∆t, and the number of particles (electrons
and protons combined) per cell (ppc).

Simulation N‖ (∆x) N⊥ (∆x) Nt (∆t) ∆x (c ω−1
p,e ) ∆t (ω−1

p,e ) ppc

S1 2048 2048 1.0× 105 7.0× 10−2 4.1× 10−2 256
S2 2048 2048 1.0× 105 3.5× 10−2 2.0× 10−2 256

kz

kx

Figure 2. Schematic representation of two-dimensional wave number space. The discretized wave
vectors are represented by the gray boxes, and the axes mark the directions parallel (kz) and perpen-
dicular (kx) to the background magnetic field ~B0 in the case of a two-dimensional simulation. For the
simulation of decaying turbulence in two dimensions, a set of 42 initial waves is excited, where each
wave occupies one position on the grid. These positions are indicated by the blue boxes in accordance
with the setup specified by Gary [27].

3.1.2. Turbulence Spectra

Here, the simulations S1 and S2 with the parameters from Tables 1 and 2 are
briefly discussed.

Figure 3 shows the perpendicular spectra EB(k⊥) of the magnetic field energy from
simulations S1 (Figure 3a) and S2 (Figure 3b). At small, perpendicular wave numbers, the
magnetic energy distribution follows a power-law with spectral index s⊥ = −3.1 and −3.0
for S1 and S2, respectively. After the break, the spectra steepen, and significant differences
between both simulations become obvious in the different spectral indices.

The numerical noise level in simulation S2 is about one order of magnitude lower than
in S1, which allows an energy cascade to higher wave numbers. This can be explained
by the lower plasma temperature in S2, leading to less kinetic energy of the particles and
therefore less fluctuations in the electromagnetic fields. The flatter spectrum in S2 (after the
break; compared to S1) agrees with results from Chang [30], who reported a more efficient
perpendicular energy transport with decreasing plasma beta β.

Chang [30] also observed stronger anisotropy in simulations with lower β. However,
this is not supported by the data from simulations S1 and S2. The parallel spectra EB(k‖)
are depicted in Figure 4. In both cases, the parallel spectra do not contain a break and
are steeper than the perpendicular spectra at small wave numbers. For S1, the parallel
spectrum reaches the noise level approximately at the position where cyclotron damping is
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assumed to set in. Figure 4a,b, however, shows that the parallel spectrum in simulation S2
extends to wave numbers in the damped regime. The slope does not change at the transition
into the dissipation range and is flatter than the slope in the perpendicular spectrum at
corresponding k⊥. Thus, the parallel energy transport is assumed to dominate at large
wave numbers. Unfortunately, the turbulent cascade reaches the numerical noise level
prior to that.
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Figure 3. Normalized magnetic field energy distribution EB(k⊥)/EB0 over the perpendicular wave
number, k⊥ normalized to c/ωp, for simulations S1 (a) and S2 (b). Here, EB0 is the magnetic field
energy of the background, ωp is the plasma frequency, and c is the speed of light. The data are
obtained at four times t|Ωe| as indicated, where Ωe is the electron gyrofrquency. At the earliest time
steps, the spectra reach their steady states. Later in the simulations, the shapes of the spectra do not
change significantly. Power-law fits to the data are indicated by the black lines at times t |Ωe| = 1090.1
(a) and 547.1 (b). The corresponding spectral indices are highlighted by the arrows.
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Figure 4. Normalized magnetic field energy distribution EB(k‖)/EB0 over the parallel wave number,
k‖ normalized to c/ωp, for simulations S1 (a) and S2 (b). The data are obtained at four times t|Ωe| as
indicated. The spectra reach their steady state at the earliest time steps. Power-law fits to the data
are indicated by the black lines at times t |Ωe| = 1090.1 (a) and 547.1 (b). The spectral indices are
highlighted by the arrows. The dashed vertical lines indicatethe expected onset of cyclotron damping
for purely parallel propagating waves.

