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Abstract: This survey investigates the contributions of research into the detection of ransomware
malware using machine learning and deep learning algorithms. The main motivations for this
study are the destructive nature of ransomware, the difficulty of reversing a ransomware infection,
and how important it is to detect it before infecting a system. Machine learning is coming to
the forefront of combatting ransomware, so we attempted to identify weaknesses in machine
learning approaches and how they can be strengthened. The threat posed by ransomware is
exceptionally high, with new variants and families continually being found on the internet and
dark web. Recovering from ransomware infections is difficult, given the nature of the encryption
schemes used by them. The increase in the use of artificial intelligence also coincides with this boom
in ransomware. The exploration into machine learning and deep learning approaches when it comes
to detecting ransomware poses high interest because machine learning and deep learning can detect
zero-day threats. These techniques can generate predictive models that can learn the behaviour of
ransomware and use this knowledge to detect variants and families which have not yet been seen.
In this survey, we review prominent research studies which all showcase a machine learning or deep
learning approach when detecting ransomware malware. These studies were chosen based on the
number of citations they had by other research. We carried out experiments to investigate how the
discussed research studies are impacted by malware evolution. We also explored the new directions
of ransomware and how we expect it to evolve in the coming years, such as expansion into IoT
(Internet of Things), with IoT being integrated more into infrastructures and into homes.
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1. Introduction

Ransomware is a malware type that is designed to prevent or reduce access a user has to
their device, operating system, or files. Ransomware is typically found in the forms of locker
ransomware and crypto-ransomware. Locker ransomware displays a lock screen that prevents the
victim from accessing their computers, often pretending to be law enforcement demanding monetary
payment in return for access to the computer. Crypto-ransomware encrypts key files on a user’s
system, using complex encryption schemes and demand fees, usually in the form of cryptocurrency
to decrypt the victim’s files. In its history, ransomware has become more prominent, advanced,
and destructive. The rise of ransomware is attributed to many different factors since it first appeared
in 1989. The emergence of ransomware as a service has also increased the availability of ransomware
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to potential criminals who are less technically gifted. CryptoLocker, CryptoWall, and Locky offer
this type of service with the variant CryptoWall, generating more than 320 million dollars in revenue
during its lifespan [1].

Reports from early 2017 indicate total damages and profits from ransomware reaching the 1 billion
dollar mark [1]. With malware often evolving and new versions of malware families behaving
differently to their predecessors, traditional detection approaches will find it more difficult to detect
them. Baig et al. outline methods which malware creators use to evade traditional static detection
methods [2].

When compared with static code analysis techniques, machine learning techniques have proven
more effective, as demonstrated by Reference [3]. Signature-based mechanisms are very easily deceived,
especially when dealing with new variants of malware. According to research in Reference [3],
out of the 3000 analysed exploit kits, which is how most ransomware infections are carried out
(e.g., around 62% of infections of Angler exploit kit to deliver ransomware), only 6% of their signatures
were found in VirusTotal. Rieck et al. propose a framework for malware analysis using machine
learning approaches [4]. This approach plots malware behaviour in vector space, where the similarity
of malware behaviour can be judged; this approach uses clustering, and different classification
approaches, where novel classes of malware can be identified.

Machine learning has been effective in detecting malware in Windows OS systems but also in
Android systems, as shown in Reference [5]. Further machine learning research into malware detection
as an alternative to the use of signatures is presented in Reference [6,7], showing the effectiveness of
using machine learning-based detection over signature-based approaches. The decision to evaluate
machine learning and deep learning approaches as opposed to other non-machine learning-based
approaches was taken because of their adaptability and strong ability to detect unseen samples of
ransomware malware.

Reviewing non-machine learning approaches from Reference [8,9] was considered, but their
reliance on very specific user-defined patterns and assumptions of encrypted documents made it
possible to become redundant very quickly. Non-learning approaches tend to lack the ability to adapt
or be retrained to a new concept quickly. These approaches would take significantly more time to
recalibrate. We have an interest in the possible wide-scale integration of these solutions in IoT (Internet
of Things) to prevent the infection of IoT devices.

1.1. Contribution

In this paper, we do the following:

• Review of Research: Review available machine learning and deep learning approaches to
detecting ransomware; this is done in Sections 3 and 4. We assess each research paper on their
algorithmic approach, feature engineering process, results, and experiments. We also evaluate
the weaknesses of each approach and how improvements can be made in the future.

• Evaluate Research: We evaluate each study’s strengths, weaknesses, and how they can be
improved; this is included in Sections 3–5. The individual algorithms and papers reviewed
are listed and broken down in Table 1. Summaries of the research papers can be found in
Tables 2 and 3. Table 2 presents a summary of each paper, and Table 3 shows the statistical
achievements of each research study.

• Longevity Evaluation Experiments: We evaluate the longevity of these approaches by running
our experiments on current generation and older generation ransomware. The results of our
independent experiments are shown in Section 7. Section 7 focuses on testing for the existence
of concept drift in ransomware over four years. Our experiments introduce concept drift to the
approaches we reviewed and observe their accuracy under concept drift.
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Table 1. Study and algorithm index.

Study Algorithm Section

EldeRan [10]: 2016 Logistic Regression Section 3.2

RansomWall [11]: 2018 Gradient Tree Boosting Section 3.3

RansHunt [12]: 2017 SVM Section 3.4

Behavioural-Based [13]: 2018 J48 Decision Trees Section 3.5

Support Vector Machines [14]: 2018 Support Vector Machines Section 3.6

SDN [15]: 2018 Random Forests Section 3.7

NetConverse [16]: 2018 J48 Decision Tree Section 3.8

Bayesian networks [17]: 2019 Bayesian network Section 3.9

Analysis Framework [18]: 2018 Random Forest Section 3.10

Feature Selection-Based Detection [19]: 2018 J48 Decision Tree Section 3.11

Machine Learning-Based File Entropy Analysis [20]: 2019 Entropy Analysis Section 3.12

Digital DNA Sequencing [21]: 2020 Random Forests Section 3.13

Resilient Machine Learning [22]: 2019 Adversarial Learning Section 3.14

API Sequence-Based Detection [23]: 2019 CF-NCF-based Machine Learning Section 3.15

Two-stage Detection [24]: 2020 Markov Chains Section 3.16

Multi-Tier Streaming [25]: 2020 Hybrid Learner Section 3.17

Deep Learning [26]: 2016 Deep Neural Network Section 4.1

Long Short Term Memory (LSTM) [27]: 2017 LSTM Neural Network Section 4.2

Shallow and Deep networks [28]: 2017 ANNs Section 4.3

1.2. Paper Organisation

The remainder of this study is organised as follows: Section 2 details the stages of a ransomware
infection, describing how ransomware works in addition to the essential components used to detect
them. Section 3 describes a variety of machines learning approaches used to detect ransomware with a
summary of these research studies shown in Table 2. Section 4 details deep-learning approaches for
the detection of ransomware. Section 5 discusses the overall lessons learned during the review of the
research papers and their suitability for application in IoT. Section 6 presents the new directions and
the evolution of ransomware. Section 7 details our experiments and analysis of ransomware detection
using machine learning algorithms. Section 8 concludes what has been achieved in this study.

