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Abstract: In addition to classical analytical data processing methods, machine learning methods
are widely used for data analysis in elementary particle physics. Most often, such techniques are
used to identify a particular class of events (the classification problem) or to predict a certain event
parameter (the regression problem). Here, we present the result of using a machine learning model to
solve the regression problem of event position reconstruction in the DEAP-3600 dark matter search
detector. A neural network was used as a machine learning model. Improving the position resolution
will improve the reduction in background events, while increasing the signal acceptance for weakly
interacting massive particles.
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1. Introduction

To date, there are many theories beyond the standard model of particle physics about
the origin of dark matter and possible candidate dark matter particles. One of the preferred
options is a weakly interacting massive particle (WIMP). It is being searched for by many
detectors, including the DEAP-3600 detector [1]. Considering that, according to the latest
result from the Planck experiment, dark matter makes up about 27 percent of the entire
mass-energy of the Universe [2], discovering dark matter would bring key knowledge in
the understanding the structure of the world.

2. The Detector

This paper is a part of an update of the DEAP-3600 analysis software in the area of
data processing and quality of event reconstruction. A full description of the detector can
be found elsewhere [3]; here we present just its characteristic features.

DEAP-3600 is a single-phase liquid argon detector located approximately 2 km (6 km
water-equivalent) underground at the SNOLAB facility near Sudbury, Canada. The detector
was built to register scintillation light induced by elastic scattering of WIMPs on nuclei of a
3279 kg liquid argon (LAr) target during the second fill, contained in a spherical acrylic
vessel with an inner diameter of 1.7 m. The upper 30 cm of the acrylic vessel contains
gaseous argon (GAr). The neck of the detector connects the acrylic vessel with the central
support assembly, on which the glovebox is located (Figure 1).

The GAr and LAr regions are viewed by an array of 255 inward-facing 8′′ diameter
photomultiplier tubes (PMTs) [4]. These PMTs are optically coupled to 45 cm long ultraviolet
absorbing acrylic light guides, which transport visible photons from the acrylic vessel (AV)
to the PMTs. The inner surface of the acrylic vessel is coated with a 3 µm layer of 1,1,4,4-
tetraphenyl-1,3-butadiene that converts 128 nm scintillation light produced by the LAr to
visible wavelengths over a spectrum that peaks at 420 nm [5].
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Figure 1. Schematic diagram of the DEAP-3600 detector [1]. The origin of the coordinate system is
located at the center of the acrylic vessel, with the Z coordinate in the vertical direction.

The detector is well protected against particles from the outside. The space between the
light guides is filled with alternating layers of high-density polyethylene and polystyrene
foam filling blocks that provide passive protection of the detector components from neu-
trons. At the same time, the structure is enclosed in a spherical stainless steel shell and is
submerged in a 7.8 m high, 7.8 m wide water tank with 48 outward facing 8′′ diameter PMTs
mounted on the outer surface of the sphere. Altogether, these photomultiplier tubes and
the water tank constitute the Cherenkov muon veto used to mark the cosmogenic-induced
background, while the shielding water provides neutron and gamma-ray background
suppression from the cave [1].

The coordinate system is shown schematically in Figure 1. It originates from the center
of the acrylic vessel. Thus, the X and Y coordinates lie within (−850; 850) mm, while in the
Z axis, these limits are (−850; 1100) mm due to the presence of events in the detector neck.

The largest contribution to the background rate after applying fiducial cuts is from
210Po α-decays in the neck area of the detector. Scintillation light is observed resulting
from neck events, which result from a thin film of LAr covering the surfaces of the neck
components [1]. Such events are quite similar to events with nuclear recoil of the particle at
the argon nucleus in the detector bulk, so backgrounds originating in the neck reduce the
sensitivity of the detector. Proper recovery of the coordinates of events in the detector’s
neck area will allow such events to be correctly identified and rejected in further analysis.

