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Abstract: This paper is focused on the design and development of a smart and compact electronic
control unit (ECU) for the monitoring of a bus fleet. The ECU system is able to extract all vehicle data
by the on-board diagnostics-(ODB)-II and SAE J1939 standards. The integrated system Internet of
Things (IoT) system, is interconnected in the cloud by an artificial intelligence engine implementing
multilayer perceptron artificial neural network (MLP-ANN) and is able to predict maintenance of each
vehicle by classifying the driver behavior. The key performance indicator (KPI) of the driver behavior
has been estimated by data mining k-means algorithm. The MLP-ANN model has been tested by
means of a dataset found in literature by allowing the correct choice of the calculus parameters. A low
means square error (MSE) of the order of 10−3 is checked thus proving the correct use of MLP-ANN.
Based on the analysis of the results, are defined methodologies of key performance indicators (KPIs),
correlating driver behavior with the engine stress defining the bus maintenance plan criteria. All the
results are joined into a cloud platform showing fleet efficiency dashboards. The proposed topic has
been developed within the framework of an industry research project collaborating with a company
managing bus fleet.
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1. Introduction

The controller area network (CAN) bus and on-board diagnostics (ODB) communication interfaces
II are standards typically used to extract information from a vehicle [1–3], to control the vehicle
conditions, and to deduce any anomalies by accessing the electronic control unit (ECU). The CAN
system is characterized by a relatively low cost per node when compared with other information
systems in the automotive bus systems [4]. The CAN standard can be integrated with mobile
information systems [5] and data mining algorithms such as artificial neural networks (ANN) [6]. In [7],
some researchers have provided important indications about the procedures being performed for the
diagnosis and prognosis of the vehicle starting from the analysis of the ECU data, thus suggesting
adopting vehicle data for maintenance plan. In [8], the integrability of the sensors in a complete
diagnostic network has been demonstrated, thus suggesting ideating a smart and compact unit
adaptable to different types of vehicles by using specific connectors. In this scenario, ODB II connector
has been adopted in [9,10] to acquire data for the fuel consumption trend, which could therefore
indirectly provide indications on the analysis of drivers behavior and in a certain way is able to predict
the vehicle wear (the fuel consumption is a parameter that is a function of the acceleration and of the
vehicle speed). The analysis, mainly derived from the speed and consumption indications of a bus,
can also be carried out by analyzing the data acquired by global positioning systems (GPS) [11–19],
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able to track in real time the vehicle route and to estimate vehicle speed. GPS technology can
be integrated with global system for mobile (GSM) [11,12], providing additional support for data
transmission, for anti-theft systems [13], and for signaling emergency situations or engine failures [14].
GPS tracking is strategic also for logistics [16]. Machine learning (ML) algorithms are good candidates
to support data analysis, especially for engine failures prediction [20]. On the other side, data mining
could provide decision-making in fleet management, estimating economical maintenance by using
k-means algorithm [21]. Other unsupervised algorithms have been adopted for predictive maintenance
in the automotive sector [22]. Moreover, bus surveillance systems by camera could provide further
information about violators and traffic [23], thus supporting drivers. Recently, the use of Internet of
Things (IoT) and microcontroller technologies enabled automatic systems predicting fleet health and
maintenance [24]. A full architecture able to implement all the facilities fleet management, including
the use of external sensors and microcontrollers, has been analyzed in [25]. Different frameworks
have been proposed for decision-making processes in bus fleet maintenance [26]. Concerning driver
behavior, clustering techniques are suitable to classify characteristics such as safe and ecological
driving [27]. Driver behavior features can also be extracted by deep learning (DL) approaches
analyzing road complexity [28]. Following the state-of-the-art, are formulated the main specifications
of an industry project, concerning the development of a software and hardware platform oriented on
predictive maintenance and driver behavior estimation. Specifically, the research project concerns
the design and development of an engineered system for the acquisition of bus fleet data and for the
management of their maintenance, using predictive analysis. The project also provides the monitoring
of each individual bus vehicle by means of the GPS system and the integration of surveillance system.
Specifically, the main specifications of project include:

• the use of data acquisition interfaces (electronic interfaces) implementing on-board diagnostics II
(OBD-II) communication standard diagnostics II (OBD-II) communication standard (the data are
extracted from the control units by means of scheduled procedures);

• the use of a central database (MySQL) for the collection of data, which are processed by data mining
and artificial intelligence algorithms (e.g., clustering, artificial neural networks), supporting the
formulation of the fleet maintenance plan, based on wear prediction deriving from the analysis of
vehicle data such as revolutions per minute (RPM), accelerations (throttle position), stops, refueling,
fuel consumed, inconsistencies between loaded values and actually consumed volumes, etc.;

• the creation of dashboards indicating the wear levels of the single bus, and the predictive
scheduling of the maintenance plan based on the outputs of the artificial intelligence algorithms;

• a camera module: two night vision cameras are mounted on each vehicle (front and rear view)
for video streaming and for recording. The cameras, in addition to the linking of the GPS signal,
can be also used to verify the driving style of the driver, and to analyze the status of the itineraries
that could influence the vehicle wear for a long time period (intense traffic conditions, roads with
potholes, etc.);

• a GPS monitoring module allowing the tracking of all the movements and activities of each vehicle
and to monitor any inefficiencies (for example excessive consumption due to an inappropriate
driving style, risky driving styles due to speed limits not respected, etc.). GPS data can be
processed by the data mining engine for the definition of the driver’s reliability and efficiency
indices, for the mapping of the activities of each individual vehicle, and for the support in
predicting maintenance procedures.