The energy distribution EB(k‖, k⊥) in two-dimensional wave number space supports
the claim that parallel energy transport becomes important in simulation S2, as Figure 5
shows. Figure 5b shows the distribution of magnetic field energy in simulation S2. Although
hardly any (quasi-)parallel waves are produced above k‖ c/ωp ≈ 1 (where cyclotron
damping sets in), this critical parallel wave number can be passed at higher k⊥. At small
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wave numbers, however, the perpendicular cascade clearly dominates. In simulation S1,
the situation is different, as Figure 5a shows. The perpendicular cascade at small wave
numbers is similar to S2, as expected, but at larger k⊥, there is hardly any energy transport
to higher parallel wave numbers, in agreement with the spectra given in Figures 3 and 4.
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Figure 5. Two-dimensional magnetic field energy distribution in wave number space for simulations
S1 (a) and S2 (b). Note different scales on the axes of (a) vs. (b).

3.2. Simulation of Energetic Particles

In order to study wave-particle scattering, a specific initialization of a test particle
population is prepared. The ACRONYM code allows for different particle species (typically
protons and electrons, but also positrons or heavier ions) and different particle populations (a
background plasma and, for example, additional jet populations, non-thermal particles, etc.).

The simulations S1 and S2, discussed here, employ a thermal background plasma (see
Table 1) and an additional population of non-thermal test particles to study the transport
of energetic electrons. It is found that the test particles have no noticeable influence on
the background plasma, even if the ratio Nt/Nbg of numerical particles in the test to the
background particle population is of the order of unity.

3.2.1. Initialization and Analysis

Test particles are initialized as a mono-energetic population; i.e., the particles have
the same absolute speed, but their direction of motion is chosen randomly. The speed is
calculated from the resonance condition for waves in the plasma. Solving Equation (18) for
the speed of a particle of species α yields:

vα =

∣∣∣∣∣∣
k‖ ω |µres| ± |Ωα|

√
k2
‖ µ2

res + (Ω2
α −ω2)/c2

k2
‖ µ2

res + Ω2
α/c2

∣∣∣∣∣∣, (47)

where µres is the desired resonant pitch-angle cosine. The sign in the numerator changes
depending on the polarization of the wave, its direction of propagation, and the parti-
cle species.

The directions of motion of the bulk of the test particles are chosen at random, using
the speed calculated from Equation (47), a random polar angle cosine µ, and a random
azimuth angle φ. This yields an isotropic distribution of the velocity vectors in µ-φ space.
It is convenient to choose an isotropic distribution in µ = cos θ (instead of θ), because
the analysis of pitch-angle scattering relies on the pitch-angle cosine and not on the pitch-
angle itself.
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A fraction of the test particle population is not initialized as described above, but
instead uses a parabolic distribution of polar angle cosines. This is done by assigning

µ = A (R + B)1/3 − C (48)

to the particles, where R is a random number between zero and one, and A, B, and
C are parameters describing the shape of the parabola. The parabolic distribution is
required for the analysis of pitch-angle scattering using the method of Ivascenko et al. [40].
Ivascenko et al. suggest the use of a half-parabola, i.e., A = 2, B = 0, C = 1, but other
distributions are also possible (see Figure 6). The resulting angular distribution of the entire
test particle population is, therefore, not entirely isotropic.
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Figure 6. A fraction of the test particle population has pitch-angle cosines assigned according to a
parabolic distribution. Left panel: the assigned pitch-angle cosine µ as a function of the random
number R ∈ [0, 1], which is used to generate the distribution. The curves follow Equation (48)
and employ two sets of parameters A, B, and C, as indicated. Right panel: the resulting particle
distribution f (µ) as a function of µ. The purple lines employ the parameters suggested by Ivascenko
et al. [40], whereas the green curves show an improved implementation that is used in the ACRONYM
code. Note that the derivative d f (µ)/dµ 6= 0 over the whole range of pitch-angle cosines in the latter
case, whereas it becomes zero at µ = −1 when the parameters of Ivascenko et al. [40] are used.

The technique described above to create a population of energetic test particles
for the study of wave-particle scattering was designed for a single plasma wave in the
simulation [41]. However, it can also be applied to simulations with several plasma waves.