2. Preliminaries

2.1. Processes and Tools of Ransomware Detection

2.1.1. Cuckoo Sandbox

Cuckoo is a sandbox environment that enables the analysis of a malware or normal executable
files. Analysis information is presented in a high-level way that anyone can understand [29].
API(Application Programme Interface) call analysis will isolate exactly how a malware will interact
with an OS and what functions within an OS it draws on. Besides the standard Cuckoo configuration,
versions that contain more anti “anti-sandbox” features are available, such as Cuckoo-modified.
The basic setup of Cuckoo sandbox is displayed in Figure 1. The host uses a virtual network that is
isolated, often through a host-only interface, which will allow the Cuckoo host to execute malware
samples safely without giving access to the host itself. Figure 2 demonstrates the systems involved in
a Cuckoo sandbox analysis task.
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Figure 1. Cuckoo Sandbox Architecture.

Figure 2. Cuckoo execution.

2.1.2. Machine Learning Platforms

WEKA (Waikato Environment for Knowledge Analysis): A free collection of machine learning
algorithms for data mining tasks [30]. WEKA provides three main features, an interactive user
interface that can apply various algorithms to datasets [31]. The system can then show the results
through various visual methods and display the accuracy of the results through a confusion matrix.
For the development of new algorithms, WEKA also provides a framework which provides a simple
programming interface for secondary development on the WEKA system [31].

Azure Machine Learning: Azure Machine learning is Microsoft’s machine learning studio based
on cloud technology. While Azure is not used by any of the research papers reviewed, it is considered
an alternative to WEKA. Azure is a framework that does not require the user to code at all. Processing
data, training a model and then classification using the model is similar to WEKA, but the classifiers
and default settings the algorithms use will differ. Azure also supports open-source Python packages,
such as Scikit-learn, Tensorflow, PyTorch, and MXNet.

Scikit-Learn: Scikit-Learn is an open-source machine learning library for the Python Language.
The Scikit-Learn library allows the user to implement various learning algorithms onto their data.
Scikit-Learn is a library that does require the user to code. Sci-kit learn, while being more difficult to
use is deployed by large companies, like J.P.Morgan, Spotify, and Inria [32]. Its commercial use shows
the power to be deployed on a large scale.

2.1.3. Ransomware Detection Process For Learning Algorithms

Detection of ransomware, using either machine learning or deep learning follows a very specific
pattern, as depicted in Figure 3. There must be a selection of features, be it through custom feature
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selection methods or predetermined algorithms; once this is complete, and the optimal feature set is
found, the data, organised by these features, will be fed into the deep learning or machine learning
algorithm of choice. The algorithm will be trained and then tested. Learning algorithms allow the
computer to learn by itself. Learning algorithms operate in different ways, the main ways being
supervised and unsupervised. Supervised learning algorithms will require a training set, in the case
of ransomware data samples of both benign and ransomware, so the algorithm can learn to identify
patterns that distinguish the two from each other. Unsupervised learning methods are fed datasets that
are not labelled and will attempt to find patterns which can build models, to distinguish the data types.

Figure 3. Ransomware detection taxonomy.

2.2. Ransomware Infection Vectors

The structure of a ransomware attack follows the methodology presented in Figure 4. Various
infection vectors typically carry out ransomware infections. Firstly, the most prominent vector being
malicious emails, the payload is delivered as an email attachment from emails sent through spam using
botnets and other compromised hosts [33]. Exploit kits are another prominent method of infection.
Exploit kits are software packages which scan a system for vulnerabilities with the intent to infect it
with malicious software [34]. Another prominent method of infection is drive-by downloads, in which
victims are lured to malicious websites that execute malicious code [3].

Installation occurs after the payload has been dropped into the system. One prominent method
of installation is the download dropper [35]. This approach uses an initial file which involves using
a small piece of code to evade detection and reach out to the command and control (C&C) centre.
Ransomware authors will attempt to split execution into different scripts and processes to avoid AV
(Anti-Virus) signature-based detection [35]. When an organisation is targeted in an attack, ransomware
will spread through the network, determining file share locations and infecting them to maximise
disruption and increase the possible ransom. The executables will not run until multiple machines
have been infected.

Figure 4. Ransomware methodology.
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2.3. Command and Control (C&C)

Once ransomware is installed in a system, it will reach out to a C&C centre looking for
instructions [35]. C & C centres will respond with a varying number of requests which will give
the ransomware instructions on how to proceed with the execution. Some variants of ransomware will
report back significant amounts of system information, which can give attackers an idea of what type of
system they have attacked and if it is worth going beyond just a ransomware attack. The ransomware
will reach out to the C&C centre for the encryption keys after installation to ensure the keys are kept
secret [36]. It is almost impossible to decrypt files without the decryption keys [36]. Command and
control channels differ from ransomware family to family; some will use normal HTTP (Hypertext
Transfer Protocol); some use complex Tor-based services to connect [35].

2.4. Encryption and Extortion

Modern ransomware will use asymmetric encryption, so the ransomware will come with an
RSA(Rivest–Shamir–Adleman)public key, used by the ransomware to establish a secure channel to its
command and control server [37]. Public key encryption will mean the plaintext messaged between
the server and the client (infected system) will be encrypted in a way third parties will find it very
difficult to decrypt. The key factor in this process is that the public key can only decrypt messages that
were encrypted by the corresponding private key. This private key is held on the server, which only
the attackers have access to, therefore making it impossible for the victim to retrieve. Different variants
of ransomware will encrypt files in different ways. Some will use symmetric encryption methods,
and some will use asymmetric encryption methods. Symmetric methods will generate a symmetric
key locally and encrypt files using this key, the major advantage of which is the lack of performance
overhead, reducing the chances of being detected. Asymmetric keys will use a public key which can
encrypt, but the decryption process requires the corresponding private key, which is only stored on
the C&C server.

2.5. Ransomware Detection Challenges

Several challenges make ransomware detection difficult. Firstly, the idea of using heuristic-based
approaches seem highly risky because of the speed at which ransomware evolves. Non-machine
learning approaches do not seem appropriate with a malware strain which displays the capacity
to evolve and change beyond recognition of even advanced machine learning-based solutions.
Ransomware infection must be detected early because, once files are encrypted, it will be almost
impossible to decrypt them without paying for a decryption key. Besides paying, victims would rely
on the fact that developers of the ransomware will have made an error or decide to make the keys
available. Because ransomware is propagated through various methods, it means early detection will
have to take into consideration the different propagation methods that ransomware is likely to use.
A larger challenge of ransomware evolution is the noticeable concept drift in ransomware, which will
be elaborated on in this paper. With a noticeable concept drift detected between ransomware from
2 to 3 years ago and modern ransomware, the creation of models that do not have to be retrained
constantly will prove to be a challenge.

The prediction of Ransomware evolution will also be a challenge which will prove critical when
detecting ransomware in the future. The incorporation of AI(Artificial Intelligence)into ransomware
attacks [9] provides the greatest challenge of all. With attackers using similar AI-based techniques to
that of those employed by AI-based defence systems, the configuration of defensive measures will
have to take into account adaptable AI-based attack vectors.

2.6. Ransomware in IoT

Ransomware in IoT is not widespread as yet; however, its effectiveness in causing disruption
makes IoT networks a logical target. In situations where IoT is integrated into critical systems,
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ransomware can be used to disable these systems and force payment. An example of ransomware
in IoT is shown in Reference [38], where study exploits a vulnerability in a smart bulb, allowing an
attacker to use a flatbed scanner as an entry-point into the organisation’s network. The flatbed scanner
used in the smart bulb was sensitive, and, using this vulnerability, the attackers can control the smart
bulb remotely. The smart bulb acts as a channel into the organisation for the attacker to gain access to
the organisational network. In turn, this can be used to load malware into the network.