Figure 1 illustrates the electronic architecture related to the data on acquisition on board: the ECU
is connected to the ODB II port transferring data to a raspberry Pi board; the boards trough an internet
key, transmit data and images to the cloud. Data and images are then processed by a server where an
artificial intelligence engine is implemented. The artificial intelligence algorithms provide as output
the driver key performance indicators (KPIs) and predictive maintenance procedures (see Figure 2).



IoT 2020, 1 182
IoT 2019, 2 FOR PEER REVIEW  3 

 

 

Figure 1. Architecture of the data acquisition on board system. 

 

Figure 2. Platform architecture enabling driver key performance indicators (KPI) and predictive 

maintenance by artificial intelligence. 

The software design (artificial intelligence engine) integrates the following modules: 

• Multilayer perceptron (MLP) artificial neural network (ANN) model providing prediction 

about vehicle wear; 

• k-means algorithm able to provide driver clusters indicating the correct and inappropriate 

behaviors. 

The outputs of both the algorithms are combined to update the predictive maintenance 

procedure. 

OBD-II

GPS

INERTIAL 
SENSOR

RASPBERRY PI

INTERNET KEY

IP CAM

DATA ACQUISITION 
ON-BOARD

ECU

INTERNET 
NETWORK

COMPANY 
DATABASE

Artificial Intelligence
enginePredictive

Maintenance

Driver KPI

OBD-II

GPS

INERTIAL 
SENSOR

RASPBERRY PI

INTERNET KEY

IP CAM

DATA ACQUISITION 
ON-BOARD

ECU

OBD-II

GPS

INERTIAL 
SENSOR

RASPBERRY PI

INTERNET KEY

IP CAM

DATA ACQUISITION 
ON-BOARD

ECU

Figure 1. Architecture of the data acquisition on board system.
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Figure 2. Platform architecture enabling driver key performance indicators (KPI) and predictive
maintenance by artificial intelligence.

The software design (artificial intelligence engine) integrates the following modules:

• Multilayer perceptron (MLP) artificial neural network (ANN) model providing prediction about
vehicle wear;

• k-means algorithm able to provide driver clusters indicating the correct and inappropriate behaviors.

The outputs of both the algorithms are combined to update the predictive maintenance procedure.
The paper is structured by the following discussions:

• Bus protocol description;
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• Software design and data modelling;
• Preliminary testing of electronic components;
• Testing of the artificial neural network (estimation of the calculus error);
• Testing of the MLP-ANN algorithm;
• Testing of the k-means algorithm;
• Key performance indicator (KPI) evaluation of drivers and vehicles;
• Correlation analysis of main vehicle parameters;
• Dashboards of the implemented platform.

2. Methodological Approaches and Experiments

The ODB II communication standard is applied to the BUS Iveco Crossway. The used standards
for bus communication are SAE J1962 (HW connector) and SAE J1939 (PGN) standards, useful for the
design and development of the IOT system recovering the parameters from the ECU. The OBD port
has been designed to communicate with different transmission protocols, and therefore with different
ECU models, which over time have been replaced with CAN. The use of OBD-II technology allows
direct access to the data of the engine control unit (ECU), by means of the SAE J1939 standard.

The type of frame used for the SAE J1939 standard is the extended one, which provides the 29-bit
identification (ID) field given by the sum of two sub-fields:

• 11-bit ID A
• 18-bit ID B

The maximum payload size is 8 bytes. The protocol is shown in Table 1

Table 1. Frame protocol adopted for data transmission (SAE J1939).

SOF ID A SRR IDE ID B RTR Res DLC DF CRC Del CRC ACK Del ACK EOF

1 bit 11 bit 1 bit 1 bit 18 bit 1 bit 2 bit 4 bit 8 byte 15 bit 1 bit 1 bit 1 bit 7 bit

The following fields are identified:

• Start of frame (SOF) (1bit): indicates the beginning of the transmission sequence;
• Identification A-ID A (11bit): first part of the identifier inherent to the recipient and

sender component;
• Substitute remote request (SRR) (1 bit): it is a recessive bit;
• Additional identification bit (IDE) (1 bit): it is a recessive bit;
• Identification B-ID B (18bit): second part of the identifier inherent to the recipient and

sender component;
• Remote transmission request (RTR) (1 bit): it is a dominant bit;
• Reserved (Res) (1 bit): reserved according to the type of standard used;
• Data length code (DLC) (4 bits): indicates the number of bytes of the frame payload;
• Data field (DF) (0–8 bytes): represents the payload of the frame whose length is indicated by the

DLC field;
• Redundancy parity check (CRC) (15 bit): field to verify that the frame during transmission has

not been corrupted;
• CRC delimiter (Del CRC) (1 bit): it is a recessive bit;
• Receipt confirmation (ACK) (1 bit): the recessive bit indicates receipt;
• ACK delimiter (Del ACK) (1 bit): it is a recessive bit;
• End of Frame (EOF) (7 bits): they are recessive bits.