Two different position reconstruction algorithms developed by the DEAP-3600 collab-
oration are currently used. The first algorithm, called “MBLikelihood” (MBL), relies solely
on the spatial distribution of charge through PMTs for position reconstruction. The second
algorithm, called “TimeFit2” (TF2), uses the arrival time of the photons to determine the
position of the event. Both methods use the maximum likelihood function in comparing
the available information about the particle (charge, photoelectron arrival time) with the
values in the grid of test positions inside the detector [1]. The likelihood functions in TF2
and MBL operate under the assumption that events originate in the LAr bulk—this causes
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a bias in the case of events originating from the neck. Therefore, both algorithms work well
in the LAr area of the detector, but for events in the neck region, they do not match in their
results and cannot accurately determine the event position.

To solve this, it was decided to use machine learning techniques to determine the
position of the event in the entire detector volume, including the neck area.

3. Machine Learning Approach

Machine learning is widely used in elementary particle physics. Over the past two
decades, particle physics has shifted to using machine learning methods to collect and
analyze large samples of data [6]. Novel studies using neural networks [7,8] and boosted
decision trees (BDTs) [9,10] in previous generation experiments [11–22] laid the foundation
for the emergence of machine learning as an important tool at the LHC (Large Hadron Col-
lider). Machine learning algorithms have made significant contributions to the discovery of
the Higgs boson [23,24], and most data analysis tasks now benefit from machine learning.
In parallel, the field of machine learning has evolved at a rapid pace, and in particular,
the deep learning area has provided superior performance in several areas [25,26]. Incor-
porating these tools while maintaining the scientific rigor required to analyze elementary
particle physics data broadens the horizons of science [27].

While investigating machine learning methods for position reconstruction in DEAP-
3600, several methods were considered. Classical regression, support vectors, decision trees,
dimensionality reduction using principal components, convolutional and fully connected
neural networks are only a partial list of the algorithms that were tested for this problem.
As a result, it is found that one of the most effective and fastest algorithms is the fully
connected neural network (FCNN).

3.1. Neural Network Algorithm

The neural network [28] is a machine learning algorithm with: an input layer, in which
the number of base units called “neurons” is equivalent to the number of event parameters;
an output layer, in which the number of neurons corresponds to the number of variables
being defined; and any number of “hidden” layers, in which there can be any number of
neurons. A fully connected neural network is a neural network, in which each neuron of
the layer is connected to all neurons of the next and previous layers. These connections are
weight values and are adjusted during training. A schematic of the fully connected neural
network is shown in Figure 2.

Figure 2. Schematic and operating principle of a fully connected neural network. ai is the output
value of the ith neuron of the previous layer. “PMT” stands for the “photomultiplier”.
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The principle of the neural network is as follows. There is a set of layers with a
certain number of neurons in them. Each neuron has its activation function, which takes
as its argument the weighted average of values from all neurons of the previous layer.
In other words, each neuron receives all output values from previous layers, as well as
weight values,

yi = F(X) = F
(

∑ wiai

)
, (1)

where F is the activation function of the neuron, wi is the weight of the connection which
connects the current neuron with the ith neuron of the previous layer, and ai is the output
value of the ith neuron of the previous layer. Model training consists of epochs, during
which the training set is processed by the network. The training data are usually divided
into batches, and after each batch is processed, the error is recalculated and the weights
adjusted. The processing of one batch is called an iteration and consists of two parts. In
the first part, a forward pass is performed from the beginning to the end, the error of the
algorithm is calculated, and then a backward pass occurs, during which the weight values
wi are adjusted in accordance with the measured error value. The main task of the neural
network training is to determine these weight wi values.

3.2. Results

For the current study, using the ROOT [29], Geant4 [30] and RAT [31] software pack-
ages, sets of Monte Carlo simulations of three types of events of 50,000 each were created:
β-decays of 39Ar, 40Ar nuclear recoil events, and α-decays of 210Po in the detector neck area.

In sum, 150,000 events were used in a 70:30 ratio to train and test the model. An equal
number of events were performed to make sure that the algorithm was not overtrained on
specific events.