Another example of IoT vulnerability is Frantic Locker, which first emerged in 2016.
This ransomware was first seen infecting Android lock screens in 2015 and later modified to infect
smart TVs. Frantic Locker will enter a smart TV and render it unusable, disabling the factory reset.
The malware will stay dormant in the system for 30 min. Once the 30 min period is over, the malware
will attempt to gain admin privileges to get around any sandbox features. If this is not achieved,
the malware will then seize the screen. As smart TVs are constantly connected to the internet,
Frantic Locker will then reach a C&C centre. This ransomware does not just hold the TV at ransom but
gathers information on the user, like location and personal information stored on the device.

3. Machine Learning Detection Studies

3.1. Study Summary Table

Table 2 summarises the models we reviewed.
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Table 2. Strengths and weaknesses of current studies.

Research Study Summary Ransomware Used Features Used Dataset

EldeRan [10]: 2016

• Algorithm: Regularised Logistic regression.
• Feature Selection: MIC.
• Able to detect ransomware in early stages

of execution.

Critoni, Cryptolocker, CryptoWall,
Kollah, Kovter, Locker, MARSNU,
PGPCoder, Reventon, TeslaCrypt,
Trojan-Ransom.

• Static features &
Dynamic features

• 582 Ransomware
• 942 Benign

RansomWall [11]: 2018

• Algorithm: Gradient Tree Boosting.
• Feature Selection: N/A.
• Multi layered approach.
• Minimal system overhead.
• Utilisation of backup ensures no loss of data.

CryptoWall, TeslaCrypt, Cerber,
CTB-Locker, Jigsaw,
TorrentLocker, Locky,
CryptoLocker, CryptoDefense,
Hidden Tear, CryptoFortress,
CrypVault.

• Static features &
Dynamic features

• Honey Pot

• 574 Ransomware
• 442 Benign

RansHunt [12]: 2017

• Algorithm: Support Vector Machines.
• Feature Selection: MIC.
• Static and dynamic analysis.
• Anticipates behavioural patterns of next

generation ransomware.
• Kernel trick can specialise Kernel

for ransomware.
• Regularisation compensates for over-fitting.

GPCoder, Winlock, Reveton,
DirtyCrypt, CryptoLocker,
CryptoWall, CryptoWallv3,
Critoni, TeslaCrypt, CryptoWallv4,
Locky, CBT Locker, TorrentLocker,
Cerber3, Samas, CryptXXX.

• Static features &
Dynamic features

• Honey Pot

• 360 Ransomware
• 532 Malware
• 460 Benign

Deep
Learning [26]: 2016

• Algorithm: Deep Neural Network.
• Feature Selection: N/A.
• Network approach allows detection before

encryption begins.
• Can detect ransomware sequence of

behaviour within network.
• Identifies types of traffic to look for.

CryptoWall, TeslaCrypt,
CryptXXX, Locky,
CrypMIC,Cerber.

• Network features
• 155 Ransomware
• Unknown Benign
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Table 2. Cont.

Research Study Summary Ransomware Used Features Used Dataset

Long Short Term
Memory
(LSTM) [27]: 2017

• Algorithm: LSTM.
• Feature Selection: N/A.
• Compensates for ransomware that

delays execution.
• Feature engineering time is low.

N/A. • API features
• 157 Ransomware
• Unknown Benign

Behavioural-Based [13]:
2018

• Algorithm: J48 Decision Trees.
• Feature Selection: N/A.
• Allows the authors to identify ransomware

that display polymorphic behaviour.

Cerber, Cryptowall, Crysis, Jaff,
Jigsaw, Locky, Petya, Sage, Torrent
Locker, Wannacry.

• Dynamic
behavioural
features

• 150 Ransomware
• Unknown Benign

Support Vector
Machines [14]: 2018

• Algorithm: Support Vector Machines.
• Feature Selection: N/A.
• Kernel trick to be used to tune the SVM.
• Attempts to use API patterns to detect

zero-day threats.

WannaCry, Cerber, Petya,
CryptoLocker. • API features

• 276 Ransomware
• 312 Benign

SDN [15]: 2018

• Algorithm: Random Forests.
• Feature Selection: Manual observation.
• Pinpoints suspicious network traffic.
• No need to look into packets.
• Random forests can be effective in

small datasets.

Cerber. • Net-flow features

• Unknown number of
Cerber
Ransomware samples

• 100MB of malign
traffic flows

• 100MB of benign
traffic flows

NetConverse [16]: 2018

• Algorithm: J48 Decision Tree.
• Feature Selection: TShark extractor.
• Uses network conversation-based

network features.
• Designed to detect ransomware which

evades ML techniques.

Cerber, CryptoWall, CryptoLocker,
CTB Locker, Locky, PadCrypt,
PayCrypt, TeslaCrypt,
Torrentlocker.

• Network features
extracted
from TShark

• 210
Ransomware samples

• 264 Benign samples
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Table 2. Cont.

Research Study Summary Ransomware Used Features Used Dataset

Shallow and Deep
networks [28]: 2017

• Algorithm: ANN trained with
back-propagation and non-linear
activation function.

• Feature Selection: N/A.
• Tests explicitly on zero-day threats from

outside the time-window of the training set.
• Extraordinary detection rate at 100% for

zero-day threats.

Cerber, Cryptolocker, CryptoWall,
Maktub, Sage, Torrentlocker. • API features

• 755
ransomware samples

• 219 benign samples

Bayesian
networks [17]: 2019

• Algorithm: Bayesian Network.
• Feature Selection: N/A.
• Use of Packet and Traffic Analysis.

Locky. • Traffic Flows

• Locky Ransomware
network traffic

• Unknown benign
services traffic

Analysis
Framework [18]: 2016

• Algorithm: Random Forests (used
in experiments).

• Feature Selection: Cosine similarity.
• Framework design which can use multiple

learning algorithms.
• Flexible, different models can make up for

the weaknesses of others.
• A variety of ransomware families are used

for training.

Locky, Teslacrypt, FileLocker,
FileCryptor, Troldesh, CryptoWall,
TorrentLocker, CryptoLocker,
ZeroLocker, CryptoTorLocker,
CTBLocker, Xorist, WannaCrypt.

• Assembly Code
• API calls

• 178 Ransomware
samples

• 178 Benign samples

Feature
Selection-Based
Detection [19]: 2018

• Algorithm: J48 Decision Tree.
• Feature Selection: Manual analysis.
• Biflow packet approach.
• Network features extracted from PCAP files.
• Uses Cerber and Locky Ransomware.

Locky, Cerber. • Network features

• Unknown
ransomware count

• Unknown benign
count
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Table 2. Cont.

Research Study Summary Ransomware Used Features Used Dataset

Machine
Learning-Based File
Entropy Analysis [20]:
2019

• Algorithm: Entropy.
• Protects file backup systems from being

compromised and overwritten by encrypted
versions of the backup data.

• Uses Entropy to determine whether files
being backed up are encrypted. If a file is
identified as encrypted by ransomware,
it will not be backed up.

• Detection rate of 100%.