Through the SAE J1939 standard, the messages are identified as “parameter group” or PG (group of
parameters) corresponding to a set of quantities belonging to the same topic or subsystem. To each PG
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is assigned a “parameter group number”, or PGN (“Parameter Group Number”), which identifies the
same dataset of information.

Two types of PGN are possible:

• PG global PGN: it identifies a group of PG parameters, which are sent to all devices or broadcast.
Here the Protocol Data Unit (PDU) format, PDU specific, data page and extended data page are
used for the identification of the corresponding PG. Global PGNs occur when the PDU format
value is greater than or equal to 240. In fact, the PDU specific corresponds to the group extension.
The format of the PDU used for this data is the second.

• Specific PGN: are parameter group PG transmitted to particular devices (peer-to-peer). Here the
PDU format, data page and the extended page are used for the identification of the corresponding
PG. As for the PDU Format, it assumes a value less than 240 and the specific PDU is set to zero.
The format of the PDU used for this data is therefore the first.

More details about SAE J1939 protocol are provided in Appendix A.
Predictive maintenance algorithm has been implemented by multilayer perceptron neural networks

(MLP) implemented by Konstanz Miner (KNIME) open source tool based on the use of graphical user
interfaces (GUIs) as blocks enable data processing [29,30]. The MLP is a feed-forward artificial neural
network (ANN) model that maps sets of input vehicle data by providing output wear prediction.
The MLP network is constituted by multiple nodes linked in different layers. Each node behaves as a
calculus cell named neuron able to process data by means of a properly defined activation function.
The MLP approach implements the backpropagation training computing the gradient of the loss
function with respect to the weights of the network for a single input–output sample.

The approach used for the predictive maintenance is the definition of the training and testing
dataset following the scheme of Figure 3: a first data partition is used for the model training and the
last sample is adopted for the model testing. The detected data samples are stored into a MySQL table
where each record contains the attributes to process.
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Figure 3. Training and testing dataset of the multilayer perceptron neural (MLP) network
predicting maintenance.

The dataset partition used for the MLP-ANN calculus is: 80% of training and 20% of testing.
This proportion provides the best model for the analyzed dataset (low calculus error value).

The MLP model has been tested using the dataset found in [31], where the following attributes
were identified:
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• GPS time (time acquired by the GPS module);
• Device time (internal clock time of the device);
• Longitude (longitude of the GPS coordinate);
• Latitude (latitude of the GPS coordinate);
• GPS speed (measured in meters/second representing the speed of the vehicle);
• Horizontal dilution of precision (horizontal error on the GPS position);
• Altitude (altitude acquired by the GPS module);
• Bearing (the horizontal angle between the direction and the north);
• G(x) (angular velocity (degree per second) on the X axis acquired with gyroscope);
• G(y) (angular velocity (degree per second) on the Y axis acquired with gyroscope);
• G(z) (angular velocity (degree per second) on the Z axis acquired with gyroscope);
• G calibrated (gyro calibration error);
• Engine coolant temperature (temperature in ◦C of coolant engine liquid);
• Engine RPM (angular speed of the motor shaft expressed in rpm);
• Intake air temperature (temperature of the air entering the combustion chamber expressed in ◦C);
• Engine load % (percentage of the maximum power supplied by the engine);
• Mass air flow rate (flow rate of the air flow entering the combustion chamber of the engine

expressed in g/s);
• Throttle position manifold % (percentage of the accelerator position pressed).

Figure 4 shows the statistical plots of the dataset adopted for the performance check of the
MLP algorithm.

IoT 2019, 2 FOR PEER REVIEW  6 

 

The MLP model has been tested using the dataset found in [31], where the following attributes 

were identified: 

 GPS time (time acquired by the GPS module); 

 Device time (internal clock time of the device); 

 Longitude (longitude of the GPS coordinate); 

 Latitude (latitude of the GPS coordinate); 

 GPS speed (measured in meters/second representing the speed of the vehicle); 

 Horizontal dilution of precision (horizontal error on the GPS position); 

 Altitude (altitude acquired by the GPS module); 

 Bearing (the horizontal angle between the direction and the north); 

 G(x) (angular velocity (degree per second) on the X axis acquired with gyroscope); 

 G(y) (angular velocity (degree per second) on the Y axis acquired with gyroscope); 

 G(z) (angular velocity (degree per second) on the Z axis acquired with gyroscope); 

 G calibrated (gyro calibration error); 

 Engine coolant temperature (temperature in °C of coolant engine liquid); 

 Engine RPM (angular speed of the motor shaft expressed in rpm); 

 Intake air temperature (temperature of the air entering the combustion chamber expressed in 

°C); 

 Engine load % (percentage of the maximum power supplied by the engine); 

 Mass air flow rate (flow rate of the air flow entering the combustion chamber of the engine 

expressed in g/s); 

 Throttle position manifold % (percentage of the accelerator position pressed).  

