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Abstract: Solar chromosphere and photosphere, as well as solar atmospheric structures, such as
prominences and spicules, are made of partially ionized plasmas. Observations have reported the
presence of damped or amplified oscillations in these solar plasmas, which have been interpreted in
terms of magnetohydrodynamic (MHD) waves. Slow magnetoacoustic waves could be responsible
for these oscillations. The present study investigates the temporal behavior of the field-aligned
motions that represent slow magnetoacoustic waves excited in a partially ionized prominence plasma
by the ponderomotive force. Starting from single-fluid MHD equations, including radiative losses,
a heating mechanism and ambipolar diffusion, and using a regular perturbation method, first-
and second-order partial differential equations have been derived. By numerically solving second-
order equations describing field-aligned motions, the temporal behavior of the longitudinal velocity
perturbations is obtained. The damping or amplification of these perturbations can be explained in
terms of heating–cooling misbalance, the damping effect due to ambipolar diffusion and the variation
of the first adiabatic exponent with temperature and ionization degree.
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1. Introduction

Mechanisms based on linear and nonlinear Alfvén waves have been proposed, in
order to explain some phenomena observed in different structures of the solar atmosphere.
These waves have been the subject of many studies [1–7], and indirect signatures have been
used to confirm their presence in the solar atmosphere. Furthermore, the dissipation of
Alfvén waves has also been proposed as a potential mechanism to explain coronal heating.

When large amplitudes are considered, linearly polarized Alfvén waves generate
density perturbations and motions along the magnetic field lines [8–11]. In most studies
related to Alfvén waves, fully ionized ideal plasmas are usually considered and treated as
a single fluid. However, plasma is partially ionized in some layers of the solar atmosphere,
such as the chromosphere and photosphere, and in solar atmospheric structures, such as
prominences and spicules. Consequently, studies of Alfvén waves in partially ionized
plasmas have been developed [12–19]. Furthermore, consideration of dissipative effects
is of great interest, and must be included, to fully understand the behavior of nonlinear
Alfvén waves in partially ionized plasmas. In this sense, the single-fluid approach has
been used to study the temporal behavior of nonlinear Alfvén waves in a partially ionized
prominence plasma [20]. In this study, ambipolar diffusion, radiative losses and thermal
conduction as dissipative mechanisms, together with a constant heating-per-unit volume,
were taken into account. Then, the damping of the field-aligned motions and the density
perturbations excited in the plasma by the ponderomotive force were studied.

Recently, when studying the damping/amplification of coronal slow waves, thermal
misbalance has been considered [21–30]: this effect of thermal misbalance comes from the
fact that when compressive waves are considered, they produce a change in the background
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thermal equilibrium, because they perturb local thermodynamic parameters—such as
density, temperature, etc.—driving a local heating–cooling misbalance. At the same time,
feedback between the plasma and the wave appears, and the wave loses or gains energy
from the plasma, leading to either wave damping or amplification. Finally, the heating
mechanisms considered in the above mentioned studies depend on density, ρ, temperature,
T, and the magnetic field, B; therefore, the heating, H, has been expressed as H = hρaTbBc,
in which a, b and c have been taken as free parameters, and h is a constant (see [31] for
a recent review). Further studies on this topic, related to coronal structures, have been
conducted in Refs. [21–30].

Regarding partially ionized prominence plasmas, this approach was taken into ac-
count in Ref. [32], which considered single-fluid equations and a partially ionized hydrogen
plasma, in which different radiative losses as well as ambipolar diffusion were taken into
account. Then, the temporal behaviors of the linear slow magnetoacoustic waves, propagat-
ing parallel to the magnetic field, and of thermal waves were studied. The assumed heating
mechanisms were density- and temperature-dependent, and it was shown that for some
dependences, slow waves could be amplified. Furthermore, the effect of the temperature-
and ionization-degree-dependence of the adiabatic coefficient, γ, in a partially ionized hy-
drogen plasma [33] was also considered. However, in the dispersion relation obtained from
the linear analysis, and when parallel propagation was considered, ambipolar diffusion
only influenced Alfvén waves, but not slow waves, which were only affected by radiative
losses and heating; therefore, these thermal mechanisms became responsible for the damp-
ing/amplification of the oscillations. Then, the only effects related to partial ionization
that affected the temporal behavior of the slow waves were the variation of the numerical
value of the adiabatic coefficient with the ionization degree, when different temperatures
were considered, and the modification of the sound speed. Consequently, to consider the
effects on slow waves propagating parallel to the magnetic field, due to radiative losses,
heating mechanisms and ambipolar diffusion, we needed to resort to the nonlinear cou-
pling of Alfvén and slow waves [20], which gives place to field-aligned motions induced
by the ponderomotive force. Using a regular perturbation approach, the obtained second
order equations included an energy equation involving thermal mechanisms, and a term
in which Cowling’s diffusivity, ηC, appeared explicitly. Then, this scheme allowed us to
study the temporal behavior of field-aligned velocity perturbations, representing slow
magnetoacoustic waves, in a partially ionized plasma influenced by thermal mechanisms
and ambipolar diffusion.

On the other hand, in the case of prominence plasmas, radiative equilibrium promi-
nence models, constructed from a balance between incident radiation and cooling [34–36],
as well as differential emission measures, have demonstrated that a further unknown
heating is required, in order to reproduce the observed temperatures in the prominence
cores [36–38]), and to balance the radiative losses [39,40]. Therefore, it would be interesting
to consider prominence heating, characterized by different values of the exponents a and
b, describing the temperature and density dependence of the heating mechanism, and to
study the effect on the oscillatory processes in prominence plasmas caused by slow waves.

The main aim of this study is to investigate the temporal behavior of the field-aligned
motions representing slow magnetoacoustic waves excited by the ponderomotive force
in an unbounded partially ionized plasma, with physical properties akin to those of solar
prominences, when heating–cooling misbalance and the damping effect due to ambipolar
diffusion were present. The present study closely follows [20] using the same background
model and dissipative mechanisms. However, some important differences, with respect to
Ref. [20], are introduced to the present study: first, apart from ambipolar diffusion, the case
of thermal misbalance is considered, and the temporal behavior of slow magnetoacoustic
waves is studied, paying attention to the damping/amplification of these waves; second,
due to the uncertainty of prominence heating, the calculations consider a general heating
term such as H = hρaTb, taking a and b as free parameters; third, the thermodynamics of
partially ionized gas [41] differ from those of fully ionized or fully neutral gas, and the
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consideration of a constant value for the adiabatic coefficient, γ, would overestimate the
gas temperature [33]; therefore, in this study three different cases are considered. Initially,
and for comparison, a constant γ = 5/3 is considered; then, the first adiabatic exponent,
Γ1, is computed under non-local thermodynamic equilibrium (NLTE) and local thermo-
dynamic equilibrium (LTE) conditions [33], whose numerical values depend on density,
temperature and ionization degree. Furthermore, a comparison between Hildner [42] and
CHIANTI7 [43–45] radiative functions was also included.