PC BYBORG, Reveton, CryZip,
May Archieve, FAVEAC,
FastBsod, CyrptoLocker, GPCoder,
Simple-Locker, TeslaCrypt,
CryptorBit,
KeRangerm CryptoWall.

• Entropy-based
features

• 600 Encrypted
file backups

• 600 Clean file backups

Digital DNA
Sequencing [21]: 2020

• Algorithm: Random Forests.
• Feature Selection: MOGWO & BCS.
• Complex synthetic DNA-based feature set

which converts each sample to a strand of
synthetic DNA following
scientific constraints.

• This approach looks at early detection.
• This approach uses confidence values and

calculates uncertain predictions, which can
be used for concept drift detection in future.

Critoni, Cryptolocker, CryptoWall,
Kollah, Kovter, Locker, MARSNU,
PGPCoder, Reventon, TeslaCrypt,
Trojan-Ransom.

• API calls
• System operations
• File strings

• 548 Ransomware files
• 942 Benign files

Resilient Machine
Learning [22]: 2019

• Algorithm: GAN.
• Feature Selection: N/A.
• Uses adversarial learning to explore the

concept of adversarial learning being used to
trick machine learning detection systems.

N/A. • I/O Features
• 4670

Ransomware files
• 1616 Benign files
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Table 2. Cont.

Research Study Summary Ransomware Used Features Used Dataset

API Sequence-Based
Detection [23]: 2019

• CF-NCF-based Machine Learning.
• Feature Selection: Intel Pin tool.
• Distinguishes ransomware from

other malware.
• Ensures preventive and reactive measures

taken for ransomware will be different from
other malware.

• Promising results with high detection rates.

N/A. • API Sequence

• 1000
Ransomware files

• 300 Malware files
• 300 Benign files

Two-stage
Detection [24]: 2020

• Algorithm: Decision Tree & Markov Chains.
• Feature Selection: N/A.
• Uses a Markov chain and decision tree to

make decisions. The decision tree
compensates for the short comings of the
Markov chain.

• Uses static and dynamic features.
• Markov chain operates by observing API

call sequences.

N/A. • API calls
• 2507

Ransomware files
• 3886 Benign files

Multi-Tier Streaming
Analytics
Model [25]: 2020

• Algorithm: Naive Bayes & Decision Tree.
• Feature Selection: N/A.
• Comprehensive solution which uses a hybrid

of Naive Bayes and Decision Trees.
• 30 day realistic testing environment.

AiDS, GpCode, Archiveus,
WinLock, Reveton, CryptoLocker,
CryptoWall, RaaS, Cerber, Locky,
Crysis, WannaCry, Sopra, Zeus.

• Dynamic
behavioural calls

• File entropy
• Static features

• 35,000
Ransomware files.

• 500 Malware files.
• 500 Benign files.
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3.2. EldeRan

The EldeRan system [10] is based on the observation that ransomware performs certain actions
that are unique or significantly different from those performed by benign software [10]. The EldeRan
system monitors a sandboxed environment (Cuckoo Sandbox) and extracts features in the following
classes: Windows API calls, registry key operations, file system operations, directory operations, the set
of operations done per file extension, dropped files, and the strings of the executable. Besides the
strings, the features are gathered and analysed dynamically. Once the collection of the features is
complete, this is fed into a feature selection algorithm to extract the most relevant features. Once the
final set of features is extracted, the data is put through the Regularised Logistic Regression classifier,
which will return either “Ransomware” or “Goodware” [10]. The system is trained offline but is run
online, and new samples are classified at run time; this can be done on user PCs.

3.2.1. Feature Mapping

The feature selection component of this system uses the mutual information criterion, which
allows the most discriminating features to be obtained [10]. The features used are binary; therefore,
it is either the presence or absence of a feature that is the value. The mutual information criterion
gives the user the ability to quantify the amount of discrimination each feature adds to the classifier.
The mutual information criterion will give the system a measure of how dependant or independent
features are to whether a file is either ransomware or benign. This feature set is reduced from an initial
feature list of 30,967. According to the mutual information criterion, the most significant features in the
final 400 features were related to registry key operations, with 48.25% of the features in the final 100
being registry key operations. The next most relevant category is the API stats features, which make
up 24% of the final features. The remaining 24% of features amount to less than 10% individually.
The additional features consist of directories traversed, files opened, deleted, and modified amongst
other directories, and file related activity, which is not specified in the research paper.

3.2.2. Regularised Logistic Regression

The features are fed to the regularised logistic regression classifier to classify the executables as
either benign or malicious. Logistic regression is known to be effective in classifying when there are
multiple variables to be considered; however, because the classifier uses 400 features, the model would
be very vulnerable to over-fitting issues. Over-fitting was alleviated by using a regularisation function
which attaches a cost penalty function to each feature which will prevent over-fitting. The justification
of the use of regularised logistic regression is that logistic regression is easier to train and add new
samples to as opposed to a method, like SVM. Methods, like Naïve Bayes, will assume independence
between features, but the assumption made when attempting to detect ransomware is that there is
a strong dependence between the features. Because of the high volume of features in the dataset,
the algorithm chosen for classification was the Logistic Regression algorithm. The method aims
to model the log-posterior probability of the different classes given the data via linear functions
depending on the features. Then, the posterior probability of a sample being classified as ransomware
(R = 1) given its feature vector x can be written as in Equation (1).

Pr(R = 1|x, w, b) = sgm(wTx + b). (1)

In the formula presented in Equation (1) w represents the vector of weights, b being the biased
term, and the sigmoid function sgm(t) is given in Equation (2):

sgm(t) =
1

1 + exp(−t)
. (2)

The main issue with Logistic regression is it being prone to over-fitting when using the maximum
likelihood of the posterior. Regularisation is introduced by adding a penalty term to the cost function;
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this combats over-fitting. The cost function for the regularised regression, C′ becomes Equation (3):
In the formula presented in Equation (1), w represents the vector of weights, b being the biased term,
and the sigmoid function sgm(t) is given in Equation (2):

C′(w, b) = C(w, b) +
λ

2

D

∑
i=1

w2
i . (3)

The regularisation parameter is λ; this combination of a regularisation parameter which acts
as a penalty function and the mutual information criterion counteracts the effects of over-fitting
Logistic Regression.

3.2.3. Experiments

The Regularised Logistic Regression classifier is tested against implementations of Linear SVM
and Naïve Bayes classifiers. In all cases, the Mutual Information Criterion is used to find the most
relevant features before applying the classifiers to the data. The experiments also used data from the
VirusTotal AV detection engines. The data from VirusTotal contains data from multiple AV engines;
this was aggregated and used in a voting system. This system worked around the rule that, if the
majority of the AV engines indicated that the sample was malware, then it would be decided that
VirusTotal classified the sample as ransomware. For experimental purposes, the top 5 vendors with
the highest accuracy rates were also used as a comparison benchmark. If an AV vendor did not
provide a label, the sample is discarded from the results and not taken into account when calculating
false positives; this gives the AV vendors an advantage. The experiments consistently used an 80%
and 20% split for training and test data, with over 100 different combinations of this 80% and 20%
split. The dataset contains 942 benign applications and 582 ransomware samples. The detection rate
achieved by the EldeRan system is at 96.34%, in comparison to 92.19% for SVM and Naïve Bayes
achieving 94.53% accuracy rate. The EldeRan system also achieved the lowest false positive rate, at
1.16%. In comparison to the top 5 AV vendors, EldeRan was only second to AV vendor, which had a
detection rate of 96.89% and a false positive rate of 0.66%. It must be noted that the AV vendors all
achieved better false positives than the EldeRan system and the other machine learning algorithms.
The final phase of the experiments is on the new unknown ransomware samples. When experiments
were carried out of the 11 families included in the dataset, one would be left out to test the system’s
ability to detect completely unknown ransomware samples which the algorithm had never been
trained on. The overall detection rate goes down to 93.3% in this phase of experiments, in which the
system only attempts to classify unknown ransomware samples.