Figure 4 shows the statistical plots of the dataset adopted for the performance check of the MLP 

algorithm. 

 

Figure 4. Statistical plots of parameter frequency of dataset used for the test of MLP algorithm: (a) 

bearing, (b) global positioning systems (GPS) speed, (c) horizontal dilution of precision, (d) latitude, 

(e) G(x), (f) G(y), (g) G(z), (h) G calibrated, (i) engine load %, (l) mass air flow rate (g/s), (m) throttle 

position manifold %, (n) engine revolutions per minute (RPM). 

(a) (b) (c) (d)

(e) (f)
(g) (h)

(i)

Bearing

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

50

100

150

200

250

300

350

400

450

500

GPS Speed [Meters/second]
0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5

Horizontal Dilution of Precision
0 25 50 75 100 125 150 175 200 225 250

0
25

50
75

100

125

175
200

225
250

150

275

300
325

350
375

100

0

200

300

400

500

600

700

800

900

Latitude
30.49 30.50 30.51 30.52 30.53 30.54 30.55 30.56 30.57

25

50
75

100

125
150

175

200
225

250

275

280
285

100

0

200

300

400

500

600

700

800

900

100

0

200

300

400

500

600

700

800

0

0

50

100

150

200

250

300

350

400

450

500

0

50

100

150

200

250

300

350

400

450

500

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

0

50

100

150

200

250

300
350
400

450
500
550
600

650

700

(n)

25

50

75

100

125

150

175

200

250

275

280

285

225

0

0

20

40

60

80

100

120

140

160

180

200

220

G(x)

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 -1 0 1 2 3 4 8 9

(l)

5 6 7 10 11
G(z)

-2.5 0

G(y)

2.5 5 7.5 10 12.5 15 17.5

G(calibreated)
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Energy Load [%]

20 30 40 50 60 70 80 80 90 5 10
Mass Air Flow Rate [g/s]

15 20 25 50 75 100 125 150 2015
Throttle Position (Manifold) [%]

(m)

0
25 50 75 100 125 150 175 200

Engine RPM [rpm]
750 1250 1750 2250 2750 3250 3750

Fr
e

q
u

e
n

cy
Fr

e
q

u
e

n
cy

Fr
e

q
u

e
n

cy

Fr
e

q
u

e
n

cy

Fr
e

q
u

e
n

cy

Fr
e

q
u

e
n

cy

Fr
e

q
u

e
n

cy

Fr
e

q
u

e
n

cy

Fr
e

q
u

e
n

cy

Fr
e

q
u

e
n

cy

Fr
e

q
u

e
n

cy

Fr
e

q
u

e
n

cy

Figure 4. Statistical plots of parameter frequency of dataset used for the test of MLP algorithm:
(a) bearing, (b) global positioning systems (GPS) speed, (c) horizontal dilution of precision, (d) latitude,
(e) G(x), (f) G(y), (g) G(z), (h) G calibrated, (i) engine load %, (l) mass air flow rate (g/s), (m) throttle
position manifold %, (n) engine revolutions per minute (RPM).

The MLP network has been implemented by the KNIME workflow of Figure 5 structured
as follows:
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- A data source “CSV Reader” block loading the bus data into a local repository (data extracted
from the MySQL database);

- A data pre-processing filtering attributes to select for the data processing (“Column Filter” block);
- A data pre-processing block normalizing all numerical data of the filtered dataset (predictive

model markup language (PMML) normalizer “Normalizer (PMML)”);
- A data pre-processing partitioning data for the training and testing processing;
- For the training of the MLP is adopted the efficient RProp algorithm [32,33] (“RProp MLP Learner”

block constituting the training dataflow);
- The “MultiLayerPerceptronPredictor” block model the MLP neural network merging the training

workflow with the testing one;
- The numeric score provides the mean squared error (MSE) defined as:

MSE =

∑n
i=1(yi − ӯ)

2

n
(1)

where yi is the measured value and ӯ is the predicted one;

- the “Excel Writer (XLS)” block writes the scoring results in an excel file.
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Figure 5. Konstanz Miner (KNIME) workflow implementing MLP for predictive maintenance.

For clustering results, indicating driver behavior has been applied to the k-means algorithm [34,35]
using RapidMiner tool (see the related workflow in Figure 6). For the analysis of correlations between
the variables, the correlation matrix algorithm of RapidMiner tool has been adopted [36] (see the
related workflow in Figure 7).