The test particle population is not injected at the start of the simulations S1 and S2 but
at a later time tinj for the following reason: it is expected that turbulence develops from the
initial conditions of the simulation, i.e., from a small set of seed waves that interact and
start the turbulent cascade. This process takes time, and it may be desired to wait until
a turbulent cascade is established before the transport of energetic test particles can be
studied. Therefore, an optional deployment of test particles at later times in the simulation
is favored. The particles are created at a a pre-defined time step, and the initialization
is carried out as described earlier. Those particles can then be tracked for the rest of
the simulation.

To evaluate particle transport in the turbulent plasma, the test particle data can
be analyzed after the simulation to obtain the diffusion coefficient Dµµ. The diffusion
coefficient is calculated from a simplified Fokker–Planck equation, Equation (22), where
pitch-angle diffusion is assumed to be the only relevant diffusion process:

∂ fα

∂t
− ∂

∂µ
Dµµ

∂ fα

∂µ
= 0. (49)

This equation can be rewritten to yield

∂ fα(µ, t)
∂t

=

(
dDµµ(µ)

dµ

)
∂ fα(µ, t)

∂µ
+ Dµµ(µ)

∂2 fα(µ, t)
∂µ2 . (50)
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The method described by Ivascenko et al. [40] is based on integrating Equation (49)
over µ, which yields the pitch-angle current jµ:

µ∫
−1

µ
∂ fα(µ, t)

∂t
= Dµµ(µ)

∂ fα(µ, t)
∂µ

= −jµ. (51)

The diffusion coefficient is then obtained by dividing jµ by ∂ fα/∂µ.

3.2.2. Physical Parameters

Using the setups of simulations S1 and S2, the transport of energetic electrons in
kinetic turbulence is studied. In the following, the exact parameters for the test particle
energy distribution are presented.

In simulations S1 and S2, decaying whistler turbulence is simulated, as was shown in
the Section 3.2. As can be seen in the magnetic energy spectra presented in Figures 3 and 4, a
steady state in terms of the power-law slope of the spectral energy distribution is established
after a given time in each of the two simulations. As soon as this stage of the simulation is
reached, a population of energetic test electrons can be injected as described in Section 3.2.1.

The time step for the checkpoint and subsequent restart is chosen to be t |Ωe| = 726.8
for S1 and t |Ωe| = 364.7 for S2. For each of these two setups, six test electron configurations
are prepared. The simulations are labeled according to the physical setup (S1 or S2) followed
by a letter referring to the test particle configuration (“a” through “f”). The parameters of
the test particles can be found in Table 3 and describe the test electron speed ve and kinetic
energy Ee.

Table 3. Test electron characteristics for the simulations of particle transport: test electron speed ve

and corresponding kinetic energy Ekin,e. The individual simulations (letters “a” through “f”) are
based on the simulations of kinetic turbulence Sj with j = 1 and 2, which are described in Section 3.1.2
(Tables 1 and 2). Note that simulations Sje and Sjf employ the same test electron energies. However,
they differ in the way the test electron distribution is initialized (see text).

Simulation Sja Sjb Sjc Sjd Sje Sjf

ve (c) 0.546 0.862 0.941 0.979 0.999 0.999
Ekin,e (eV) 1.0× 105 5.0× 105 1.0× 106 2.0× 106 1.0× 107 1.0× 107

The test electron energy is increased from simulation S1a (S2a) to S1e (S2e). Simulation
S1f (S2f) uses the same particle energy as S1e (S2e), but a different parabolic angular
distribution of the particles. Here the particle density f (µ) increases with increasing µ,
while in the other simulations it decreases with increasing pitch-angle cosine. This change
in the pitch-angle distribution allows to check for systematic errors in the particle data.

4. Results
Pitch-Angle Diffusion Coefficients

The test particle simulations are analyzed as described in Section 3.2.1. The energetic
electrons are tracked for several electron cyclotron time scales, and the resulting pitch-angle
diffusion coefficients Dµµ are presented in Figures 7 and 8 for data based on the setup of S1
and S2, respectively. Time is measured as the interval ∆t from the time of the injection of
the particles to the current time step.