3.2.4. Discussion

This approach comes with many positives while having some limitations. Firstly, the system
achieves a very high detection rate (96.34%) on ransomware families it is trained on along with a
93.3% detection rate on unknown families which are zero-day threats. With its effective use of static
and dynamic features, the system can achieve detection rates which are more than competitive with
current Anti-Virus systems. With the inclusion of static and dynamic features, the system can identify
ransomware infections in its earliest stages. Thanks to the use of logistic regression, the relationship the
features have that determines whether a file is ransomware or benign is understandable. The system
does have its limitations, firstly the lack of any network features in this model. The Cuckoo Sandbox
provides means to extract network features from executed files; it is a big miss to leave them out of the
feature set. The main problem with this approach as acknowledged by the authors is that this method
struggles to detect ransomware that lies dormant for an extended period or requires user input to
activate the executable because of the reliance on sandbox techniques and lack of scripting to simulate
user input. Finally, regularised logistic regression is not strong with non-linear decision boundaries,
meaning that the model may find it hard to find complex relationships between features. If improving
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the system, certain features have been identified. Firstly, the reduction of feature analysis time and the
improvement of detection techniques, e.g., using known patterns of system calls used to encrypt files.

In terms of suitability for use in IoT, this study uses a very resource-heavy feature set, which
would need to be cut down to be suitable for use on more lightweight IoT devices. The use of the
Cuckoo Sandbox would also have to change completely. Cuckoo is unable to simulate IoT devices.
Another issue with this approach is that the features used are behavioural and static. This research
method would have to be heavily modified to be ported onto the IoT domain and away from PCs.

3.3. RansomWall

RansomWall [11] is a layered system which is built to detect ransomware infections in real-time.
The layers are organised in order of execution, and this system is designed to be used for Microsoft
Windows. The behavioural analysis data for the files are all extracted using Cuckoo Sandbox, with the
static data coming from IDA (Interactive Disassembler). The system is set up in 5 layers, the first being
the static analysis layer, which analyses the executable in a static context, i.e., strings. The second
layer is a trap layer which used honey files and directories. These files and directories are placed
so ransomware will attack them before other user files, analysis of ransomware show that a large
proportion of them use a depth-first search approach when looking for files to encrypt [11]. The third
layer is the dynamic analysis engine which provides behavioural data for the executable. The final
two layers are the backup layer and the machine learning layers which handle backing up of files if a
ransomware infection is detected. The machine learning layer classifies samples based on the model,
which is trained offline.

3.3.1. Feature Mapping

The machine learning layer comprises of logistic regression, support vector machines,
ANNs(Artificial Neural Networks), random forests, and gradient tree boosting. The machine learning
layer is based on “Sequential Supervised Learning with Moving Average Sliding Window” [11].
The output is either benign or ransomware; hence, this is why classifiers are used. Training is done
offline, the execution of the system occurs in real-time in which the static, dynamic, and trap layers
send data to a feature-collector, which converts data into the feature set. If a process is tagged as
suspicious, the feature values of the data are sent to the machine learning layer, which will then
process using the selection of algorithms to determine whether the sample is benign or ransomware.
The exact algorithm for deciding on what features to use out of features provided by the three layers
are not specified.

3.3.2. Gradient Tree Boosting

Gradient Tree Boosting works on a gradient descent type system in which it builds models
progressively. Firstly, a simple model will be built, after which the error residual will be calculated for
the model, and then a new model will be built to attempt to correct the errors from the first model.
The algorithm will continually rebuild the model to reduce the error in the previous model until the
model prediction is at an acceptable level. The gradient descent function will attempt to reduce the
gradient to close the gap between real values and predicted values. The collection of weak learners is
represented in Equation (4).

F(x, β, α) =
n

∑
i=1

βih(z, αi). (4)

3.3.3. Experiments

Data is taken at 1-second intervals. Data from three time intervals will be taken and averaged,
to avoid glitches. The model is trained on 11 out of 12 ransomware families selected, and 221 out of
442 benign files. The trained model is tested against the remaining one ransomware family and the
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remaining 221 benign files; this is because of the belief that most ransomware attacks are zero-day
attacks [11]. The results for this system are extremely promising with the gradient tree boosting
method yielded a 98.52% detection rate, with a false positive rate of 0.0056%. The false-negative rate
is because of two samples terminating early during execution making file system activity limited;
therefore, they are not identified as ransomware [11].

3.3.4. Discussion

RansomWall is a comprehensive approach with many upsides but also has its limitations. In terms
of strengths, RansomWall being multi-layered is its greatest strength. It uses static, dynamic, and
honey pot layers to detect ransomware makes it a very unique and secure approach. The use of these
layers to feed into a machine learning engine gives the system a very strong appeal. In addition to
detection, the system does give a protection layer in the form of its backup layer which backs up files
on detection of a ransomware infection. The system causes minimal system overhead and uses a strong
array of ML algorithms to detect ransomware. Its detection rate using GTB (Gradient Tree Boosting) is
exemplary, at 98.25%. In terms of limitations, the RansomWall system uses a dataset of 574 ransomware
samples and 442 benign files. Because of how varied benign files can be, it raises the question as
to whether the system has enough training on normal behaviour. Despite having a comprehensive
multi-layered approach, the system does not use any network behaviour, which usually provides one
of the earliest indicators of ransomware infections. Finally, the use of GTB can sometimes become
convoluted because of it being prone to over-fitting; therefore, shrinkage and tree depth have to be
carefully monitored. The expansion of RansomWall to function on large scale networks is the next step
for the system, according to the authors. However, the most beneficial addition to this system in the
future would be the monitoring of a set of network features, along with the dynamic and static features.

In terms of suitability for use in IoT, this system suffers from the same issue that the EldeRan
system did with it being too focused on behavioural and static features with no inclusion of
network-based features. The whole system would have to be calibrated to use the network protocols
IoT devices use, not to mention the system itself uses Cuckoo sandbox behavioural features, which
are not suitable for IoT devices. The backup layer of this system, however, might be useful to retrieve
user data that might be compromised after a ransomware infection. The backup layer functionality
can be used for an IoT device or network of IoT devices but would need modifying. The backup layer
in RansomWall will start backing up data once it detects a ransomware infection. In terms of IoT
devices, if they are trained to detect a ransomware’s network behaviour, a backup layer, like the one
in RansomWall, can be used to back up data and cut off infected IoT devices from a network that are
compromised by a ransomware attack. Often, a ransomware attack will attempt to spread through the
network it has been released into. In an IoT network, IoT ransomware will attempt to spread through
the network to inflict maximum damage.

3.4. RansHunt

RansHunt [12] is a framework which is designed to identify key features which define a
ransomware infection and then use these features to detect ransomware using support vector machines.
This system uses both dynamic and static features extracted from 21 different ransomware families.
This dataset is completed by an additional 1283 samples of benign executables and other malware.
The system is compared to Decision Trees and Naïve Bayesian methods.