IoT 2019, 2 FOR PEER REVIEW  7 

 

The MLP network has been implemented by the KNIME workflow of Figure 5 structured as 

follows: 

- A data source “CSV Reader” block loading the bus data into a local repository (data extracted 

from the MySQL database); 

- A data pre-processing filtering attributes to select for the data processing (“Column Filter” 

block); 

- A data pre-processing block normalizing all numerical data of the filtered dataset (predictive 

model markup language (PMML) normalizer “Normalizer (PMML)”); 

- A data pre-processing partitioning data for the training and testing processing; 

- For the training of the MLP is adopted the efficient RProp algorithm [32,33] (“RProp MLP 

Learner” block constituting the training dataflow); 

- The “MultiLayerPerceptronPredictor” block model the MLP neural network merging the 

training workflow with the testing one; 

- The numeric score provides the mean squared error (MSE) defined as: 

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − ӯ)2𝑛
𝑖=1

𝑛
 (1) 

where yi is the measured value and ӯ is the predicted one; 

- the “Excel Writer (XLS)” block writes the scoring results in an excel file. 

 

Figure 5. Konstanz Miner (KNIME) workflow implementing MLP for predictive maintenance. 

For clustering results, indicating driver behavior has been applied to the k-means algorithm 

[34,35] using RapidMiner tool (see the related workflow in Figure 6). For the analysis of correlations 

between the variables, the correlation matrix algorithm of RapidMiner tool has been adopted [36] 

(see the related workflow in Figure 7). 

 

Figure 6. RapidMiner workflow implementing k-means algorithm. 
Figure 6. RapidMiner workflow implementing k-means algorithm.



IoT 2020, 1 187IoT 2019, 2 FOR PEER REVIEW  8 

 

 

Figure 7. RapidMiner workflow implementing correlation matrix algorithm. 

3. Testing and Results 

The system represented in Figure 1 and Figure 2 has been implemented by performing the 

following preliminary tests: 

 Verification of the correct functioning of the accelerometer and the GPS module (this check 

also implies the correct connection with the Raspberry input pins); 

 Checking of the auto-starting operation with .desktop files; 

 Firmware testing; 

 Verification of solution validity using the 4G WiFi router; 

 Verification of server data receipt. 

Figure 8a shows the testing circuit system assembling the components of the architecture of 

Figure 1, additionally Figure 8b illustrates the photo concerning server linking. The Raspberry is 

powered by the cigarette lighter socket, thanks to the car adapter, which has two USB 5V sockets at 

the output. The preliminary tests for the accelerometer firmware are performed with the engine off, 

while the preliminary tests of the Bluetooth OBD reader are executed with the engine running. When 

the Raspberry board receiver is turned on, it connects the testing laptop with the WiFi router. The 

Raspberry board is remotely controlled through the remote desktop control application. The OBD-

related test of the reading script proved the detection of the vehicle data. The data flow is enabled 

through the Bluetooth OBD, by timing and synchronizing the Raspberry acquisition every ten 

seconds. The command r = requests.post (URL_ODB_BUS, json = payload) provides the following server 

connection response checking the correct data flow into the json package file: 

• <response [200]>: json received successfully; 

• <response [400]>: json not arrived at destination. 

 

Figure 8. Preliminary assembly and online linking tests: (a) circuits of the architecture of Figure 1; (b) 

photo concerning remote server linking test. 

In Figure 9 is illustrated a preliminary test of acceleration data acquisition. 

(a) (b)

Figure 7. RapidMiner workflow implementing correlation matrix algorithm.

3. Testing and Results

The system represented in Figures 1 and 2 has been implemented by performing the following
preliminary tests:

• Verification of the correct functioning of the accelerometer and the GPS module (this check also
implies the correct connection with the Raspberry input pins);

• Checking of the auto-starting operation with .desktop files;
• Firmware testing;
• Verification of solution validity using the 4G WiFi router;
• Verification of server data receipt.

Figure 8a shows the testing circuit system assembling the components of the architecture of
Figure 1, additionally Figure 8b illustrates the photo concerning server linking. The Raspberry is
powered by the cigarette lighter socket, thanks to the car adapter, which has two USB 5V sockets at
the output. The preliminary tests for the accelerometer firmware are performed with the engine off,
while the preliminary tests of the Bluetooth OBD reader are executed with the engine running. When the
Raspberry board receiver is turned on, it connects the testing laptop with the WiFi router. The Raspberry
board is remotely controlled through the remote desktop control application. The OBD-related test of the
reading script proved the detection of the vehicle data. The data flow is enabled through the Bluetooth
OBD, by timing and synchronizing the Raspberry acquisition every ten seconds. The command
r = requests.post (URL_ODB_BUS, json = payload) provides the following server connection response
checking the correct data flow into the json package file:

• <response [200]>: json received successfully;
• <response [400]>: json not arrived at destination.
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Figure 8. Preliminary assembly and online linking tests: (a) circuits of the architecture of Figure 1;
(b) photo concerning remote server linking test.

In Figure 9 is illustrated a preliminary test of acceleration data acquisition.
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Figure 9. First check of data transmission concerning acceleration along the tree direction (G(x), G(y),
and G(z)).

The MLP model has been checked by obtaining the parameters listed in Table 2, indicating the
number of the hidden layers, the neuron number for the hidden layers and the MSE: by considering
the testing dataset, very low MSE values are obtained, in the order of 10−2. The MSE results delineate
a good error trend versus the variation of the parameters, such as the number of hidden layers and
number of neurons for the hidden layers thus proving the correct choice of the algorithm used for
the prediction.

