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Abstract: We analyze the correlations functions across the horizon in Hawking black hole radiation
to reveal the correlations between Hawking particles and their partners. The effects of the underlying
space–time on this are shown in various examples ranging from acoustic black holes to regular
black holes.
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1. Introduction

The 1974 prediction by Hawking [1,2] of a quantum thermal emission by black holes
(BHs) is a milestone of modern theoretical physics. As the associated temperature is
extremely tiny (of order 10−8 K for a solar mass BH) no experimental evidence of this
remarkable result has been given so far. Currently, the only indication that this phenomenon
indeed exists in nature comes, surprisingly, from condensed matter physics. An analog of
a BH that is created by a Bose–Einstein condensate (BEC) undergoing a transition from
a subsonic flow to a supersonic one has shown [3–5], in the density–density correlation
functions across the horizon, a characteristic peak [6,7]. This peak is consistent with a
pair-creation mechanism of a Hawking particle that is outside the horizon and its entangled
partner is inside. This has stimulated a large interest in studying the quantum correlations
across the horizon in terms of its relation to the Hawking effect.

In this paper, we consider various BH metrics and analyze if and where this kind of
signal does indeed appear. We simplify the mathematical treatment by considering two-
dimensional (2D) space–times (some of them can be considered as the time-radial section
of spherically symmetric 4D space–times) and a massless scalar quantum field propagating
on them. We focus on a particular component of the quantum energy momentum tensor of
the scalar field which is relevant in terms of revealing the presence of the Hawking effect.

2. The Setting

The 2D BH metrics we consider here are stationary and can be cast in the Edding-
ton–Finkelstein (EF) form,

ds2 = − f (r)dv2 + 2dvdr , (1)

where v is a null advanced coordinate, r is the radial coordinate, and the horizon, rh,
corresponds to f (rh) = 0. A retarded coordinate u can be introduced by

u = v− 2r∗ , (2)
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where the Regge–Wheeler coordinate r∗ is

r∗ =
∫ dr

f (r)
. (3)

One can write the metric in the double-null form

ds2 = − f (r)dudv , (4)

where r is a function of u and v defined implicitly by

r∗ =
v− u

2
. (5)

We consider a massless scalar field φ̂(x) to be propagating in the space–time of
Equation (1) (or (4)) to satisfy

�̂φ̂(x) = 0 , (6)

where �̂ ≡ ∇µ∇µ is the covariant d’Alembertian, the Greek letters denote the space-time
indexes: µ = 0, 1 and x is a generic space–time point. The energy momentum operator
associated to φ̂ reads

T̂µν(φ̂(x)) = ∂µφ̂(x)∂νφ̂(x)−
gµν

2
∂αφ̂(x)∂αφ̂(x) . (7)

Here, ∂µ ≡ ∂/∂ν, gµν is the metric tensor.
The (across the horizon) correlator of this operator that we study is [8]

G(x, x′) =
〈U|T̂uu(φ̂(r, v))T̂u′u′(φ̂(r′, v′)|U〉

f 2(r) f 2(r′)
, (8)

where r > rH and r′ < rH .
In the double null coordinate system of Equation (4), one has:

T̂uu(φ̂) = ∂uφ̂∂uφ̂ . (9)

The quantum state |U〉 in which the expectation value in Equation (8) is taken is the
Unruh state [9]. This state is defined by expanding the field φ̂ in a base{

e−iωkU
√

2πωk
;

e−iωv
√

2πω

}
, (10)

where ω and ωk are the frequencies and U is the Kruskal coordinate defined as

U = ∓1
κ

e−κu , (11)

which, unlike u, is regular on the future horizon. In Equation (11), κ is the surface gravity
of the horizon

κ =
1
2

d f
dr
|rH (12)

and − holds outside the horizon, while + is inside. The state |U〉 describes the state of the
quantum field at a late retarded time u after the BH is formed, and it is the relevant one to
discuss the Hawking BH evaporation in this limit.