The layout of the paper is as follows. The background model, ionization state, dissi-
pative mechanisms, methods and resulting equations used for the computations are the
same as in Ref. [20], and are summarized in Section 2. Next, in Section 3, considering
γ = 5/3, second-order equations are solved when thermal misbalance and different heating
mechanisms are considered. Then, in Sections 3 and 4, similar calculations are conducted,
considering the first adiabatic exponent, Γ1, computed under NLTE and LTE conditions as
well as different radiative functions. Section 5 briefly discusses the results.

2. Method and Basic Equations

In what follows here, the theoretical background, on which the obtained results are
based, is summarized.

2.1. Background Model

The chemical composition of the prominence plasma here is the same as that consid-
ered by [38], the abundance of which is 90% hydrogen and 10% helium, which is fully
neutral. The equation of state is

p =
ρkBT(i + 1.1)

1.4H
. (1)

where kB is the Boltzmann constant, H the atomic mass unit, and i is the ionization degree.
The ionization degree of the mixture considered is computed by making use of tables of the
ionization degree for different temperatures and pressures in prominence slabs provided
in Ref. [38], and which were based on 1D non-LTE radiative transfer models [46]. A poly-
nomial fit to these tables, up to third order in pressure, p, temperature, T, together with
product terms or interactions was performed, which allows us to compute the ionization
degree for any combination of pressure and temperature. For the rest of the parameters, the
values for the magnetic field, density and temperature are those typical of quiescent promi-
nences, respectively: B0 = 5× 10−4 T, oriented along the z-axis, ρ0 = 5× 10−11 kg ·m−3,
considered constant in the calculations here, while the considered temperature, T, is in the
interval of 4000–12,000 K.

Single-fluid equations constituted our starting set of equations, with ambipolar diffu-
sion, radiative losses and heating included, while thermal conduction is neglected, because
under prominence conditions thermal conduction times are much longer than radiative
times [20,32]. Furthermore, in order to characterize the radiative losses, two optically thin
radiative-loss functions, such as Hildner [42] and CHIANTI7 [43–45] ones are considered.
The general expression for these radiative functions is;

Lrad(ρ, T) = χ∗ρTα, (2)

where χ∗ and α were piecewise functions depending on the temperature, with χ∗ = 1.76× 10−13

and α = 7.4 for Hildner [42], and χ∗ = 2.02× 10−15 and α = 8.06 for CHIANTI7 [43–45]
when prominence temperatures are considered. Furthermore, ambipolar diffusion is com-
puted following [20].

By applying a regular perturbation method, up to order two, to the single-fluid
equations for parallel propagating waves, first-order equations representing Alfvén waves,
and second-order equations describing longitudinal velocity perturbations along with
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density, pressure and temperature perturbations are obtained. These first-order and second-
order equations are described and solved in the following Subsections.

2.2. First-Order Equations

In order to write down all the equations under study in a dimensionless form, let us
introduce the following dimensionless quantities:

v̄′ =
v′

cA,0
, k̄z = kzL0, z̄ =

z
L0

, t̄ =
t
τ

, η̄C,0 =
ηC,0

cA,0L0
,

B̄′ =
B′

B0
, ρ̄′ =

ρ′

ρ0
, c̄A,0 =

cA,0

cA,0
= 1. (3)

where cA,0 is the Alfvén speed at the equilibrium state, ηC,0 is Cowling’s diffusivity at the
equilibrium state—which is related to the ambipolar diffusivity coefficient, ηA,0, through
ηC,0 = ηS,0 + ηA,0B2

0, where ηS,0 corresponds to Spitzer’s diffusivity, L0 is a characteristic
length scale corresponding to half the size of the spatial domain under consideration, and τ
is a time scale. Both scales are related through the equilibrium Alfvén speed, cA,0 = L0/τ,
and hereafter bars are dropped, for the sake of simplicity. Then, the first-order equations are:

∂v′y
∂t

=
∂B′y
∂z

, (4)

∂B′y
∂t

=
∂v′y
∂z

+ ηC,0
∂2B′y
∂z2 . (5)

These two equations involve the components of v and B vectors, transverse to the
equilibrium magnetic field, and can be appropriately combined into an equation for v′y
only. By imposing conditions representing a standing oscillation, with wavelength equal to
4L0 [20], the solution to the transverse velocity perturbation is

v′y(z, t) = v0 exp
[
−1

2
k2

zηC,0t
](

cos ωr t +
k2

zηC,0

2ωr
sin ωr t

)
cos kzz , (6)

where v0 is the initial velocity, ωr =
√

4k2
z − η2

C,0k4
z is the real part of the Alfén wave

frequency and ωi =
k2

zηC,0
2 is the imaginary part. The period and damping time, due to

ambipolar diffusion, are given by

P =
2π

ωr
=

4π√
4k2

z − η2
C,0k4

z

, (7)

τAD =
1

ωi
=

2
k2

zηC,0
. (8)

Once the expression for the perturbed velocity amplitude is known, the solution for
the perturbed magnetic field, B′y, can be obtained by integration, to give

B′y(z, t) =
v0 exp

[
− 1

2 k2
zηC,0t

](
k4

zη2
C,0 + 4ω2

r

)
sin kzz sinωrt

4kzωr
. (9)

2.3. Second-Order Equations

Following [20], the dimensionless second-order equations are:
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∂ρ′

∂t
= −∂v′z

∂z
, (10)

∂v′z
∂t

= −∂p′

∂z
− 1

2

∂B′y
2

∂z
, (11)

∂p′

∂t
= − c2

s,0
∂v′z
∂z

− (γ− 1)

[
c2

s,0

γ

(
ωρρ′ωT

(
γ

c2
s,0

p′ − ρ′
))]

(12)

+ (γ− 1)ηC

(
∂B′y
∂z

)2

,

where
T′(z, t) =

γ

c2
s,0

p′(z, t)− ρ′(z, t), (13)

with cs,0 being the sound speed at the equilibrium state, and ρ′, p′, T′ the density, pressure
and temperature perturbations, respectively. Here, the focus is on the solution that repre-
sents the generation of slow magnetoacoustic waves due to the nonlinear coupling with the
Alfvén waves. Furthermore, from here on, it is assumed that c2

s,0 < c2
A,0: that is to consider

a low-β plasma typical of prominences, where the plasma-β is defined as

β ≡
c2

s,0

c2
A,0

=
γp0

B2
0/µ

, (14)

with µ the magnetic permittivity.
The heat-loss function, which depends on the local plasma parameters, is denoted by

L. Typically, in solar applications the heat-loss function L represents the difference between
an arbitrary heat input and a radiative loss function, such as