Variables that were fed to the input layer of the neural network used 255 values of
charge detected at the internal PMTs, normalized on a scale from zero to one.

The study was performed using the Python programming language [32]. During
the analysis the following packages were used: pandas [33] and NumPy [34] for reading
and converting data, and matplotlib [35] for graphics and TensorFlow [36] for building
a machine learning model. A different neural network was trained for each of the three
coordinates X, Y, Z. Due to the symmetry of the detector along the X and Y coordinates, the
structure of the neural network for these coordinates is identical. Due to the fact that the
detector symmetry is broken for the Z coordinate because of the presence of the detector
neck, a model with a similar but slightly different structure was built for this coordinate.
The structures of all three models were selected by an analytical method, however, adhering
to the following rule: it is better to increase the number of neurons in the existing layers
than to add a new layer. All models were compiled with the Adam optimizer [37] and
mean squared error (MSE) loss metrics.

As a result, the following neural network structure was used for X and Y coordinates:

255
sigmoid

→ 255
sigmoid

→ 255
sigmoid

→ 16
sigmoid

→ 1
linear

, (2)

and similar one for Z coordinate:

255
softmax

→ 512
tanh

→ 512
tanh

→ 1
linear

, (3)

where in numerator/denominator we have the number of neurons and the activation
function on each layer, respectively.

Each model was trained to obtain a stable performance, and it was imperative they
were not under-trained or over-trained. It turned out that 400 training epochs were suffi-
cient for the first two models, while the last model for the Z coordinate became stable after
40 epochs. It also turned out that the models were optimal with batch sizes of 256 and 128
for X–Y and Z coordinates, respectively.
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The models were tested after training. The test sample was divided into two parts: the
first part contained events where the true position was in the LAr area of the detector, and
the second part contained events that occurred in the detector neck area.

Figure 3 represents the main result of the study, and shows the graphs of the error in
determining the coordinates (true minus reconstructed coordinates) for all three models:
for the neural network (FCNN), TF2 and MBL.

(a) (b)

Figure 3. Error in determining the Z (a) and X (b) coordinates in the detector neck area. Results of
different algorithms are shown: the fully connected neural network (“FCNN”), TimeFit2 (“TF2”), and
MBLikehood (“MBL”); see text for details. The “std” stands for the standard deviation.

Figure 3a shows the main result of this study. One can see that the neural network
model works and reconstructs the Z coordinate more accurately than existing MBL and
TF2 algorithms. Figure 3b shows that the neural network algorithm performs well also
in determining the X coordinate in the neck region. Similar results are obtained for the
Y coordinate.

While the neural network-based algorithm performs well in the neck region (Figure 3),
Figure 4 shows that this algorithm does not achieve the same results as the existing MBL
algorithm in the LAr region. Nevertheless, the neural network results may also be taken into
account as one of the three estimates of the event position for the most correct estimation of
the weighted average.
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(a) (b)

Figure 4. Error in determining the Z (a) and X (b) coordinates in the detector LAr area. Results of
different algorithms are shown: the fully connected neural network (“FCNN”), TimeFit2 (“TF2”), and
MBLikehood (“MBL”); see text for details. The “std” stands for the standard deviation.

4. Conclusions

This paper investigated a machine learning method for reconstructing the event posi-
tion in the DEAP-3600 experiment. Multiple machine learning methods were researched,
and the fully connected neural network has shown itself to be the most successful. A
total of 150,000 simulated data events were generated by the Monte Carlo method for
training and testing machine learning models. The trained models were tested on the test
sample and these models were compared with the existing MBLikelihood and TimeFit2
algorithms. Based on the results of the test, it was determined that the model based on
machine learning is best to reconstruct the events in the neck area of the detector (Figure 3).
The machine learning neural network algorithm is found to also handle events in the LAr
area while with a lower accuracy than that of the existing algorithms (Figure 4); however,
it also contributes to the final position estimate. The machine learning algorithm method
can be used separately to identify neck events as well as in combination with the already
existing algorithms to get a more accurate assessment of the event position in the detector.
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