The results of both sets of simulations, one based on S1 and the other based on S2,
do not differ qualitatively, as would be expected from the two setups. The only difference
between the physical parameters for S1 and S2 is the plasma temperature, which has no
direct influence on the test electrons. Although the magnetic energy spectrum differs at high
wave numbers (see Figure 3), the distribution of magnetic energy at small wave numbers
is very similar. As it is explained below, this low-wave-number regime represents the
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dominant influence on particle transport. Thus, the two sets of simulations are discussed
simultaneously in what follows.

Although particle data can be obtained for an arbitrary number of time steps, the
interval that can be used for the analysis is still limited. The method of Ivascenko et al. [40]
critically depends on the particle distribution f (µ) in pitch-angle space. In order for the
method to work, the initial distribution must be slightly disturbed, but the perturbations
must not be too strong. This leaves only a brief period of time for the optimal efficiency of
the method.

Figures 7a and 8a show the typical behavior of the derived Dµµ over time. Shortly
after the injection of the test electrons, the perturbations of f (µ) are small, resulting in a low
amplitude of Dµµ (purple lines). With increasing time, the amplitude grows and reaches
a maximum (green and blue lines). At later times, the amplitude decreases again, as the
perturbations become too strong and the method becomes unreliable (orange lines). The
other panels of the two figures show the time evolution until the maximum amplitude of
Dµµ is reached for other test electron energies.

Although the turbulent cascade is assumed to be symmetric about µ = 0, the panels
of Figures 7 and 8 show an obvious asymmetry in the pitch angle diffusion coefficients
derived from the test electron data. The amplitude of Dµµ is generally larger for µ < 0.
While the energy spectrum itself is isotropic in µ, one could argue that the polarization of
the waves’ magnetic fields relative to the direction of the background magnetic field B0 is
different (i.e., the plasma physics definition of the polarization).

The magnetic helicity of the plasma waves is one of the possible causes of this
anisotropy. Another reason for the asymmetry found in Figures 7 and 8 is that the parabolic
distribution f (µ) of the test particles implies that there are more test electrons at negative
pitch-angle cosines (except for simulations S1f and S2f). Therefore, the particle statistics is
more reliable for negative µ, and the method of Ivascenko et al. [40] produces more accurate
diffusion coefficients. While Dµµ can also be calculated for µ > 0, it is more prone to errors,
and statistical fluctuations play a more important role, as Figure 9 indicates. However,
small-scale statistical fluctuations can be suppressed by use of a Savitzky-Golay filter, as
suggested by Ivascenko et al. [40].

Especially for early time steps, it can be seen that Dµµ is found to diverge at µ = 1.
This is, of course, not a physical effect. At µ = 1, the derivative of the initial parabolic
distribution f (µ) becomes (almost) zero. In this case, the method of Ivascenko et al. [40]
becomes numerically unstable.

Another numerical effect causes Dµµ to become negative. This can be seen in Figure 8d
and Figure 8e for early times. Negative solutions are most likely related to statistical
fluctuations in the particle distribution, which drown the signal at early times, when the
physically motivated perturbations of f (µ) are still developing.

Besides these flaws, the derived pitch-angle diffusion coefficients appear reasonable.
They develop a (more or less) symmetric shape about µ = 0, indicating that neither
direction is preferred. This is expected from the setup of the turbulence simulations S1
and S2, which employ a symmetric layout of initial waves and therefore should produce
turbulent cascades that are symmetric in µ. This, however, cannot be proven by the plots of
the energy distribution in wave number space, since the information about the direction of
propagation of the waves is lost.

An interesting observation is that the pitch-angle diffusion coefficients grow in ampli-
tude with the particle energy increasing from 100 keV to 2 MeV. At the highest test electron
energy, however, the amplitude of Dµµ is significantly lower than in all other cases. Both
Figures 7e and 8e also show that Dµµ forms a single peak close to µ = 0 in the case of the
highest electron energy, whereas all other simulations produce a double peak structure. The
reason for these differences is not clear. However, it is assumed that the different behavior
of the 10 MeV electrons is related to their scattering characteristics. These high energy
particles resonate with all of the initially excited waves in the simulations (see Figure 2),
which is not the case in the simulations of less energetic electrons. Since the initial waves
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contain the most energy, they are also assumed to significantly influence particle transport,
especially if wave–particle resonances may occur.