L(ρ, T) = Lrad(ρ, T)− H(ρ, T) , (15)

with Lrad(ρ, T) describing radiative losses while H(ρ, T) describes the heat input, with
the units of both quantities being W · kg−1. In the case of an equilibrium with uniform
temperature, such as we will consider here, the heat loss function is

L(ρ0, T0) = 0 , (16)

where ρ0 and T0 are density and temperature equilibrium, and the factors Lρ, LT are

Lρ =

(
∂L
∂ρ

)
T

, (17)

and

LT =

(
∂L
∂T

)
p
=

(
∂L
∂T

)
ρ

− ρ0

T0
Lρ , (18)

with T, p and ρ held constant, respectively, in the equilibrium state.
On the other hand, use of the characteristic times of the thermal misbalance is made

here as introduced in Refs. [21–23,25,47,48], which are

τr1 =
γcv

(∂L/∂T)ρ − (ρ0/T0)Lρ
, (19)

τr2 =
cv

(∂L/∂T)ρ

, (20)
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where cv is the specific heat given by

cv =
kB

(γ− 1)µ̃H
, (21)

with µ̃ the mean molecular weight.
These thermal misbalance characteristic times depend on the heating/cooling mecha-

nisms considered, and on the rates of change of these mechanisms with density and temper-
ature, such as can be seen in Equations (19) and (20). Now, developing Equations (19) and (20),
and since

ωρ =
ρ0

p0
ρ0Lρ, ωT =

ρ0

p0
T0LT , (22)

one can write the characteristic times for thermal misbalance, in terms of radiative losses
and heating functions, obtaining

τr1 =
γcvT0

(α− 1)Lrad(ρ0, T0) + (a− b)H(ρ0, T0)
, (23)

τr2 =
cvT0

αLrad(ρ0, T0)− bH(ρ0, T0)
, (24)

and, using the characteristic times τr1 and τr2, one can also compute ωT and ωρ in dimen-
sionless form:

ωT =
1

(γ− 1)τr2

L
cA,0

, (25)

ωρ =
1

γ− 1

(
1

τr2
− γ

τr1

)
L

cA,0
. (26)

3. Results

In this study, three different cases are considered. First, although a partially ionized
plasma is considered, for comparison, a constant γ = 5

3 is assumed here, independent
of the plasma ionization degree, which has been used in many research works involving
partially ionized plasmas. Second, instead of using γ, the first adiabatic exponent, Γ1, and
its variation with temperature and ionization degree has been computed from the fitted
model described in Section 2, and is defined as NLTE Γ1. Third, the study considers the
case when Γ1 is computed using the ionization degree obtained from an LTE model, as
had usually been done in other studies. Finally, in order to assess the effect of different
radiative losses, Hildner’s [42] and CHIANTI7’s optically thin radiative losses [43–45]
are considered.

On the other hand, in order to assess the effect of the assumed heating mechanisms,
different values for the exponents a and b, which describe the density and temperature
dependences, respectively, are used, which modify the characteristic thermal misbalance
times, τr1, τr2, keeping unmodified the ambipolar diffusion damping time, τAD. In all the
considered cases, Equations (10)–(13) are solved under the following initial and bound-
ary conditions,

ρ′(z, 0) = v′z(z, 0) = p′(z, 0) = 0, v′z(z = 1, t) = v′z(z = −1, t) = 0. (27)

3.1. γ = 5/3, a = b = 0 (Constant Heating per Unit Volume)

First, and as a reference, let us consider a heating mechanism independent of density
and temperature (a = b = 0), which corresponds to a constant heating per unit volume.
To describe separately the effects of thermal and ambipolar diffusion, first of all one
neglects ambipolar diffusion, and considers only thermal effects. Figure 1 (left) shows, for
a characteristic length, L0 = 105 m, the dimensionless longitudinal velocity perturbations
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describing slow waves, corresponding to four different temperatures. The first feature
that one can observe in Figure 1 (left) is that the damping produced by radiative losses is
different for the different temperatures considered. The stronger damping corresponds
to the highest temperature (red curve), while the weaker damping is associated with the
lowest temperature (brown curve). Following [32,49], this behavior can be understood by
means of the thermal time, τT, related, in this case, to radiative losses and heating. In the
nonlinear case, no analytical expression exists for the thermal damping/amplifying time;
however, one can get some help from the linear case [32]. In this case—and assuming small
wavenumbers, such as those that are considered in these calculations—the imaginary part
of the approximate analytical solution corresponding to slow waves [32] is:

ωi =
1
2

( 1
τr2
− 1

τr1

τ−2
r2 + c2

s,0k2
z

)
c2

s,0k2
z , (28)

whose sign is given by
1

τr2
− 1

τr1
≷ 0. (29)
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Figure 1. Dimensionless longitudinal velocity perturbations versus dimensionless time computed
(left) at z = 0.5 for T = 12,000 K (red curve), T = 8000 K (blue curve), T = 6000 K (black curve) and
T = 4000 K (brown curve); a = 0, b = 0, kz = π

2 ; and (right) at z = 0.5 for T = 12,000 K, ηC,0 = 0.022
(red curve), T = 8000 K, ηC,0 = 0.026 (blue curve), T = 6000 K, ηC,0 = 0.03 (black curve) and
T = 4000 K, ηC,0 = 0.036 (brown curve). a = 0, b = 0, kz = π

2 . The characteristic length, L0 = 105 m,
and the Hildner [42] radiative function are used. See text for details.

Making use, again, of the linear case, the expression describing the damping/amplification
due to thermal effects is e−ωit, and the positive sign of ωi corresponds to the case of
time damping, while the negative sign corresponds to amplification. Then, the thermal
damping/amplifying time, τT, can be computed from

τT =
1

ωi
(30)

becoming

τT =
2
(

τ−2
r2 + c2

s,0k2
z

)
(

1
τr2
− 1

τr1

)
c2

s,0k2
z

, (31)

and, as one can see from Equation (31), the thermal time is modified as soon as τr1, τr2,
cs,0 or kz are modified. Then, using Equation (31): for T = 12,000 K, τT = 44.8 s; for
T = 8000 K, τT = 105.2 s; for T = 6000 K, τT = 624 s; and for T = 4000 K, τT = 8485 s.
The numerical values of these thermal times allows us to understand the damping rate
of the temporal behavior of the longitudinal velocity perturbations in Figure 1 (left), with
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the strongest damping corresponding to a temperature, T = 12,000 K, while the weakest
damping corresponds to T = 4000 K.