Table 2. Means square error (MSE) values and MLP parameter setting.

Number of Hidden Layers Neuron Number for Hidden Layer MSE

5 5 0.0149
5 10 0.0129
5 15 0.0098
5 20 0.085
10 5 0.0252
10 10 0.0122
10 15 0.0094
10 20 0.0082
15 5 0.0143
15 10 0.0031
15 15 0.0224
15 20 0.0323

An example of application of the KNIME MLP network is illustrated in Figure 7, where it is
possible to observe that the predicted engine power (engine load) is higher than the measured engine
load values thus predicting an accentuate engine wear. Moreover, as expected, Figure 10 illustrates a
close correlation between engine RPM values and engine power.
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Figure 10. Comparison between engine RPM, engine load and predicted engine load. On the y-axis
are indicated the normalized values, and on x-axis are indicated the records number function of the
acquisition time.

In order to provide information about driver behavior, we executed the k-means algorithm fixing
as K = three the number of clusters (three main driver behavior). Figure 11 illustrates the clusters by
grouping the GPS speed and engine RPM parameters: the cluster indicated by the orange color (cluster
0) is representative of drivers tending to travel at low velocities and by accelerating slowly (prudent
driving behavior). The drivers of the cluster indicated by the green color (cluster 1) travel with low
speed but forcing the engine (high average RPM engine values), thus denoting an inefficient driving
style, which could accelerate the engine wear. The cluster represented by the blue color (cluster 2)
denotes drivers that mainly contribute to the vehicle wear.
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Figure 11. k-means analysis: clusters grouped by GPS speed and engine RPM parameters, and linear
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Figure 12 represents the same clusters and the linear regression trends, denoting that the cluster 0
is characterized by a low percentage of the accelerator pressed (throttle position), and a low engine
power (engine load). The cluster 1 do not press excessively on the accelerator but the engine is forced,
denoting that the gears of the vehicle are not often changed. The cluster 2 indicate the engine stress
due to a strong pression of the accelerator.
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Figure 12. k-means analysis: clusters grouped by throttle position and engine load parameters, and
linear regression trend.

The plot of Figure 13 confirms the correlation between engine load and engine RPM as deduced
by the MLP analysis: a similar trend is observed in Figure 8.
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Figure 13. k-means analysis: clusters grouped by throttle position and engine RPM parameters,
and linear regression trend.

4. Discussion

Starting with the MLP-ANN prediction of the engine stress, it is possible to re-plan the maintenance
schedule of each vehicle. The standard predictive maintenance plan could change based on the
MLP-ANN prediction of the engine stress, which is a function of the driver behavior: the planned
period to perform bus maintenance can be anticipated by predicting a high engine wear. Figure 14
illustrates a theoretical plot merging this concept.



IoT 2020, 1 191

IoT 2019, 2 FOR PEER REVIEW  12 

 

on the MLP-ANN prediction of the engine stress, which is a function of the driver behavior: the 

planned period to perform bus maintenance can be anticipated by predicting a high engine wear. 

Figure 14 illustrates a theoretical plot merging this concept. 

 

Figure 14. Bus maintenance plan variation based on prediction results. 

The driver style and behavior are represented in three cluster typologies by analyzing the more 

significant parameters such as the GPS speed, the engine RPM, the engine load, and the throttle 

position. Each cluster can be associated with a score (average, low and high) as KPI concerning the 

driver velocity, the engine stress and the driver caution (see Table 3). The driver velocity and the 

engine stress are also representative of the fuel consumption: 

Table 3. Driver KPI: clusters and driver behavior. 

Cluster 

Number 
Color Velocity 

Engine 

Stress 
Caution 

Fuel 

Consumption  

Total Efficiency 

Rate 

Cluster 0 Orange Average/Low Low High Low High 

Cluster 1 Green Average/Low Average/Low Average Average Average 

Cluster 2 Blue High High Low High Low 

The low, average and high scores are denoted by red, orange and green color, respectively. 

The same scoring of Table 3 is deduced mainly by the regression line slopes of Figure 7, Figure 

8, and Figure 9. We observe that the predicted results and the KPI can be normalized to the unit, thus 

achieving an estimation scale (the results can be expressed in percentage). A full scenario is provided 

by the correlation matrix analysis, providing possible correlations between the most significant 

variables. Figure 15 reports the correlation matrix calculus enhancing the high correlation between 

throttle position and engine load and between throttle position and engine RPM, additionally a 

moderate correlation is observed between engine RPM and GPS speed, indicating the correct gear 

use of the drivers. 

Time 

E
n

g
in

e 
u

su
ry

Standard 

Maintenance Plan 

Initial Period

Using Bus

Real

Maintenance plan 

Prediction

Engine Load/Stress

Figure 14. Bus maintenance plan variation based on prediction results.

The driver style and behavior are represented in three cluster typologies by analyzing the more
significant parameters such as the GPS speed, the engine RPM, the engine load, and the throttle
position. Each cluster can be associated with a score (average, low and high) as KPI concerning the
driver velocity, the engine stress and the driver caution (see Table 3). The driver velocity and the engine
stress are also representative of the fuel consumption:

Table 3. Driver KPI: clusters and driver behavior.