In fact, the Dµµ in Figures 7e and 8e exhibit distinct peaks at early times (purple
and green curves). Similar behavior is also found in simulations S1f and S2f, which are
not included in Figures 7 and 8. For the example of one time step in simulation S1f, the
peak structures in Dµµ are related to wave–particle resonances calculated according to
Equation (18). The result is shown in Figure 10, where the colored vertical lines mark the ex-
pected positions of resonances. It can be seen that the resonances coincide with the positions
of the peaks in Dµµ. The region around µ = 0 is most densely populated by resonances,
which might explain the single peak in Dµµ at later times as seen in Figures 7e and 8e.
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Figure 7. Pitch-angle diffusion coefficients Dµµ for test electrons with different energies for simula-
tions S1a to S1e (a–e). The colored lines denote the diffusion coefficients derived from the simulation
data at various times. The black lines represent the model predictions derived in Section 2.3.3.
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Figure 8. Pitch-angle diffusion coefficients Dµµ for test electrons with different energies for simula-
tions S2a to S2e (a–e). The colored lines denote the diffusion coefficients derived from the simulation
data at various times. The black lines follow the model predictions derived in Section 2.3.3.

Finally, Figures 7 and 8 also include the model predictions from Equations (41) and (42).
Some of the parameters required can be directly obtained from the setup of the simulations:
the ratio δB2/B2

0 is listed in Table 1, and the test electron speed speed ve and the electron
cyclotron frequency Ωe are found in Table 3. However, the minimum wave number kmin, the
spectral index s, and the cross helicity and magnetic helicity are not as trivial to find.
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Figure 9. Test electron distribution in pitch-angle space: (a) the initial distribution f (µ) at the time
of the injection of the test electrons (∆t = 0) and at a later time in simulation S1c; (b) the relative
deviation ∆ f / f̄ of the distributions at these two time steps. The deviation is defined as the difference
of the two distributions over their mean value. Statistical fluctuations are visible to become more
significant for larger µ values.
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Figure 10. Pitch-angle diffusion coefficient Dµµ at one point in time as derived from the data of
simulation S1f (black line). A noticeable number of peaks in Dµµ coincide with the positions of
wave–particle resonances predicted by the resonance condition (18), which are marked by the colored,
vertical lines. The colors denote the parallel wave numbers k‖ (in numerical units) from one to
four: purple, green, red, and orange. The line style refers to perpendicular wave numbers k⊥ (also
in numerical units) from zero to three: solid, dashed, dotted, dot-dashed. For example, the red
dashed lines represent the resonance with a wave at (k‖ = ±3, k⊥ = 1). Only resonances of the
first order, i.e., N = ±1 in Equation (18), are shown. Note that k⊥ does not enter the resonance
condition explicitly but is required to calculate the frequency ω(k‖, k⊥) according to the cold plasma
dispersion relation.

For the minimum wave number, the magnetic energy spectra in Figures 3 and 4 have
been considered. The second smallest resolved wave number kmin = 2 ∆k has been chosen,
where ∆k is the grid spacing in wave number space. In a square simulation box, where the
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numbers of grid cells N‖ and N⊥ in the parallel and perpendicular directions are equal, the
grid spacing is given by ∆k = 2 π/(N‖ ∆x) = 2 π/(N⊥ ∆x). The minimum wave number
kmin marks the beginning of the downward slope of the energy spectrum. Waves at small
wave numbers are assumed to dominate the interaction with the particles due to their high
energy content and the steep spectral slope. Therefore, the spectral index s = |s⊥| = 3.1
was chosen, in accordance with the index of the perpendicular spectrum in Figure 3a. This
spectral index corresponds to simulation S1, but since the index in S2 is similar, s = 3.1 was
used in both cases.

Finally, the magnetic helicity σ was chosen to be 0. The effect is in fact rather small
since electrons mostly resonate with right-handed polarized modes.