Next, let us consider the effect of ambipolar diffusion and the temporal behavior of
longitudinal velocity perturbations, shown in Figure 1 (right). These curves displayed
a stronger damping than in Figure 1 (left), due to the inclusion of ambipolar diffusion,
whose effect is characterized by e−t/τAD (see Equation (6)). In the ambipolar diffusion
damping time, introduced in Equation (8), increasing L0 means that the wavenumber kz is
decreased, then τAD is increased, and the effect of ambipolar diffusion becomes weaker;
when L0 is decreased, the opposite happens. Keeping L0 constant, a decrease of the
temperature means that Cowling’s diffusivity, ηC, is increased, and τAD decreases, which
enhances the ambipolar diffusion effect: for T = 12,000 K, τAD = 28 s; for T = 8000 K,
τAD = 24 s; for T = 6000 K, τAD = 21 s; and for T = 4000 K, τAD = 17 s. For instance,
in the curve corresponding to T = 4000 K, one can observe that the damping rate due to
thermal effects is very small, because τT = 8485 s, while the damping due to ambipolar
diffusion (τAD = 17 s) is quite visible at short times; however, in the curve corresponding to
T = 12,000 K, τT = 44.8 and τAD = 28 s, which suggests a strong damping due to thermal
and ambipolar diffusion effects together, such as can be seen looking at the red curve.

On the other hand, the second characteristic feature of the curves shown in Figure 1
is that the period seems to be increasing when the temperature is decreasing. In order
to understand this effect, an analytical approximation is sought. For instance, and as
a tentative approximation, one can find from Equations (10)–(13) an analytical solution
(shown in Appendix A) for the longitudinal velocity perturbation when thermal effects are
neglected. Then, for L0 = 105 m and T = 4000 K, this approximate solution is compared
to the numerical solution when thermal and ambipolar diffusion effects were taken into
account. Figure 2 (left) gives this comparison, and one can observe a good agreement
between both solutions because, in this case, ambipolar diffusion is the dominant effect. For
different values of L0 and T, when thermal effects become important enough, the agreement
is also quite good, with slight differences in the amplitude of both solutions. Consequently,
from the analytical solution, one can conclude that the two different frequencies, 2cskz
and ωr (see [8–11]), are involved in the curves describing the temporal behavior of the
oscillations. When temperature is decreased, the sound speed also decreases, and similarly
the frequency 2cskz does; furthermore, decreasing temperature implies an increase in ηC,
and, then, the frequency, ωr also decreases. Recapitulating, when the temperature decreases,
both frequencies decrease and the period increases, what can be observed in Figure 1
(left) and (right). The temporal behavior of the longitudinal velocity perturbations was
dependent on the behavior of e−t/τT , with τT ≷ 0 and e−t/τAD with τAD > 0 determining
damping or amplification, while 2cskz and ωr determined the period.
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Figure 2. Left: Comparison between the numerical solution for the longitudinal velocity perturbation
(red curve) and the analytical solution (blue curve) (T = 4000 K, a = b = 0, ηC,0 = 0.036). Right:
Temporal behavior of the longitudinal velocity perturbations for different heating mechanisms, with
a = 1/2, b = −1/2 (red curve), a = 1, b = 0 (blue curve), a = b = 1 (black curve), and a = b = 7/6
(brown curve); T = 8000 K, ηC,0 = 0.026. L0 = 105 m and the Hildner [42] radiative function are used
as needed. See text for details.



Physics 2023, 5 339

Furthermore, to study the damping of MHD waves, optically thin or thick radiative
losses, along with different heating mechanisms displaying density and temperature depen-
dence, have been considered by many authors [50–53]. The assumed values for exponents
a and b were: a = 1, b = 0 (constant heating per unit mass); a = b = 1 (heating by
coronal current dissipation); a = b = 7/6 (heating by Alfvén mode/mode conversion);
a = 1/2, b = −1/2 (heating by Alfvén mode/anomalous conduction damping). However,
taking into account these heating mechanisms, the results always give a damping of the
oscillatory processes under study, as one can see in Figure 2 (right). Therefore, it is of
great importance to know whether or not damping is a universal behavior independent
of the considered heating mechanism. Finally, most of the conclusions obtained, when
considering a heating mechanism with a = b = 0, are useful for the studies described in
the following Subsections.

3.2. γ = 5/3, a = 2, b = 4

Next, let us consider a heating mechanism that depends on temperature and density,
and is characterized by the exponents a = 2 and b = 4. Here, a study similar to that
in Section 3.1 is performed, and Figure 3 (left) displays the temporal behavior of the
longitudinal velocity perturbations for the same values of temperature, T, and characteristic
length, L0, as in Figure 1. The main difference between Figure 1 and Figure 3 is that the
damping proceeds at different rates that can be explained by looking at the thermal times:
for T = 12,000 K, τT = 75 s; for T = 8000 K, τT = 473 s; for T = 6000 K, τT = 2918 s;
for T = 4000 K, τT = 39,747 s. These thermal times are increased, with respect to those in
Section 3.1 because, even though T and L0 are kept constant, the thermal misbalance times,
τr1 and τr2, are modified, thanks to the new dependence on density and temperature in the
heating mechanism. This change in the thermal misbalance times modifies the thermal
times, τT, in Equation (31), while the ambipolar diffusion times stay not modified.
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Figure 3. Dimensionless longitudinal velocity perturbations versus dimensionless time computed
(left) at z = 0.5 for T = 12,000 K, ηC,0 = 0.022 (red curve), T = 8000 K, ηC,0 = 0.026 (blue curve),
T = 6000 K, ηC,0 = 0.03 (black curve) and T = 4000 K, ηC,0 = 0.036 (brown curve), with L0 = 105 m;
and (right) at z = 0.5 for T = 12,000 K, ηC,0 = 0.00022 (red curve), T = 8000 K, ηC,0 = 0.00026 (blue
curve), T = 6000 K, ηC,0 = 0.0003 (black curve) and T = 4000 K, ηC,0 = 0.00036 (brown curve); a = 2,
b = 4, kz = π

2 , with L0 = 107 m. The Hildner [42] radiative function is used. See text for details.

Figure 3 (right) in which the characteristic length, L0, is increased from 105 m to 107 m,
shows a difference in the damping rate, with respect to the Figure 3 (left). There are two
reasons explaining the difference. The first reason is that in this case, the effect of the
ambipolar diffusion is weaker due to the change in kz, which produces an increase in
the ambipolar diffusion damping times, which are now: T = 12,000 K, τAD = 284,292 s;
T = 8000 K, τAD = 246,512 s; T = 6000 K, τAD = 213,772 s; and T = 4000 K, τAD = 174,191 s.
One can conclude that to increase L0 by two orders of magnitude produces a substantial
increase in τAD. The second reason is that the thermal time also increased, with respect
to the case of L0 = 105 m. This is also due to the change in the wavenumber, kz, as it
appears in Equation (31), with the thermal times now being: T = 12,000 K, τT = 360,000 s;
T = 8000 K, τT = 52,279 s; T = 6000 K, τT = 14,140 s; and T = 4000 K, τT = 40,962 s. One
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can conclude that, in this case, the damping is mainly due to radiative losses, while the
ambipolar diffusion contribution is almost negligible. Furthermore, from the above thermal
damping times and Figure 3 (right), another conclusion can be obtained, which is that in
this case, with L0 = 107 m, the damping is stronger for T = 6000 K (black curve), while
in Figure 3 (left), with L0 = 105 m, the stronger damping appears for T = 12,000 K (red
curve). Keeping L0 the same as in Figure 1 (left) and Figure 3 (left), the ordering of the
damping times is conserved. However, when L0 is modified, the ordering changes, because
the wavenumber, kz, in Equation (31), becomes modified. Recapitulating, modifying the
wavenumber, kz, implies that the thermal times and the ambipolar diffusion damping times
are also modified leading to a modification of the damping rates of longitudinal velocity
perturbations.