Cluster
Number Color Velocity Engine Stress Caution Fuel

Consumption Total Efficiency Rate

Cluster 0 Orange Average/Low Low High Low High
Cluster 1 Green Average/Low Average/Low Average Average Average
Cluster 2 Blue High High Low High Low

The low, average and high scores are denoted by red, orange and green color, respectively.

The same scoring of Table 3 is deduced mainly by the regression line slopes of Figure 7, Figure 8,
and Figure 9. We observe that the predicted results and the KPI can be normalized to the unit,
thus achieving an estimation scale (the results can be expressed in percentage). A full scenario
is provided by the correlation matrix analysis, providing possible correlations between the most
significant variables. Figure 15 reports the correlation matrix calculus enhancing the high correlation
between throttle position and engine load and between throttle position and engine RPM, additionally
a moderate correlation is observed between engine RPM and GPS speed, indicating the correct gear
use of the drivers.IoT 2019, 2 FOR PEER REVIEW  13 
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Figure 15. Correlation matrix results.
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The data are sampled every second. All data are grouped for a basic daily analysis. The k-means
and MLP-ANN algorithms are also able to process all the collected data for monthly and yearly
estimation, thus providing criteria for predictive maintenance.

The graphical dashboards can be automatized by inserting in the main workflow the delay blocks,
timing the reading [37], and by simply substituting the reading CSV blocks with Python-based script,
enabling the automated reading from the MySQL database trough web services [38]. All the results are
collected into database system linked to a cloud platform with dashboards.

The platform provides online monitoring of the KPI, vehicle health status, fuel consumption
efficiency, and driver efficiency. Figure 16 illustrates the implemented dashboard. The thresholds
expressed in percentage defining the low, high and average KPI are low: 0%÷ 40%, average: 41% ÷ 60%,
and high: 61% ÷ 100%.
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In Appendix A and in Appendix B are reported more details about SAE J1939 protocols and
IVECO vehicle parameters, respectively.

Recent studies oriented the research in maintenance procedures by considering the programming
approach [39], by classifying the state of the vehicles [40], or by applying artificial intelligence algorithms
for the predictive maintenance of the only engine part [41]. The proposed research is oriented on a
new concept of predictive maintenance merging procedures, artificial intelligence prediction and KPI
driver efficiencies, thus providing a methodology that takes into account multiple weighted factors
potentially influencing vehicle maintenance.

5. Conclusions

The proposed work shows how it is possible to combine IoT devices detecting bus status with
the data mining algorithms simultaneously estimating engine status prediction and driver behavior.
The compact and implemented electronic architecture can be applied for each vehicle characterized by
ODB-II and SAE J1939 standards. Data of vehicles are transmitted in the cloud to a data mining engine
performing driver KPI by defining a score using k-means clustering analysis, and by predicting engine
stress through MLP-ANN algorithms. The proposed data mining models have been tested mainly
with a stable dataset by providing a low MSE error, thus confirming the model accuracy. The output
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of the data mining algorithms allowed the establishment of criteria for the predictive maintenance,
thus anticipating the maintenance in cases of predicted engine stress due also to incorrect driver
behavior. The bus fleet efficiency has been estimated by considering the engine stress prediction and
the driver KPI. The efficiency parameters are stored into a database system and remotely visualized
by dashboards. The perspectives of the proposed research are mainly oriented on the automatic
management of the maintenance of a large number of vehicles, and on the possibility to choose
dynamically the drivers according to the KPI evaluation. The followed scientific approach is able to
combine the predictive maintenance procedure updated by wear prediction with the driver efficiency,
balancing the assignment of vehicles and drivers. The adopted self-learning MLP-ANN network
is stable and can be improved if a large number of vehicles and drivers will be assigned according
to the project perspectives. The proposed electronic components are adaptable to different types of
vehicles. The limitations of the on-board IoT solution are mainly due to few connections to dedicate
to other sensors or measuring devices. In particular, the Raspberry board has an I2C port (to which
the 3D accelerometer is connected), a serial universal asynchronous receiver-transmitter (UART) port
(to which the GPS module is connected) and a serial peripheral interface (SPI) port. In order to
overcome this limit, have been added the four USB ports, two of which are used for the OBD device
and for the internet key. To have other connection points, it is necessary to insert other boards such as
Raspberry and Arduino, which also have analog inputs.
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Appendix A

As has already been said, with the SAE J1939 standard, data frames have an extended structure
that has an extended 29-bit identification ID field. The latter is essential since it provides information
on the type of PGN, on the priority of the same message, on the address of the device to which it is
sending, and the intended recipient. In particular, we have the following structure:

Table A1. The 29-bit identifier (SAE J1939).