3.4.1. Feature Mapping

Feature selection aims to find the features which will allow the system to distinguish ransomware
from benign files. The mutual information criterion is used to identify the best features for the SVM.
Mutual information criteria allow the user to quantify how much discrimination each feature adds
to the classifier [10]. It takes X and Y as two discrete random variables with a joint probability mass
function p(x, y) and marginal probability mass functions p(x) and p(y) [39]. The mutual information
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MI(X, Y) is the relative entropy between the joint distribution and the product of the marginal
distributions [39].

3.4.2. Support Vector Machines

SVM consists of a hyperplane dividing n-dimensional space, which represents data divided into
two classes, in this case, either ransomware or benign files. The hyperplane is designed to maximise the
distance between two separate classes with the maximal margin being defined as the largest distance
between the examples of the two classes computed from the distance between the closest instances of
both classes [39]. The hyperplane is represented by a vector w and a scalar m in a way that the inner
products of w with vectors ϕ(Xi) from the two classes are divided by an interval between −1 and 1,
subject to b [39].

(w · ϕ(Xi))− b > +1. (5)

For every Xi that belongs to the first class and for every Xi that belongs to the second class:

(w · ϕ(Xi))− b 6 +1. (6)

SVM hyperplanes will have a large margin, which is supposed to reduce generalisation error and
over-fitting. SVM uses hinge loss and can use different kernels. Using different kernels is applicable
with datasets where the data is not linearly separable.

3.4.3. Experiments

The experiments were carried out in a dynamic and static context, static analysis was carried out
on IDAPro and IDA2SQL. Dynamic analysis was carried out on Cuckoo Sandbox. The dataset contains
360 ransomware samples, 532 types of malware, and 460 benign files. Selecting features for the static
analysis initially started with 64,984 features but was reduced to 100, using Mutual Information Gain.
Mutual information gain measures the information you gain on one variable by learning the value
of another variable. The dynamic features are taken from Cuckoo sandbox, which totalled 67 and
focuses on Registry Key operations, API function features, and file operation features. These features
are combined with the static features obtained and put into a hybrid dataset. The static and dynamic
datasets are kept in their initial states so that tests can also be run on them. The RansHunt system is
trained on 90% of the dataset using 10-fold cross-validation. The RansHunt system uses SVM with the
normalised polynomial kernel and then compared to the results obtained by Naïve Bayes and Decision
Trees implemented in WEKA [12]. The SVM algorithm is compared to the most prominent malware
analysis platforms available in the form of VirusTotal and Malwr. The RansHunt system achieved a
93.5% accuracy rate with the static dataset and a 96.1% accuracy rate with the dynamic dataset, with
a 97.1% accuracy rate with the hybrid dataset. RansHunt outperforms Decision Trees (95.6%) and
Naïve Bayes (96%), along with the VirusTotal Engine (95%) and the Malwr Database (93%). RansHunt
also achieves the lowest error rate, at 2.1%. RansHunt is also compared to 3 mainstream Anti-virus
programs and is only outperformed by NG-AV; this is most likely because of the inclusion of R&D,
along with fine-tuned signatures [12]. It must be noted that, for unknown threats, RansHunt would
be more effective because it does not rely on signatures or a virus database. The inclusion of other
malware, including worms, is to detect a ransomware variant named “Ransomworm”, which is one of
the predicted attack patterns in the coming year [12].

3.4.4. Discussion

RansHunt is a strong approach and shows very promising results; however, this is not to say
that it does not come with limitations. In terms of strengths, RansHunt boasts a 97.1% detection rate
with a 2.1% error rate. The training methods used for RansHunt use the concept of being future proof
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with the model being trained on worms and Trojans. These behavioural patterns are taught to the
model to anticipate next-generation ransomware, “Ransomworm” [12]. This new trend in ransomware
behaviour is expected to be a ransomware/worm hybrid and expected to come into prominence within
the next two years. In terms of ML methods, the system uses a highly robust SVM system which by
default is tuned to avoid over-fitting issues posed by other models. SVM’s kernel can be fine-tuned to
specific problems, meaning the system can be tuned and updated to be purpose-built for ransomware.
The feature set uses a hybrid of static and dynamic features, identified by the Mutual Information
Criterion. In terms of weaknesses, SVM tends to underperform in comparison to deep learning
approaches despite being strong in terms of speed and memory efficiency. Unmodified SVM also does
not give probabilistic confidence of the values calculated, meaning the model is less understandable.
When it comes to the system, the accuracy levels of detection may be deceptive because this system is
not tested on zero-day threats. The dataset is not split in a way in which one family would be excluded
from training and left specifically to testing. This approach, while using a hybrid approach of static
and dynamic features, decides not to include any network features which could have been pivotal for
early detection. The true effectiveness of this system needs to be tested on zero-day threats, while a
97.1% detection rate is very high; this statistic may not reflect real-world performance. It would be
useful to test how useful the future-proofing on the system is, in terms of the ransomware & worm
hybrid. As this system has a dataset of hybrid features, static and dynamic; it would make sense to
include network features in the dataset also to add a layer of security to the system.

This research is interesting because it is trained on worms and trojans. The use of worms is an
attempt to anticipate the next generation of ransomware, which the author predicts will behave like a
worm propagating the spread of ransomware through networks. Despite this, the model created in this
study would not be suitable for IoT because it uses data from the Cuckoo sandbox, and the concept
of trying to simulate future ransomware which will use worms to spread through a network is an
interesting proposition. With the massive expansion of IoT, ransomware designed to spread through
large networks will likely use worms. The behaviour simulated for these worms carrying ransomware
may need to be modified to suit IoT networks and devices; however, the concept is something to be
built on for ransomware in IoT.

3.5. Behavioural-Based

Behavioural-Based Classification [13] takes into account that the use of polymorphic and
metamorphic ransomware is starting to increase. This approach uses machine learning models
to identify modified versions of ransomware based on their behaviour. The study uses 150 samples
of ransomware from 10 different ransomware families. This research utilised some of the newest
ransomware samples available at the time to get an idea of how machine learning algorithms work
when trying to classify evolving ransomware. This method uses an iterative approach to identify
optimum behavioural attributes which achieve the best classification accuracy. The behavioural data is
taken from Cuckoo sandbox, which produces behavioural logs for executables. Unlike many other
studies, this research does not attempt to classify ransomware apart from benign files. The goal is
to classify ransomware into their respective families with a dataset comprising of only ransomware
samples. The experiments carried out are all done in WEKA, a platform which allows the user to
utilise various machine learning algorithms on a dataset.

3.5.1. Feature Mapping

The initial set of behavioural attributes is selected by taking behavioural attributes which appear
in 95% of behavioural reports. The next step of the procedure was to add and remove attributes that
increased the classification accuracy of the J48 algorithm. An iterative approach is used to select the
attributes that give the maximum accuracy. The most important features of the feature set are located
on the top levels of the tree [13]. An iterative approach utilises this method to root out irrelevant
features until the attributes that appear on the top of the trees in iterations make up the bottom of the
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trees, as well. The final number of features used in the dataset is 12. The 12 behavioural attributes
used are not specified. All the behavioural attributes are common in all the samples; they vary in type,
either nominal, binary, or numeric. This approach takes inspiration from Reference [39], which uses
extensive testing on a wide variety of datasets when performing attribute selection.