On the other hand, in both Figure 1 and Figure 3, one can observe that the behavior of
the periods is the same as that obtained in Section 3.1.

3.3. γ = 5/3, a = 2, b = 6.25

In this Subsection, the density dependence of the heating mechanism remains the
same, because temperature dependence is modified by increasing exponent b from 4 up
to 6.25. Figure 4 (left), corresponding to L0 = 105 m, shows that, for the considered a
and b parameters, the longitudinal velocity perturbations are amplified by the amplifying
thermal times as follows: T = 12,000 K, τT = −237 s; T = 8000 K, τT = −2546 s; T = 6000 K,
τT = −15,840 s; and T = 4000 K, τT = −215,000 s. As noted above, the minus sign is
due to the negative sign of the quantity

(
1

τr2
− 1

τr1

)
in Equation (31): thus, ωi < 0, and

one has amplification of thermal origin. An interesting conclusion, which is derived
from Sections 3.1–3.3, is that by keeping a constant and increasing the exponent b of the
temperature, the behavior of the perturbations changes from damping for a = b = 0
to a weaker damping for a = 2, b = 4, and to an amplification for a = 2, b = 6.25;
therefore, it seems that if, in the heating mechanism, the density dependence is kept
constant and the temperature dependence is made stronger, then the temporal behavior of
the perturbations goes from damping to amplification. The effect of the ambipolar diffusion
is the same here as in Figure 3 (left), because the ambipolar diffusion damping times are
not influenced by the heating mechanisms. However, it is also important to remark that the
effect of ambipolar diffusion is always to damp the perturbations, which is observable at
the short times in the brown curve corresponding to the lowest temperature and highest
Cowling’s diffusivity. In spite of this damping effect, the thermal effects are still able to
amplify the perturbations, in such a way that the net result, once both contributions are
taken into account, is the temporal amplification of the perturbations. Figure 4 (right),
corresponding to L0 = 107 m, shows the presence of amplification too. Here, the amplifying
thermal times are for T = 12,000 K, τT = −223,580 s; for T = 8000 K, τT = −34,720 s; for
T = 6000 K, τT = −22,810 s; and for T = 4000 K, τT = −216,530 s, which are greater than
for L0 = 105 m, due to the decrease in the wavenumber in Equation (31). This fact implies
that for L0 = 107 m, the amplification should have proceeded at a weak rate; however,
because the effect of ambipolar diffusion is also much weaker, the joint effect gives place to
a stronger amplification of the perturbations.

This interplay between thermal effects and ambipolar diffusion can be seen in Figure 5.
Figure 5 shows the temporal behavior of longitudinal velocity perturbations for three
different values of L0, modifying the wavenumber kz and ηC, and a constant temperature
T = 8000 K. For L0 = 107 m, ηC,0 = 0.00026, τAD = 246,512 s and τT = −34,720 s, the
ambipolar diffusion damping time is quite long, while the thermal time is shorter, and the
amplification due to thermal effects is dominant (red curve), and appears quickly enough.
For L0 = 106 m and ηC,0 = 0.0026, τAD = 2465 s and τT = −2448 s; both times are of
the same order, and the amplification proceeds slowly (blue curve). For L0 = 105 m and
ηC,0 = 0.026, τAD = 24.65 s and τT = −2546 s, and the damping due to ambipolar diffusion
is strong, in particular at short times (black curve). Finally, as time passes, the effect of
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ambipolar diffusion decreases, while the amplification due to thermal effects increases;
therefore, it takes much longer time to observe the amplification of the oscillations.
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Figure 4. Dimensionless longitudinal velocity perturbations versus dimensionless time computed
(left) at z = 0.5 for T = 12,000 K, ηC,0 = 0.022 (red curve), T = 8000 K, ηC,0 = 0.026 (blue curve),
T = 6000 K, ηC,0 = 0.03 (black curve) and T = 4000 K, ηC,0 = 0.036 (brown curve), with L0 = 105 m;
and (right) at z = 0.5 for T = 12,000 K, ηC,0 = 0.00022 (red curve), T = 8000 K, ηC,0 = 0.00026 (blue
curve), T = 6000 K, ηC,0 = 0.0003 (black curve) and T = 4000 K, ηC,0 = 0.00036 (brown curve) with
a = 2, b = 6.25, kz = π

2 , and L0 = 107 m. The Hildner [42] radiative function is used. See text
for details.
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Figure 5. Dimensionless longitudinal velocity perturbations versus dimensionless time computed
at z = 0.5 for L0 = 107 m (red curve), ηC,0 = 0.00026, L0 = 106 m (blue curve), ηC,0 = 0.0026,
L0 = 105 m (black curve), ηC,0 = 0.026. T = 8000 K; a = 2, b = 6.25. The Hildner [42] radiative
function is used.

The damping effect of ambipolar diffusion is characterized by the behavior of
exp[−t/τAD], while amplifying/damping of thermal effects can be understood by as-
suming that they are characterized by exp[−t/τT]: using these two expressions, one can
understand the temporal behavior of the longitudinal velocity perturbations. τAD is always
positive; then, when τAD and τT are both positive, there is a combination of the damping
effects; if τAD > τT at the beginning, the damping is dominated by thermal effects and, later,
the effect of ambipolar diffusion appears. When τAD < τT, the opposite happens. When
τAD ≷ |τT|, with τT < 0, there is a competition between the damping effect of ambipolar
diffusion and the amplification due to thermal effects: first, one can have amplification,
and later, the damping effect appears, or the other way round.

3.4. γ = 5/3, a = 4, b = 2 or a = 6.25, b = 2

In Sections 3.2 and 3.3, the numerical value of exponent a, which describes the density
dependence of the heating mechanism, is kept constant. while the b exponent describing
the temperature dependence is modified. One could have proceeded the other way round,
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keeping constant b and varying a in order to compare to the results obtained in previous
Subsections.