IDENTIFIER A (11 bit)

SRS IDE

IDENTIFIER B (18 bit)

PR EDP DP PDU Format PF Cont. PDU Specific Source Address

3 bit 1 bit 1 bit 6 bit (MSB) 2 bit 8 bit 8 bit

where:

• Priority (PR) (3 bit): defined during the arbitration phase.
• Extended data page (DP) (1 bit): generally set to zero.
• Data page (DP) (1 bit): if it is equal to one then the data frame is coded in compliance with the

SAE J1939 standard.
• PDU format (PF) (8 bit): indicates the format of the data frame since its value varies the structure

of the same frame.
• PF < 239: the data frame refers to specific devices with their 8-bit address. If it is encoded as

(0xFF) then it is transmitted to all connected devices, i.e., broadcast.
• PF ≥ 240: the data frame corresponds to a broadcast message.
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• PDU specific (PS) (8 bit): this field is specific to the data frame to be transmitted, as it varies in
meaning according to the value encoded in the PF.

• PF < 239: the PDU specific field corresponds to the address of the device to which you want to
send the data frame.

• PF≥ 240: the PDU specific field becomes “Group Extension” to form the PGN of the transmitted PG.
• Source address (SD) (8 bit): it is the address of the device that is transmitting the CAN data frame.

The following example shows how CAN data frames are communicated and implemented with
the SAE J1939 standard. Suppose we want to know the thermal parameters of the engine of the vehicle
in question, which can be a bus or a road tractor. The group of parameters to be referred to corresponds
to the PGN (0x00FEEE) entered in document J1939–71 relating to the same standard.

First of all, it is appropriate to request this PG by sending the request data frame to which the
PGN is associated with broadcast. The structure of the ID is as follows:

Table A2. Identifier request (SAE J1939).

Priority EDP DP PDU Format PDU Specific Source Address

110 (6 dec.) 0 0 234 (0xEA) Destination Address-Global (255) o Specific xxxx xxxx

The other fields of the data frame:

• DLC: set to a value of three.
• Data filed: the first three bytes correspond to the PGN you want to request, which in the case in

question is (0x00FEEE).

Consequently, the device used, or the heavy vehicle engine ECU, sends a response to the request
made with the related group of parameters (0x00FEEE). The structure of the ID is as follows:

Table A3. Identifier response (SAE J1939).

Priority EDP DP PDU Format PDU Specific Source Address

110 (6 dec.) 0 0 254 (0xFE)-PGN 239 (0xEE)-PGN xxxx xxxx

Appendix B

Tables A4 and A5 explain the variables of the IVECO vehicle.

Table A4. Parameter detected during the experimentation (BUS Iveco Crossway).

Variable Variable Type PGN hex SPN Number of Bits Resolution Offset

Total_Fuel_Cons float FEE9 250 32 0.5 L/Bit gain 0 L
Fuel_Rate float FEF2 183 16 0.05 L/h per bit 0 L/h

Inst_Fuel_Eco float FEF2 184 16 1/512 km/L per bit 0 km/L
Pos_Valve float FEF2 51 8 0.4%/bit 0%
Fuel_Level float FEFC 96 8 0.4%/bit 0%

Engine_Hours float FEE5 247 32 0.05 ora/bit 0
Total_RPM float FEE5 249 32 1000 giri/bit 0

Total_Distance float FEC1 917 32 5m/bit 0 m
Speed float FEF1 84 16 1/256 km/h Bit gain 0 km/h
RPM float F004 190 16 0.125 rpm/Bit gain 0 rpm

Percent_Torque int F004 513 8 1%/Bit −125%
Percent_Engine int F003 91 8 1%/Bit 0%

Temp_Cool int FEEE 110 8 1 ◦C/bit −40 ◦C
Temp_fuel int FEEE 174 8 2 ◦C/bit −40 ◦C
Temp_Oil float FEEE 175 16 0.03125 ◦C/bit −273 ◦C
Volt_Batt float //(AT RV) // // // //

SPN int ATMPFECA
1 // 19 // //
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Table A5. Iveco parameter meaning.

Variable Description

Total_Fuel_Cons By running a count for each service delivery, it is possible to monitor the total
fuel consumption.

Fuel_Rate It takes into account the driving style of the driver and any losses due to idling.
Inst_Fuel_Eco High consumption indicates an incorrect driving style or the occurrence of a fault.
Pos_Valve It allows to monitor the status of the engine fuel system.
Fuel_Level It is closely linked to the autonomy of travel or to a possible loss of fuel.
Engine_Hours It is useful for monitoring ordinary maintenance actions based on a time scale.
Total_RPM It is useful for monitoring ordinary maintenance actions based on the RPM scale.
Total_Distance It verifies the ordinary maintenance actions based on kilometric scale.
Speed It is closely related to the driver’s driving style.
RPM A high value means more waste of fuel and an incorrect driving style.
Percent_Torque It takes into account the performance of the engine with a view to safety and failures.
Percent_Engine It decreases due to engine deterioration.
Temp_Cool Index of correct engine operation for road safety and guide efficiency.
Temp_fuel It is useful for fire risk estimation.
Temp_Oil It is adopted to control the correct functioning of the motion transmission parts.
Volt_Batt It is used to check possible outages following a continuous engine shutdown.
SPN Index of any anomalies that may require roadside assistance.
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