3.5.2. J48 Decision Tree

As the name suggests, the data structure takes on the structure of a tree. The training dataset is
used to construct a tree, which is used for making predictions on the test data. The aim is to achieve
the most accurate results with the least number of decisions made. The J48 decision tree can be used
to solve classification and regression problems. This method of classification relies on the concept of
Entropy and Information Gain. Entropy refers to the uncertainty of the data. For example, the entropy
of a coin toss is indefinite as there is no way of predicting the outcome, however, if the coin were a
two-headed coin the entropy would then be zero as the outcome can be predicted with 100% certainty.
The main algorithm used in decision trees is the ID3 (Iterative Dichotomister 3). The ID3 algorithm
aims to start from the root and partition the data into a homogenous dataset. We want the attribute that
would result in the highest information gain (return the most homogenous branches). The decision tree
approach is popular because it can handle large datasets very well, deals with noise, and operates in a
White Box, meaning that we can observe how exactly the outcome is obtained and what decisions lead
to the said outcome. It is a popular method of tackling medical diagnosis, spam filtering, and security
screening. The calculation of entropy involves splitting the dataset and calculating the entropy of each
branch and then calculating the information gain of the split. Information gain is the differences in
the initial entropy and the proportional sum of entropies of the branches. Attributes with the highest
gain value are selected as the decision node. If a branch has an entropy of 0, it becomes the leaf node.
Other branches will still require further splitting. This process runs recursively until further splitting
is impossible.

3.5.3. Experiments

The J48 decision tree algorithm is compared with the K-Nearest neighbour algorithm along with
the Naïve Bayes. N-Fold cross-validation is used to test the models in the training phase [13]. The n
parameter is set to n = 10, which is the default in WEKA, which is the platform for the experiments.
Overall results achieved are relatively weak with the J48 decision tree algorithm achieving the highest
accuracy of a 78% detection rate, Naïve Bayes at 61%, and K Nearest Neighbour at 77.33%. This level of
inaccuracy may be attributed to the use of the newer variants of polymorphic ransomware with samples
of Cerber having a detection rate as low as 50% [13]. Cerber is suspected to be designed to avoid
machine-learning detection techniques, and these results support this. There is a significant drop off
when it comes to correctly classifying newer variants of ransomware, with Locky, Petya, Jaff, WannaCry,
Sage, and Cerber variants all having classification rates well below the 80% mark. The behaviour of
these variants suggests high polymorphism, with new variants not being classified correctly.

3.5.4. Discussion

This research takes an interesting approach in terms of not detecting ransomware and
differentiating them from benign files but to classify which family of ransomware each sample belongs
to. This approach has strengths, along with some weaknesses. The main strength of this model is the
results give us a good idea of which ransomware families display polymorphic behaviour. We can
get an idea of which variants of ransomware might be using machine-learning evasion techniques.
The strongest machine learning algorithm used in this study, the J48 decision tree implicitly performs
feature selection, thus eliminating the need for a separate feature reduction system. The preparation of
data used in decision trees is fairly short, making it easier for users to feed data into this algorithm.
In terms of weaknesses, the lack of significant modification or tweaking to the algorithms used means
the results are naturally limited, whereas, with modification, the classification of the ransomware
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families may be more accurate. The use of decision trees in this process can be quite complex because
of how complex and diverse ransomware can be. Expectations in decision trees play a big part in
the classification process, while expectations are realistic, the classifications are strong; however,
if expectations are irrational, this can lead to errors. Decision trees can follow a natural course for
events but cannot always plan for every contingency. To improve this work, the J48 algorithm could
be tuned for the data presented to it. The classification of modern ransomware variants needs to be
significantly improved. A method which takes into account the high polymorphism in the newer
samples will greatly aid in improving the correct classification rate.

This study has similar issues to those that a lot of the prior studies do with an emphasis on
behavioural data and no network data used. This study did not work on detecting ransomware but
identifying ransomware families. One aspect of this study that could be very useful though is that this
kind of research can distinguish different types of ransomware in the IoT domain, as well. There is
a high variety of devices in the IoT domain, and this could be an important aspect of detection as
different ransomware can be developed for an infinite amount of different devices. Identifying types
of ransomware from its network behaviour and knowing what devices it will attempt to target will
be crucial in knowing how to defend against it and stop the spread by deactivating devices that will
be targeted.

3.6. SVM

Detecting ransomware using SVM is the second in this survey that utilises Support Vector
Machines and the API calls used by ransomware. The idea behind this model is to train an SVM to
learn the API calls ransomware makes to detect unseen ransomware (zero-day threats). The model
uses a vector representation of the API calls, in which the number of API calls is counted. API calls are
considered by looking into the execution logs of the samples [14]. A standardised vector representation
is designed to accommodate the diversity of the programs used. The experiments carried out in this
research were done in Cuckoo Sandbox.

3.6.1. Feature Mapping

The API calls used by the ransomware samples is used as the feature set for the data. However,
it is not specified what exact features are used. The main concept is that the API logs of the malicious
programs need to be quantified for the SVM to use them as features [14]. Because of the number
of API calls differ from program to program, a standardisation of the vector representation is used.
This standardisation method is described in detail in Reference [14]. Using the logs and quantifying
them into vectors, the SVM can learn the sequence of API calls ransomware uses during execution.

3.6.2. Experiments

The experiments are conducted in Cuckoo Sandbox, which produces all behavioural logs.
The dataset contains 276 ransomware files and 312 benign executables, various files taken from
trusted sources and vendors. Cuckoo Sandbox environment deployed virtual machines with ten main
folders and 1000 subfolders. Once a behavioural log is produced, it is converted into a vector and fed
into the support vector machine. Once the SVM processes the features, it will then decide if the file
is either ransomware of benign. The true positives and true negatives decide the validity of results.
The results are compared to the approach used in Reference [4]. The SVM model used in this approach
achieves a 97.48% detection rate, which is superior to the approach used by Rieck et al. that produces
an accuracy of 94.18%. When using the standardised vectors designed to compensate for software
diversity, the detection accuracy of the SVM-based approach decreases to 93.52%; this is because
588 samples of software are used; therefore, the dataset is not diverse enough.
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3.6.3. Discussion

This approach is the second SVM-based approach reviewed in this study and has strengths and
weaknesses, much like the RansHunt system, which also used SVM. Firstly, the system achieves a
very strong detection rate at 97.48% with non-standardised vectors and a detection rate of 93.52% with
standardised features. The use of API calls allows the system to analyse ransomware dynamically,
which means the system has the potential to be used live. The use of SVM allows for the use of the
Kernel trick, allowing for fine-tuning of the kernel to purpose fit the problem, in this case, ransomware.
In terms of weaknesses, this model suffers from an obvious lack of diversity in training, demonstrated
by its standardised vectors reducing detection accuracy. The use of 276 samples of ransomware may
be acceptable, but the system only uses 312 benign samples, which is limiting. The diversity in benign
software is massive, and using only 312 samples limits the model’s ability to identify normal behaviour
compared to ransomware behaviour. Cuckoo Sandbox is used to carry out these experiments, so
network or static features could be used. In terms of future work, this research can be improved by
diversifying the dataset, to make better use of their standardisation vectors. The addition of network
and static features would be greatly beneficial because the trends of malware suggest that ransomware
is becoming more polymorphic.