Figure 6 compares several heating mechanisms considered at a constant L0 = 105 m
and temperature T = 12,000 K. The comparison between the temporal behaviors of the
longitudinal velocity perturbations for a = 2, b = 4 and a = 4, b = 2 is shown in
Figure 6 (left). One can see that for a = 2, b = 4, the damping of the oscillation is stronger
than for a = 4, b = 2. The reason is that modifying a and b produces a modification of
thermal misbalance times, τr1 and τr2, while the ambipolar diffusion damping times, τAD,
are not affected. This modification of thermal misbalance times leads to a change of τT,
which is equal to 75 s for a = 2, b = 4, while it is 275 s for a = 4, b = 2 and, consequently, the
damping for a = 4, b = 2 is weaker than for a = 2, b = 4. On the other hand, Figure 6 (right)
compares the other two mechanisms, and it shows that, for a = 6.25, b = 2, amplification
proceeds faster than for a = 2, b = 6.25: again, the reason is a change of τT, which is equal
to −100 s for a = 6.25, b = 2, while it is equal to −237 for a = 2, b = 6.25. Summarizing,
the results obtained here show that keeping constant the exponent describing the density
dependence, while varying the exponent describing the temperature dependence, produces
different damping or amplification rates, with respect to the case, in which the exponent
describing the temperature dependence is kept constant, while the exponent describing the
density dependence is varied. The reason is that thermal misbalance times are modified by
these changes, leading to different damping or amplifying thermal times, which weakens
or enhances the oscillations, despite the global temporal behavior being similar.
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Figure 6. Dimensionless longitudinal velocity perturbations versus dimensionless time computed
(left) at z = 0.5 for T = 12,000 K, ηC,0 = 0.022, a = 2, b = 4 (red curve) and a = 4, b = 2 (blue curve),
and (right) at z = 0.5 for T = 12,000 K, ηC,0 = 0.022, a = 2, b = 6.25 (red curve) and a = 6.25, b = 2
(blue curve); kz = π

2 . L0 = 105 m, and the Hildner [42] radiative function are used.

3.5. γ = 5/3, τr1 = τr2

Sections 3.1–3.4 discussed the damping or amplification of the longitudinal velocity
perturbations when different heating mechanisms are considered. However, another
situation, which may be worth studying, is one, in which the combination of the chosen
radiative loss function and heating mechanism gives place to thermal misbalance times, τr1
and τr2, having the same numerical value. Then, the approximate analytical expression for
the imaginary part of the frequency (Equation (28)) becomes equal to zero and, therefore,
the thermal damping or amplifying time becomes infinite, i.e., there is neither damping
nor amplification due to thermal effects. However, although in this situation there is no
damping or amplification of thermal origin, damping by ambipolar diffusion is always
present and, as a consequence, the oscillations should be damped with the characteristic
damping time, τAD.

Using Equations (23) and (24), and once a value for a is assumed, one obtains an
equation giving the threshold value for b, which separates the regimes of damping and
amplification due to thermal effects:

b =
α(γ− 1)− a + 1

γ− 1
. (32)
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On the other hand, once exponent b is fixed, using Equation (32), one also obtains an
expression for the threshold value of exponent a, which is

a = (α− b)(γ− 1) + 1. (33)

Assuming a radiative loss function, along with numerical values for a and γ, one
obtains a numerical value for b that satisfies Equation (32): for instance, taking a = 2,
γ = 5/3 and α = 7.4 [42] from Equation (32), one obtains b = 5.9. Another possibility
is that, with assumed numerical values for b and γ, the value of a can be determined,
satisfying Equation (33). Figure 7 (left) displays the behavior of thermal misbalance times
versus the b exponent. In the beginning, τr2 is smaller than τr1, but for a certain value of b,
both curves crossed and τr2 becomes larger than τr1. Figure 7 (right) shows the behavior of
the expression 1

τr2
- 1

τr1
versus the b exponent, and one can see that this difference becomes

zero for b = 5.9, as one can find from Equation (32).
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Figure 7. Left: thermal misbalance times versus b exponent: τr1 (red curve), τr2 (blue curve). Right:(
1

τr2
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τr1

)
versus b exponent, T = 12,000 K, a = 2, kz = π

2 . L0 = 105 m and the Hildner [42]
radiative function are used. See text for details.

On the other hand, Figure 8 (left), for γ = 5/3, shows the behavior of the threshold
values of the b exponent, when exponent a varies between −1 and 6, while Figure 8 (right),
displays the behavior of the a exponent when the b exponent varies between −1 and 6.
In both cases, the behavior is linear, as can be expected from Equations (32) and (33),
but if the same value for a fixed in Figure 8 (left) is used for b in Figure 8 (right), the
corresponding values for b and a are different, which explains the results obtained in
Section 3.4. Summarizing, in Figure 8 (left panel), fixing a value of a, for those values of
b below the straight line, one finds damping of the oscillations, while for those above the
line, one finds amplification of the oscillations. The same behavior for a can be found in
Figure 8 (right) when b is fixed.
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Figure 8. The threshold values for (left) the b exponent versus the a exponent and for (right) the a
exponent versus the b exponent. γ = 5/3 and the Hildner [42] radiative function are used. See text
for details.
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In order to highlight the case when τr2 = τr1, let us consider T = 12,000 K. Figure 9 (left)
shows the behavior of

(
1

τr2
− 1

τr1

)
versus an interval of numerical values for exponents

a and b. One can observe how this difference evolves from positive to negative values,
going through zero, when a and b are varied within the considered interval: Figure 9 (right)
shows the evolution of the imaginary part of the frequency ωi, computed by Equation (28),
within the interval of numerical values considered for a and b. From Figure 9 (right) one
can see that the imaginary frequency also goes from positive to negative values, becoming
zero for certain pairs of a and b values. Next, Figure 10 (left) shows the variation of the
thermal time, τT , and demonstrates a discontinuity, which well highlights that, for certain
pairs of values of a and b, the thermal time becomes infinite, corresponding to τr2 = τr1.
Figure 10 (right) shows, for a reduced interval of values of a and b, a comparison between
the thermal time and the ambipolar diffusion time, which is constant once the temperature
is fixed.

Figure 9. Left:
(

1
τr2
− 1

τr1

)
versus a and b exponents. Right: ωi versus a and b exponents.

T = 12,000 K. The Hildner [42] radiative function is used. See text for details.

Figure 10. Thermal time, τT (left), and (right) τT (red) and ambipolar diffusion time, τAD (blue),
versus a and b exponents. T = 12,000 K. The Hildner [42] radiative function is used. See text for details.

Finally, imposing a = 2 and b = 5.9, Figure 11 (left) displays the temporal behavior
of the oscillations for T = 4000 K. The damping by ambipolar diffusion proceeds as
∼ exp(−t/τAD) which, in this case, and since τAD = 28 s, would be exp(−t/28), and
Figure 11 (left) shows that the damping due to ambipolar diffusion produced a decay of
the oscillations, well seen at short times; later, when time increases, the damping proceeds
more slowly and, because damping due to thermal effects is absent, the general impression
is that the oscillations are almost decayless. In case the ambipolar diffusion time, τAD, is
quite long, the damping due to this effect takes a long time to be visible in the oscillatory
plots, enhancing the impression of decayless oscillations. Complete decayless oscillations
would only be possible for an infinite ambipolar diffusion time that can be obtained only by
imposing kz = 0 (no wave) or ηC = 0, which cannot be attained, because for fully ionized
plasma, Spitzer’s diffusivity is equal to Cowling’s diffusivity, η = ηC.
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Figure 11. Left: dimensionless longitudinal velocity perturbations versus dimensionless time, com-
puted at z = 0.5 for L0 = 105 m, T = 4000 K, ηC,0 = 0.036, a = 2, and b = 5.9. The Hildner [42]
radiative function is used. Right: LTE first adiabatic exponent, Γ1 (blue curve) and NLTE Γ1 (red
curve) versus temperature. See text for details.