The correlator Equation (8) is quite general. For a gravitational black hole, it is related
to the energy density correlator that is measured by geodesic observers. Its square root
appears in acoustic BH, thereby giving the density–density correlator [6,7] in a BEC under
the hydrodynamical approximation. (In this case the equal-time condition is taken at
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Painlevé time, the laboratory time. The qualitative features we discuss remain unchanged).
The two-point function for the u sector of the state |U〉 is

〈U|φ̂(x)φ̂(x′)|U〉 = − h̄
4π

ln(U −U′) (13)

(with h̄ the reduced Planck’s constant), from which one obtains:

G(r, r′) =
1

f 2(r) f 2(r′)

(
h̄κ2

16π cosh2[ κ
2 (u− u′)]

)2

|v=v′ , (14)

where
(u− u′)|v=v′ = −2(r∗ − r′∗) . (15)

This function is expected to display the correlations of the particle–partner pairs.
The two, when on-shell, propagate along the u = const trajectories. As can be seen from
Equation (14), the cosh−2 term has indeed a maximum along the null trajectories u = u′,
thus confirming the expectations. There are, however, also the “geometrical” prefactors
f−2 that can mask the above behaviour.

3. Acoustic BH Model

Acoustic BH metrics are mostly characterized by a single sonic point that separate
the subsonic from the supersonic regions of the flow. Both regions are asymptotically
homogeneous. A profile that is mathematically simple enough to manipulate and is
sufficiently representative is given by a metric, for which the conformal factor reads

f (r) = tanh 2κr , (16)

where −∞ < r < +∞. It has an horizon at r = 0 and κ = | f ′(r)|r=0/2 is its surface gravity.
The subsonic region is r > 0, while the supersonic one is at r < 0.

In the acoustic language, the profile would correspond to a flow with velocity V(r),
such that

f = 1−V2(r) . (17)

As one can see from Figure 1, the profile becomes flat quite rapidly, indicating a
homogeneous flow. From Equations (3) and (16), one has, in this case,

r∗ =
1

2κ
ln | sinh 2κr| , (18)

and, from Equation (2),
u = v− κ−1 ln | sinh 2κr| . (19)

The condition for the maximum of the cosh−2 term in G(x, x′) at equal v is (see
Equation (15))

κ−1 ln | sinh 2κr| = κ−1 ln | sinh 2κr′| , (20)

where r > 0 and r′ < 0, and this is plotted in Figure 2.
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Figure 1. The acoustic black hole (BH) profile (16) for the surface gravity κ = 1/4.
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Figure 2. Plot of the right-hand and left-hand sides of Equation (20) for κ = 1/4.

In Figure 3, a plot of the correlator G(r, r′) (14) is shown.

Figure 3. The correlator, G(r, r′) (14) for the acoustic BH model, for h̄ = 1 and κ = 1/4.

In Figure 3, one can immediately notice the presence of the expected peak signaling
the correlations between the Hawking particles and their partners. The location of the peak
is indeed along Equation (20) for a sufficiently large r (and r′), where the prefactors f−2

rapidly approach one. For the points near the horizon, the situation is different. To see
what happens in the horizon vicinity, in Figure 4, we plot G(r, r′) as a function of r for
various fixed values of r′.
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Figure 4. The correlator G(r, r′) for the acoustic BH model for h̄ = 1 and κ = 1/4 as a function of r,
as well as for fixed r′ = −3 (blue line), r′ = −3.5 (orange), r′ = −4 (green) and r′ = −4.5 (red).

The peak appears at u = u′|v=v′ only for points r, |r′| & 1/κ. For the points located
closer to the horizon, no peak appears [10]: the maximum disappears and it merges in



Physics 2023, 5 972

the light-cone singularity at the coincidence points (i.e., r = |r′| = 0). This behaviour
corroborates the idea that the Hawking particle and its corresponding partner emerge on
shell out of a region of a nonvanishing extension across the horizon, which is called the
“quantum atmosphere” [11–13]. In this case, it has an extension of order 1/κ. Inside this
quantum atmosphere, the vacuum polarization and Hawking radiation are comparable
and, so, cannot be disentangled.

4. Schwarzschild BH

The Schwarzschild BH is characterized by

f (r) = 1− 2m/r , (21)

where m is the mass of the BH and r > 0. The horizon is at rh = 2 m, and its surface gravity
is κ = 1/4m, while r = 0 is the physical singularity. In this case,

r∗ = r + 2m ln
∣∣∣ r
2m
− 1
∣∣∣ , (22)

and

u = v− 2r− 4m ln
∣∣∣ r
2m
− 1
∣∣∣ . (23)

The condition, u = u′|v=v′ , is shown in Figure 5, and reads:

2r + 4m ln
∣∣∣ r
2m
− 1
∣∣∣ = 2r′ + 4m ln

∣∣∣∣ r′

2m
− 1
∣∣∣∣ , (24)
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Figure 5. Plot of both sides of Equation (24) for the BH mass m = 1.