From this starting point, the three parameters kmin, s, and HR were fitted according to
the numerical data from each simulation. The resulting parameters, which are used in the
plots in Figures 7 and 8, are listed in Table 4. It can be seen that most simulations can be
described with the initial choices for kmin and s explained above.

Table 4. Parameters assumed for the model: spectral index s, cross-helicity HR, and minimum wave
number kmin. The latter is given in units of the grid spacing ∆k = {4.4, 8.7} × 10−2 ωp/c in wave
number space in simulations S1 and S2, respectively.

Simulation S1a S1b S1c S1d S1e S1f S2a S2b S2c S2d S2e S2f

s 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1
HR 1.00 0.55 0.55 0.26 0.26 0.25 0.99 0.59 0.42 0.26 0 0

kmin (∆k) 2 2 2 2 1 1 2 2 2 2 1 1

In general, the model describes the data surprisingly well. Position and amplitude
of the maxima and the inclination of the flanks are in good agreement. The contributions
at µ = 0 are in disagreement; this is however not unexpected as for quasi-linear theory.
Still, a non-zero contribution at medium energies is found, which is different from a non-
dispersive quasi-linear approach. The agreement of the model and the simulation results
also supports the claim that the waves at small wave numbers dominate the interactions
with the particles. Otherwise, the spectral index s would have to be changed according to
the particle energy. The low energy particles, e.g., 100 keV, resonate with plasma waves
in the high wave number regime, where the spectrum is steeper. Thus, according to
Figures 3 and 4, the effective spectral index s should increase for these particles, if the
resonant interactions with high-k waves were important. However, this seems not to be the
case. But as the results in Figures 7 and 8 show, a change of the model equations for Dµµ is
not necessary.

The model only fails for the simulations of 10 MeV-electrons (S1e, S1f, S2e, S2f). This
might already be expected from the considerations discussed above: the high energy
electrons are able to resonate with the initially excited waves. These waves contain the
most energy and thus dominate the interaction of the particles with the turbulent spectrum.
However, the initial waves cannot be considered to be part of the power-law spectrum
itself. As Figures 3 and 4 show, the energy distribution forms a plateau at smallest wave
numbers, where the initial waves are located. The initial waves are also only few in number,
thus not forming a continuous spectrum but a population of distinct, individual waves.
Representing a continuous spectrum on a discretized grid is always doomed to fail, but at
larger wave numbers, the higher number of individual waves at least creates a rudimentary
approximation of a continuum. Thus, the whole model assumption, i.e., a continuous
power-law spectrum, is invalid. As Figure 10 shows, the pitch-angle diffusion coefficient
derived from the simulation data can be described reasonably well by individual resonances
with a number of waves.

Finally, it is worth taking a look at simulations S1f and S2f, which have not been
discussed so far. These simulations, which employ the same test electron energies as
S1e and S2e, were carried out to test whether the initial particle distribution f (µ) has
an influence on the resulting Dµµ. It was already discussed above that the statistical
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fluctuations tend to become more noticeable at those µ where fewer particles are located.
Thus, reversing the slope of the initial parabola should shift the dominant influence of
statistical fluctuations from positive µ to negative.

Figure 11 depicts the pitch-angle diffusion coefficients derived from simulations S2e
and S2f in panels a and b, respectively. This example is chosen because physical results for
Dµµ are only obtained at negative µ at early times in S2e. Should this also be the case in S2f,
this would mean that some physical process prefers the interaction of waves and energetic
particles that propagate opposite to the background magnetic field. However, as Figure 11
shows, this is not the case. The pitch-angle diffusion coefficient derived from S2f appears
to be more symmetric about µ = 0 at early times.