3.6. LTE Γ1 and NLTE Γ1

Until this point, the calculations assumed that the adiabatic coefficient, γ, is constant
and equal 5/3; however, it is known that, in the case of partially ionized plasmas, this
assumption is not satisfied. For a partially ionized hydrogen gas, the dependence of γ on
temperature and ionization degree has been computed [54–57]. Here, instead of considering
the adiabatic coefficient γ, the first adiabatic exponent,

Γ1 =

(
∂ ln p
∂ ln ρ

)
s
, (34)

is introduced, where the derivative is computed at constant entropy, s. This coefficient is
equal to γ = 5/3 for a fully neutral or ionized gas, although its numerical value depends
on the ionization degree, temperature and density. Considering the ionization degrees
obtained from the NLTE model, Γ1 can be computed, while, for comparison, also LTE is
assumed, and the corresponding ionization degree and Γ1 are computed using a modified
Saha equation (for details of the computations see [33]). Figure 11 (right) shows the behavior
of both the LTE and the NLTE Γ1 versus the temperature. As one can see, for the considered
temperature interval, there is a sensitive difference between the two-model exponents,
which is basically due to the consideration of the LTE and NLTE models, on which the
calculation of Γ1 is based. However, for temperatures around 14,000 K, corresponding to
full ionization, both exponents converged to the same value of 5/3, as expected.

On the other hand, if in the equations where γ is involved, instead of γ, Γ1 is consid-
ered, then the equations to be modified by the variation, with temperature and ionization
degree, of LTE and NLTE Γ1 are: the specific heat, cv, in which decreasing Γ1 would mean
increasing cv; while thermal misbalance times, τr1 and τr2, would depend on Γ1 and cv, and
the decrease of Γ1 would increase both times. Furthermore, sound speed would decrease
with Γ1 and, as a consequence, the frequency given by 2cs,0kz would also decrease while the
associated period is increased. Finally, the approximate analytical solution in Equation (28)
is also modified, because terms, such as τr1, τr2 and cs,0, are involved. However, other
expressions, such as ones for ωT and ωρ, remain unchanged.

3.7. γ = 5/3, LTE Γ1 and NLTE Γ1, a = 2, b = 4 or a = 2, b = 6.25

Here, and as an example, for T = 8000 K, the temporal behaviors of the longitudinal
velocity perturbations for a constant γ = 5/3, NLTE Γ1 and LTE Γ1, are compared. Again,
two heating mechanisms characterized by a = 2, b = 4 and a = 2, b = 6.25, are considered.
The results are shown in Figure 12. Figure 12 (left) displays the results for a = 2, b = 4, and
one can see that, while for γ = 5/3, oscillation are damped with a damping time τT = 473 s,
for LTE Γ1 = 1.38, τT = 3663 s, which means a weak damping of the oscillation, while
for NLTE Γ1 = 1.15 one finds a thermal amplifying time of −3708 s, and the oscillations
are amplified. This behavior can be understood following Equation (32), because taking
α = 7.4, γ = 5/3 and a = 2, the threshold value for b, to change the behavior from damping
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to amplification, is 5.9, same as found in Section 3.5. However, taking LTE Γ1 = 1.38, the
threshold value was 4.76, and for NLTE Γ1 = 1.15, the threshold value of b is 0.73, which
explains the presence of amplification in this case. Furthermore, in the case of NLTE
Γ1, the period is increased, because the sound speed decreases with respect to the other
cases, leading to a decrease of 2cs,0kz. Figure 12 (right) corresponds to a = 2, b = 6.25
and, in this case, all the oscillations are amplified by the amplifying times given by −2546
for constant γ, −1896 for LTE Γ1 = 1.38 and −2218 s for NLTE Γ1 = 1.15; therefore,
one finds amplification, because all the cases satisfy the threshold values mentioned.
Different amplifying times are obtained that means that the rates, at which the oscillations
are amplified, are different. These results point out that the consideration of the first
adiabatic exponent, and how it varies by temperature and ionization degree since the
density is kept constant, is important in order to properly describe the temporal behavior
of the longitudinal velocity perturbations associated with the slow waves, and that these
variations could even cause a complete change of behavior with respect to a constant γ
that has been considered in many studies. It is also important to remark that, once the
temperature and L0 are fixed in the present calculations, the ambipolar diffusion damping
time is fixed as well.
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Figure 12. Dimensionless longitudinal velocity perturbations versus dimensionless time computed
(left) at z = 0.5 for T = 8000 K, ηC,0 = 0.026, γ = 5/3 (red curve), ηC,0 = 0.028, LTE Γ1 = 1.38 (blue
curve), ηC,0 = 0.026, NLTE Γ1 = 1.15 (black curve), a = 2, b = 4, and (right) at z = 0.5 for T = 8000 K,
ηC,0 = 0.026, γ = 5/3 (red curve), ηC,0 = 0.026, LTE Γ1 = 1.38 (blue curve), ηC,0 = 0.026, NLTE
Γ1 = 1.15 (black curve), a = 2, b = 6.25. kz = π

2 . L0 = 105 m and the Hildner [42] radiative function
are used.

4. CHIANTI7 Radiative Loss Function

This Section considers the CHIANTI7 optically thin radiative function [43–45] and a
constant γ = 5/3, and the results are shown in Figure 13. Figure 13 (left) shows that, for
a = 2, b = 4, the general behavior of the oscillations is the same as for the Hildner radiative
loss function, and the only differences are visible for the thermal damping times, such as
220 s, 104 s, 609 s, and 10,780 s. For a = 2, b = 6.25, those times are 396 s, 702 s, 5007 s and
89,024 s, which means that there is no amplification of the oscillations, and is a completely
different behavior than that in the case of the Hildner [42] optically thin radiative function.
The reason for this behavior is that, in Equation (32), the value of α is now 8.06 instead
of 7.4, and amplification appears for the values of b above 6.56. However, in order to
illustrate the effect that Γ1 could have on the oscillatory behaviors, setting T = 8000 K,
NLTE Γ1 = 1.15, LTE Γ1 = 1.38, a = 2, and b = 6.25, the above results change. For the
NLTE Γ1, the threshold value for b is 1.39, and for the LTE Γ1, it is 5.42, both values being
smaller than b = 6.25; the latter means that, in both cases, the oscillations are going to be
amplified. Therefore, by modifying the numerical value of the first adiabatic exponent, one
is able to modify the temporal behavior of oscillations.
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Figure 13. Dimensionless longitudinal velocity perturbations versus dimensionless time computed
(left) at z = 0.5 for T = 12,000 K, ηC,0 = 0.022 (red curve), T = 8000 K, ηC,0 = 0.026 (blue curve),
T = 6000 K, ηC,0 = 0.03 (black curve) and T = 4000 K, ηC,0 = 0.036 (brown curve), with a = 2 and
b = 4, and (right) at z = 0.5 for T = 12,000 K, ηC,0 = 0.022 (red curve), T = 8000 K, ηC,0 = 0.026 (blue
curve), T = 6000 K, ηC,0 = 0.03 (black curve) and T = 4000 K, ηC,0 = 0.036 (brown cirve), with a = 2
and b = 6.25. The CHIANTI7 radiative function [43–45] is used.