The 3-dimensional (3D) plot of the correlator G(r, r′) is given in Figure 6. One does
not see any structure [14]. The expected peak does not show up. This can also be seen in
Figure 7, where G(r, r′) is plotted as a function of r for various values of r′.

Figure 6. The 3-dimensional (3D) plot of G(r, r′) for the Schwarzschild BH (h̄ = 1, m = 1).
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Figure 7. G(r, r′) for the Schwarzschild BH (h̄ = 1, m = 1), shown as a function of r for different fixed
values of r′ = 1.4 m (blue line), 1.2 m (orange), m (green) and 0.8 m (red).

The reason for the negative result obtained is not that the correlations between the
Hawking particles and their partners do not exist in this case, but rather it is that the
correlations do not show up in the equal time correlators. Looking at Figure 5, one can
see that the solution of Equation (24) exists only for the tiny interval of values of r outside
the horizon, where the vacuum contribution is not negligible. On the other hand, when
the Hawking particle emerges on shell out of the vacuum fluctuation, the corresponding
particle has been already swallowed by the singularity and, thus, the correlations do not
show up. To reveal the correlations, one has to intercept the partner before the latter
becomes swallowed by the singularity. To this end, the correlator has to be computed not
at equal times, v = v′, but at v′ � v. In Figure 8, we show 3D plot of G(v, r; v′, r′) for
v− v′ = 30 m, and show the same correlator as a function of r for several fixed values of r′

in Figure 9. The peak indeed appears along u = u′.

Figure 8. The 3D plot of G(v, r; v′, r′) for the Schwarzschild BH (h̄ = 1, m = 1) and v− v′ = 30 m.
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Figure 9. G(v, r; v′, r′) for the Schwarzschild BH (h̄ = 1, m = 1), v− v′ = 30 m, as a function of r for
the fixed values of r′ = 1.4 m (blue line), 1.2 m (orange), m (green) and 0.8 m (red).
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5. The Callan–Giddings–Harvey–Strominger (CGHS) BH

We have seen that, in a BH, in order to see the correlations, one has to catch the partner
before it reaches the singularity. Here, we consider a BH metric where the singularity is
pushed at r = −∞. The CGHS BH we discuss below appears as a solution of a 2D dilaton
gravity theory (see [15] for details), and its metric reads:

ds2 = −(1− m
λ

e−2λr)dv2 + 2dvdr , (25)

where λ is a parameter that is interpreted as a cosmological constant. Here, −∞ < r < +∞.
The horizon is located at

rh =
1

2λ
ln

m
λ

(26)

and the corresponding surface gravity is κ = λ. The metric has a physical singularity at
r = −∞, which is where the curvature diverges. For this metric, one has:

u = v− 2r∗ , (27)

where now
r∗ = r +

1
2λ

ln
∣∣∣1− m

λ
e−2λr

∣∣∣ (28)

and the condition u = u′|v=v′ reads as

2r +
1
λ

ln
∣∣∣1− m

λ
e−2λr

∣∣∣ = 2r′ +
1
λ

ln
∣∣∣1− m

λ
e−2λr′

∣∣∣ . (29)

Here, r > rh and r′ < rh. In Figure 10, we plot both sides of Equation (29). Note that
the value of r corresponding to r′ → −∞ is

r|r′=−∞ =
1

2λ
ln 2 + rh . (30)

So, r′ = −∞ is correlated to a point that is still inside the quantum atmosphere.
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Figure 10. Plot of both sides of Equation (29) for m = λ = 1/4.

As shown in Figure 11, when the correlator G(r, r′) for this metric is plotted, no corre-
lation shows up. The explanation of this negative result relies on the fact that, although the
singularity is at r = −∞, it is not “infinitely" far away. The proper distance,

s =
∫ −∞

r0

dr√
1− m

λ e−2λr
, (31)

is finite.
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Figure 11. G(r, r′) for the Callan–Giddings–Harvey–Strominger (CGHS) BH, h̄ = 1 and m = λ = 1/4.