0.0⋅100

5.0⋅10−5

1.0⋅10−4

1.5⋅10−4

2.0⋅10−4

2.5⋅10−4

3.0⋅10−4

3.5⋅10−4

4.0⋅10−4

D
µµ

(|Ω
e|

)

µ

Δt |Ωe| = 0.9 
Δt |Ωe| = 4.6 
Δt |Ωe| = 9.1 
Δt |Ωe| = 13.7
Δt |Ωe| = 18.2

a)

µ

Δt |Ωe| = 0.9 
Δt |Ωe| = 4.6 
Δt |Ωe| = 9.1 
Δt |Ωe| = 13.7
Δt |Ωe| = 18.2

b)

0.0 0.5 1.0−1.0 −0.50.0 0.5 1.0−1.0 −0.5

Figure 11. Comparison of the pitch-angle diffusion coefficients Dµµ derived from the test electron
data of simulations S2e (a) and S2f (b). The two simulations differ by the slope of the parabolic
particle distribution f (µ) used to initialize the test electrons. The asymmetry of Dµµ in S2e at early
times is not reproduced by S2f, which suggests a numerical or statistical reason for the asymmetry.
At late times, the Dµµ become similar, with a single peak near µ = 0 in both simulations.

At late times both simulations produce a single peak in Dµµ, which is located near
µ = 0. The peak is slightly shifted to negative µ in both S2e and S2f. This may hint at a
physical process leading to the peak not being centered exactly around µ = 0. Such an
asymmetry is sometimes predicted in theoretical models, e.g., Schlickeiser [11]. However,
considering the results of simulations of energetic particles and their interaction with
individual waves, an asymmetry is not expected here.

Thus, the results of simulations S2e and S2f depicted in Figure 11 do not entirely agree
with the expectations. It might be worthwhile to investigate the behavior of the pitch-
angle diffusion coefficient in more detail in a future project. Changing the initial particle
distribution f (µ) once more (e.g., by altering the parameters A, B, and C in Equation (48))
or reversing the direction of the integration over µ in the method of [40] might help to
distinguish between a physically motivated asymmetry and numerical artifacts.

5. Conclusions

In this paper, a set of pitch-angle diffusion coefficients for dispersive whistler waves are
derived. Using a particle-in-cell code turbulence in the dispersive regime was simulated.
Test particle electrons were injected into the simulated turbulence and their transport
parameters were derived.

The conducted turbulence simulations yield power-law spectra of the magnetic field
energy in wave number space. The measured spectral indices are in agreement with the
findings of Refs. [27,29]. Numerical noise limits the energy spectra at high wave numbers,
thus hindering the production of an energy cascade in the dissipation range.
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While the theory is limited to parallel waves, simulations were performed in two-
dimensional wave-number space. The theoretical description of oblique, dispersive waves
is not practically doable, while one-dimensional turbulence simulations are not producing
an energy cascade. The approximation of a parallel spectrum makes this difference between
dimensionalities reasonable.

The simulations of energetic particle transport in kinetic turbulence show that the
steep energy spectrum leads to wave–particle interactions primarily in the low wave
number regime. While low-energy particles, in principle, resonate with waves in the
dispersive or dissipative regime of the turbulent cascade, these interactions are subordinate
to interactions with non-resonant waves at lower wave numbers. The reason for this is that
the energy content of dispersive waves decreases rapidly with increasing wave number
due to the steep power-law spectrum. Thus, the waves at low wave numbers dominate the
spectrum as far as particle transport is concerned.

This can be seen when comparing simulation data to the theoretical model. The test
electron data from the simulations allows us to derive pitch-angle diffusion coefficients
Dµµ using the method of [40]. The presented model for Dµµ in plasma turbulence with
dispersive waves allows for the prediction of pitch-angle diffusion coefficient for Alfvén
and whistler turbulence.

Simulation data and model match rather well for low-energy electrons. Contributions
at µ = 0 are not modeled correctly as is expected for a quasi-linear model. The cross-
helicity assumed in model parameters may not necessarily represent the cross-helicity of
the plasma, but may be to some degree a numerical artifact. At higher electron energies,
particles interact with the small number of excited plasma waves, which are used as a
seed population for the generation of kinetic turbulence. The resulting Dµµ does not match
the prediction for the interaction with the (continuous) turbulent spectrum but can be
explained by resonant scattering with several waves at discrete wave numbers.

In general simulations, dispersive whistler turbulence and the corresponding particle
transport are possible but are also still too expensive in terms of computing resources.
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