Next, using Equation (32), for a = 2, Figure 14 (left) shows the behavior of the
threshold values of the b exponent versus Γ1 for the two values of α corresponding to
the Hildner [42] and CHIANTI7 radiative functions [43–45]. One can observe that, for a
fixed value of Γ1, the difference between the two curves is small; however, there is quite
a difference between the values of b for small and large values of Γ1. Figure 14 (right)
displays the behavior of the threshold values of exponent b versus exponent a for the three
different values of Γ1 and, for a fixed value of a, the effect of the numerical value of the first
adiabatic exponent on b is visible. Furthermore, and similar to that observed in Section 3.5,
once a value of a is fixed, for those values of b below the straight lines, there is a damping
of the oscillations, while for the b values above the lines one finds and amplification of the
oscillations. On the other hand, due to the crossing of the straight lines one can conclude
that both the amplification and damping are dependent on the value of Γ1.
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Figure 14. The threshold values of (left) the b exponent versus Γ1 for α = 7.4 Hildner [42] (red
curve) and α = 8.06 CHIANT7 (blue curve) radiative loss functions with a = 2, and (right) of the b
exponent versus the exponent a for Γ1 = 5/3 (red curve), 1.38 (blue curve), 1.15 (black curve) using
the CHIANTI7 radiative loss function.

Recapitulating, the two radiative functions considered produce a change in the damp-
ing or amplifying rates of the oscillations, because the functions modify the misbalance
thermal times, which modify the thermal time, τT; however, the consideration of the first
adiabatic exponent and its variation with temperature and ionization degree could also
produce important changes in the oscillatory behavior.

5. Discussion

Observations have shown the presence of damped/amplified oscillations in promi-
nences which are made of partially ionized plasmas, and these oscillations have been
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mostly interpreted in terms of MHD waves. Different damping mechanisms of thermal
origin, like radiation and thermal conduction, have been proposed, although in most of
the cases fully ionized plasmas have been considered. When partially ionized plasmas are
considered, ambipolar diffusion introduces a further dissipative mechanism, contributing
to the damping. However, to understand the amplification process of the oscillations
another mechanism is needed.

Taking advantage of the nonlinear coupling of Alfvén and slow magnetoacoustic
waves, the present study investigated the temporal behavior of the field-aligned motions,
representing slow waves, generated by the ponderomotive force in an unbounded partially
ionized prominence plasma. In the calculations made here the heating–cooling misbalance,
with heating mechanisms depending on powers of density and temperature as well as
ambipolar diffusion, were considered. First of all, the joint effect of thermal misbalance
with different heating mechanisms characterized by different dependences on density and
temperature and ambipolar diffusion allowed us to obtain different oscillatory behaviors
showing damping or amplification. As ambipolar diffusion is a dissipative mechanism, the
characteristic time, τAD, was always found to be positive; therefore, the amplification of the
oscillations is of thermal origin. The comparison between the thermal time, τT, character-
izing the damping or amplification of thermal origin, and the ambipolar diffusion time,
τAD, were shown to determine the temporal behavior of the oscillations. When the thermal
time was taken positive, the oscillations were observed to be damped, due to the joint
effect of thermal mechanisms and ambipolar diffusion characterized by e−t/τT and e−t/τAD ,
respectively. However, for the negative thermal time, the effect was an amplification of the
oscillations, combined with a damping produced by ambipolar diffusion. In this case, if
τAD < |τT|, initially, the effect of the damping produced by ambipolar diffusion was strong
and, later on, the amplifying effect started to be present; conversely, when τAD > |τT|, the
opposite behavior occurred. An interesting case was observed when thermal misbalance of
the times, τr1 and τr2, were equal, which means that there is no damping or amplification of
thermal origin: this condition allowed us to determine threshold values for the exponents a
and b, describing the density and temperature dependences of the heating mechanisms.
These threshold values were found to locate along the straight lines defining the borders
between two regions: in one region, the oscillations were damped, while in the other region
the oscillations were amplified. In both cases, superimposed by these behaviors, there was
a damping effect observed, due to ambipolar diffusion.

On the other hand, although a partially ionized plasma was considered, in the reported
study, a constant value for the adiabatic coefficient γ was assumed. Therefore, in order
to be coherent with the kind of plasma under study, and to determine how the results
obtained can be affected by this consideration, three different cases were compared, namely:
a constant γ = 5/3, and the first adiabatic exponent, Γ1, computed under NLTE and
LTE conditions, whose numerical value depended on density, temperature and ionization
degree. The results showed that quite strong differences appear in the temporal behavior of
the oscillations and, basically, these differences were the changes in the rates of damping or
amplification, as well as being modifications of the behavior from damping to amplification
or the other way round. Certainly, taking into account the different numerical values
for constant γ, LTE and NLTE Γ1, the border between the regions separating damping
from amplification of thermal origin was modified, straightforwardly pointing out, the
influence of these parameters on the results. Furthermore, the consideration of Hildner [42]
or CHIANTI7 radiative loss functions [43–45] were also found to modify the separation
between damping and amplification regions in the plane (a , b) of the exponents.

Finally, taking into account the above discussed mechanisms and parameters, as well
as the obtained results regarding damping or amplification, by varying the parameters
describing the prominence plasma physical state, one should be able to match the temporal
behavior of the observed prominence oscillations, performing what is called prominence
seismology. In this sense, and in a simpler case of only thermal effects, the matching
between theory and observations of damped and amplified small amplitude oscillations in
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prominences, has been achieved [32]. However, in the case studied here, and because of
the joint consideration of thermal effects and ambipolar diffusion, a similar study would
imply that, in order to perform the matching, one would need to consider an additional
parameter, such as τAD.
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Appendix A
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where vz is the longitudinal velocity perturbation, v0 the initial velocity, cs the sound
speed, ηC the Cowling’s diffusivity, kz the wavenumber, and ωr the real part of the Alfvén
wave frequency.
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