The CGHS metric shown is therefore of the same behaviour found before in the
Schwarzschild metric concerning the correlation across the horizon. The partner is swal-
lowed by the singularity before the Hawking particle emerges out of the
quantum atmosphere.

6. Simpson–Visser Metric

The last example concerns a BH metric where the singularity is removed, thus where
one has a “regular BH”. Among many proposals in the literature for this kind of BHs, we
confined our attention to quite a simple metric, the so called Simpson–Visser metric [16],
for which

ds2 = −(1− 2m√
r2 + a2

)dv2 + 2dvdr , (32)

where a is a parameter that regularizes the singularity, and which we chose such that
a < 2 m. For a = 0, one has the Schwarzschild metric with a singularity at r = 0. For a 6=
0, the space–time surface r = 0 is regular and represents a bounce that separates one
asymptotically flat Universe (where r > 0) from an identical copy with r < 0.

r± = ±
√
(2m)2 − a2 (33)

corresponds to a pair of horizons (|a| < 2 m). The part of the Penrose diagram of the
Simpson–Visser metric covered by the (v, r) coordinates is given in Figure 12.

Figure 12. Penrose diagram of the part of the Simpson–Visser metric covered by the v, r coordinates.
See text for details.
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For this metric,

r∗ =
∫ dr

1− 2m√
r2+a2

= r + 2M ln

(
r
a
+

√( r
a

)2
+ 1

)

+
4M2

√
4M2 − a2

ln

∣∣∣∣√4M2 − a2 tanh
(

sinh−1(r/a)
2

)
− 2M + a

∣∣∣∣∣∣∣∣√4M2 − a2 tanh
(

sinh−1(r/a)
2

)
+ 2M− a

∣∣∣∣ (34)

and

u = v− 2r∗ = v− 2r− 4M ln

(
r
a
+

√( r
a

)2
+ 1

)

− 8M2
√

4M2 − a2
ln

∣∣∣∣√4M2 − a2 tanh
(

sinh−1(r/a)
2

)
− 2M + a

∣∣∣∣∣∣∣∣√4M2 − a2 tanh
(

sinh−1(r/a)
2

)
+ 2M− a

∣∣∣∣ . (35)

Figure 13a represents the trajectories of a Hawking particle (solid line) partner (dashed
line) pair, which is created near r+. Meanwhile, Figure 13b represents a pair created near
r−. All particles propagate along u = const.

Figure 13. The trajectories of a pair of the Hawking particle (solid line) and the partner (dashed line)
created near (a) r+ and (b) r−; see Equation (33).

One can see that, in the first case (Figure 13a), while the Hawking particle goes away
to infinity, the partner piles up along r−. In the second case, both the Hawking particle
and the partner pile up along r−. In this situation, one recalls what happens in the interior
of the Reissner–Nordström BH. As in latter case case, one has to introduce two Kruskal
coordinates: one been regular on r+:

U(+) = ∓
1
κ

e−κu , (36)
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where the subscript ’−’ refers to r > r+, and the subscript ’+’ refers to r < r+; and the
other one been regular on r−:

U(−) = ±
1
κ

eκu , (37)

where now the subscript ’+’ refers to r > r−, and the subscript ’−’ to r < r−. κ is the
absolute value of the surface gravity being the same for both horizons:

κ ≡ 1
2

∣∣∣∣d f
dr

∣∣∣∣
r±

=

√
4M2 − a2

8M2 . (38)

Note that the coordinate U(+) is regular on r+, where U(+) = 0, but is singular on r−,
where U(+) = +∞.

One can define a Unruh state, |U(+)〉, by expanding the quantum field in modes like
Equation (10), where U = U(+). Similarly, |U_(−)〉 is defined by the expansion (10), where
now U = U(−). The singularities of the coordinates (36) and (37) induce singularities in

the corresponding modes; for example, e−iωU(+) is singular on r−. However, as the surface
gravity is the same in absolute values, one can show that the quantum stress tensor is the
same in both states |U(±)〉, and that it is regular on both horizons (see Appendix A). Also,
the correlator, being an even function of the surface gravity (see Equation (14)), is the same
in |U(±)〉.

The extremal of the cosh2-term is now given by u = u′|v=v′ , which reads:

2r + 4M ln

(
r
a
+

√( r
a

)2
+ 1

)
+

8M2
√

4M2 − a2
ln

∣∣∣∣√4M2 − a2 tanh
(

sinh−1(r/a)
2

)
− 2M + a

∣∣∣∣∣∣∣∣√4M2 − a2 tanh
(

sinh−1(r/a)
2

)
+ 2M− a

∣∣∣∣ =

2r′ + 4M ln

 r′

a
+

√(
r′

a

)2
+ 1

+
8M2

√
4M2 − a2

ln

∣∣∣∣√4M2 − a2 tanh
(

sinh−1(r′/a)
2

)
− 2M + a

∣∣∣∣∣∣∣∣√4M2 − a2 tanh
(

sinh−1(r′/a)
2

)
+ 2M− a

∣∣∣∣ , (39)

(plotted in Figure 14), where the condition r > r+ and r′ < r+ is for the case of Figure 13a,
while the condition r < r− and r′ > r− is for Figure 13b ( from Figures 13a and 14, one sees
that the condition (39) is always satisfied, but the points with r− r+ & 1/κ are correlated
with the corresponding partners that are piling up close to r−) .
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Figure 14. Plot of both sides of Equation (39), where a = 1, M = 1, r± = ±
√

3(≈ 1.732) and
κ =
√

3/8(≈ 0.217).

The corresponding correlator (for a preliminary study see [17]) is graphically repre-
sented in Figure 15.
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Figure 15. G(r, r′) for the Simpson–Visser BH, h̄ = 1 and a = 1, M = 1 and r± = ±
√

3(≈ 1.732).

One can further appreciate this by examining the correlator at the fixed inner point, r′,
as shown in Figure 16. The values of r and r′ for the peak are in good agreement with the
expected one, u = u′, which is given, at equal times, by Equation (39).

5 10 15 20 25 30
r

50

100

150

200

250

Figure 16. G(r, r′) for the Simpson–Visser BH, h̄ = 1 and a = 1, M = 1 and r± = ±
√

3(≈ 1.732), as a
function of r at the fixed values of r′ = −1.7319 (blue curve), −1.7318 (orange) and −1.7317 (green).

On the contrary, the correlator corresponding to Figure 13b does not show any sign of
correlations, see Figure 17. This is understandable since both the Hawking particle and
the partner now pile up along r−, which remains well inside the quantum atmosphere, i.e.,
where the correlator is dominated by the coincidence limit singularity.

Figure 17. G(r, r′) for the Simpson–Visser BH, h̄ = 1 and a = 1, M = 1, r± = ±
√

3(≈ 1.732), for the
case of Figure 13b.



Physics 2023, 5 979

7. Conclusions

Hawking radiation is a genuine pair (particle–partner) production process that is
expected to be a general feature of gravitational BHs, as well as of the analog ones realized
in condensed matter systems. It is indeed in these latter cases (and only in those cases) that
the existence of this radiation has been (indirectly) observed. This observation consists of
detecting the correlations across the sonic horizon between the Hawking particles and their
entangled partners.

In this paper, we analyzed various examples of BH space–time metrics to see if and
where these correlations show up. Indeed, they can be hidden by the geometrical structure
of the underlying space–time, like the presence of singularities or inner horizons that were
shown explicitly here. We have seen that singularities (without inner horizons) swallow the
partners before the corresponding Hawking particles emerge on shell out of the quantum
atmosphere, which obscures the existing correlations. On the other hand, inner horizons
produce a piling up of the partners along them by enhancing and strongly localizing
the correlations.
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Appendix A

Consider a 2D space–time metric,

ds2 = C(r)dudv , (A1)

where u and v are null coordinates, which are mainly expressed in terms of a Schwarzschild-
like time, t, as

u = t− r∗ , (A2)

v = t + r∗ , (A3)

and
r∗ =

∫ dr
C

. (A4)

C(r) is supposed to vanish at r → r+ (outer horizon) and at r = r− (inner horizon).
The expectation values of the stress-energy tensor operator, T̂µν, for a quantum massless
scalar field in the Unruh state are defined by expanding the quantum field on the basis of
{e−iωKU(+)/

√
4πωK, e−iωv/

√
4πω}, where

U(+) = ∓
1

κ+
e−κ+U(+) (A5)

and κ+ is the surface gravity of the horizon r+: [18]

〈U(+)|T̂vv|U(+)〉 = − 1
192π

[
C′(r)2 − 2C(r)C′′(r)

]
, (A6)

〈U(+)|T̂uv|U(+)〉 =
1

96π
C(r)C′′(r) , (A7)

〈U(+)|T̂uu|U(+)〉 = 〈U(+)|Tvv|U(+)〉 −
1

24π
{U(+), u} , (A8)
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where a prime indicates a derivative with respect to r, and {U(+), u} is the Schwarzian
derivative between U(+) and u, which reads as

− 1
24π
{U(+), u} =

κ2
+

48π
. (A9)

〈U(+)|T̂ab|U(+)〉 is regular on the outer horizon r = r+ (U(+) = 0), if it is finite in a regular
frame there. As such, we have

lim
r→r+

〈U(+)|T̂uu|U(+)〉
C2 < ∞ , (A10)

lim
r→r+
〈U(+)|T̂vv|U(+)〉 < ∞ , (A11)

lim
r→r+

〈U(+)|T̂uv|U(+)〉
C

< ∞ . (A12)

Equations (A10)–(A12) imply that the stress tensor is regular in a free falling frame
across the horizon.

One immediately sees that if C(r) is finite on the horizon with its derivatives up
to the second, conditions (A11) and (A12) are satisfied (see Equations (A6) and (A7)).
Concerning the (u, u) component (see Equation (A8)), note that the leading order is
〈U(+)|T̂uu|U(+)〉 = − 1

48π κ2
+ + 1

48π κ2
+ = 0, i.e., the vacuum polarization and Hawking

radiation cancel out on the horizon. Furthermore, by taking the derivative of Equation (A8),
and evaluating the latter on the horizon, one has:

d
dr
〈U(+)|T̂uu|U(+)〉 = −

1
192π

{2C′C′′ − 2C′C′′ − 2CC′′}|r+ = 0 . (A13)

So 〈U(+)|T̂uu|U(+)〉 vanishes on the horizon as C2, and the condition (A10) is also satisfied.
If there is another horizon (the inner one at r−), the regularity there requires conditions

similar to Equations (A10)–(A12) to be satisfied; one just has to consider the limit r → r−.
No issue with Equations (A11) and (A12) arises, while concerning Equation (A10), one
finds from Equation (A8):

〈U(+)|T̂uu|U(+)〉|r− = − 1
48π

(κ2
− − κ2

+) , (A14)

which is nonvanishing whenever κ2
+ 6= κ2

−, such as in a non extremal Reissner–Nordström
BH, for example. This makes condition (A10) been not satisfied, and hence 〈U(+)|T̂uu|U(+)〉
is singular on r−. One can define an Unruh vacuum with respect to the Kruskal coordinate
on r−, i.e.,

U(−) = ∓
1

κ−
eκ−u (A15)

and, similarly, one finds regularity on r−, but on r+:

〈U(−)|T̂uu|U(−)〉|r− = − 1
48π

(κ2
+ − κ2

−) , (A16)

thus making 〈U(−)|T̂uu|U(−)〉 singular on r+.
In the case of the Simpson–Visser metric, one has two horizons indeed, the outer

one at r+ =
√
(2m)2 − a2, but then |κ+| = |κ−| = κ for this space–time. So, now both

〈U(+)|T̂uu|U(+)〉 and 〈U(−)|T̂uu|U(−)〉 are indeed regular on both r+ (U(+) = 0) and r−
(U(−) = 0). However, a singularity appears on the Cauchy horizon r = r− and v = +∞.
For a regularity, it would require
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lim
r→r−
〈U(+)|T̂uu|U(+)〉 < ∞ , (A17)

lim
r→r−

〈U(+)|T̂uv|U(+)〉
C

< ∞ , (A18)

lim
r→r−

〈U(+)|T̂vv|U(+)〉
C2 < ∞ . (A19)

Equation (A19) is not satisfied since

lim
r→r−
〈U(+)|T̂vv|U(+)〉 = −

κ2
−

48π
. (A20)

If, on the other hand, one constructs the Hartle–Hawking states,{
e−iωKU(±)
√

4πωK
,

e−iωKV(±)
√

4πωK

}
, (A21)

where
V(±) = ±

1
κ±

e±κ±v , (A22)

one finds that these states are regular all over the space–time, and, thus, they describe a BH
that is in a thermal equilibrium with the thermal radiation at the Hawking temperature,

TH =
h̄κ

2πkB
. (A23)
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