In terms of IoT, this approach is somewhat limited and does not have much that can be carried
into IoT. The use of Cuckoo behavioural data and lack of network features makes this system hard to
adapt for use in IoT.

3.7. SDN(Software-Defined Network)

With regard to machine learning-based detection of ransomware using SDN, Reference [15] takes
the network monitoring route, using a specific type of hardware, programmable forward engines
(PFEs). PFEs allow the collection of per-packet network data at high rates [15]. This hardware is used
to monitor the traffic flow between the infected PC and the C&C centre, which gives ransomware
execution commands. High-level network flow features are extracted from the traffic and are used for
classification. This approach uses random forests which fingerprints malicious traffic. This method
utilises network flows to show that a flow-based fingerprinting method is feasible and accurate
enough to detect ransomware before the beginning of the encryption phase. This approach avoids
the previously used method of analysing the payloads in networks, like the methodology used in
Reference [15].

3.7.1. Feature Mapping

The features in the model are extracted based on the observation of the victim system’s
communication with a C&C. Firstly, seeing as communications between the ransomware and its
C&C centre go through proxies, which will cause a higher latency [15], the measurement of packet
intervals will represent this latency. The volume of incoming traffic is expected to be higher than the
volume of outgoing traffic [15]. The difference in traffic is because increased inbound traffic represents
the initial infection, encryption key retrieval, and the payment method notifications. The burst lengths
of traffic flow are also recorded, which can help to distinguish between a clean and a malicious
download. The final features consist of inflow and outflow length with inter-arrival time metrics.
This feature set was decided based on its accuracy compared to other combinations of feature sets.

3.7.2. Random Forests

A random forest is a machine learning algorithm which is based on the decision trees described
in the J48 decision trees. Random forests require almost no data preparation but yield strong results.
Random forests are a collection of decision trees, which is why it is referred to as a “random forest”,
with multiple trees being built on two-thirds of the training data, in which data is chosen at random.
Multiple predictor variables are randomly selected; the best split on these selected variables is used
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to split the node. By using the rest of the data, the misclassification rate is calculated. The total error
rate is calculated as the overall error rate. This model tunes the random forest using three parameters:
the number of trees in the forest, the depth of each tree, and the number of features used in the trees.
The number of trees used was 40, with a depth of 15, and a feature set to the square root of all features
in the list. This combination was chosen to minimise computational overhead and learning time.
Random forests use a tree-based approach with the utilisation of the Gini index to split the nodes.
The Gini Index is shown in Equation (7).

Gini(n) =
|Y|

∑
y

py(1− py). (7)

The experiments were conducted on 265 unidirectional unique ransomware network traffic flows.
The normal baseline consists of 100 MB of non-malicious traffic, which includes traffic flows from
web browsing, data downloading and file streaming. Features were decided upon using the analysis
on both malign and benign traffic flows. The data is split 70% training and 30% testing. Ten-fold
cross-validation is used to ensure the splitting is unbiased. The use of 28 features yields a detection rate
of 89%, and the eight feature model yields an accuracy of 87%. The set of 8 features is used because it
is less computationally heavy. Further experiments were carried out on only the Cerber ransomware
family using the eight most prominent network features of Cerber, yielding an AUC(Area Under the
Curve ) of 0.987 [15].

3.7.3. Discussion

This approach to ransomware detection is unique because it takes only network behaviour,
without the need to look into the payload, so it can detect ransomware. The main strength of the
approach is the ability to pinpoint network behaviour on a high level that can help detect ransomware.
The model is tuned so that it can detect while minimising computational overhead and maintaining a
reasonable detection rate. Random forests can be useful in a dataset which is not too large, much like
this one. In terms of weaknesses, the main weak point of this approach is the relatively low detection
rate at 87%. This low detection rate is interesting because decision tree approaches tend to perform well
when it comes to behavioural analysis. A low detection rate may suggest that network behaviour on
its own may not be sufficient when it comes to detecting ransomware. Random forests tend to struggle
when it comes to highly diverse behaviour, i.e., next-generation ransomware, which may break the
normal trends the model knows already. This model is not tested on zero-day threats, which is a big
miss seeing as its potential to detect the unknown is somewhat untested.

In terms of IoT, this study is the most relevant as it uses network traffic flow between infected
devices and C&C servers so it can detect ransomware attacks. Considering an IoT will contain many
devices connected to a network, the monitoring of traffic flow can stop ransomware before it even
reaches other devices. The traffic flows are independent of the operating system or format of a device
as it will sit within the network and monitor the outgoing traffic of each device.

3.8. NetConverse

NetConverse [16] is an analysis of machine learning algorithms on a dataset of Windows
ransomware network traffic. The research takes into account the development of variants of
ransomware which are now being engineered to evade machine learning detection. The dataset
comprises of conversation-based network traffic. This approach acknowledges dynamic analysis
techniques have limitations, and new ransomware variants can be redesigned in an attempt to decrease
the rate of detection by machine learning algorithms.
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3.8.1. Feature Mapping

Feature selection is done using TShark, which outputs statistical and calculated data along with
static feature extraction. TShark is an extension of the network analyser, Wireshark [16]. Each network
PCAP(Packet Capture)file is merged into a dataset, based on the features extracted from within the
PCAP file. The features consist of the protocol used, the origin of and destination address to packets,
and duration of the connections. This research takes a different approach to most of the other studies
that were reviewed in this survey. They rely on a ready-made program, TShark, to do their feature
extraction as opposed to using a feature selection algorithm.

3.8.2. Experiments

The data taken from the TShark is run through multiple machine learning algorithms: Bayesian
networks, MLP(Multilayer Perceptron), J48, KNN(K-Nearest Neighbour), Random Forests and
LMT(Logistic Model Tree). The highest accuracy achieved was by the J48 algorithm, which achieved
a 97.1% accuracy rate. All experiments were carried out in WEKA with a 10-fold cross-validation
approach using all ten extracted features. The J48 algorithm achieves the highest accuracy rate with a
very low false-positive rate. All of the data used in the experiments are extracted from virtual machines
run in VMWare workstation with all of the classifiers not being tuned. The dataset comprised of
264 benign files and 210 examples of ransomware files.

3.8.3. Discussion

This study achieves very high detection rates but comes with its own set of limitations.
While achieving a 97.1% detection rate is impressive, the dataset used contains only 210 ransomware
samples and 264 benign files. The extremely limited training the models receive on benign behaviour
will likely lead to the model becoming confused when it comes to being deployed into the real world
unless expansion and tuning are carried out. The lack of tuning also reinforces the statement of the
authors that this research acts as a baseline which other researchers can build on because the algorithms
have received no tuning to allow them to be purpose-built for ransomware. While these weaknesses
are prominent, this work has the potential to be built upon because of the high detection rates achieved.

In terms of IoT, this is another study which can be implemented in IoT because it works exclusively
with network-based features. This approach calculating ten optimal features bases on a statistical
approach is also positive as this reduces complexity and serves as a lightweight solution using
significantly fewer features than most other studies that have been reviewed. The software used
would have to be different, of course, because TShark cannot run to monitor IoT a wide range of
devices; a method of feature extraction would have to be developed that could be implemented in an
IoT environment.

3.9. Bayesian Networks

This multi-classifier detection system [17] is a network-based detection system based on the Locky
ransomware. This approach is implemented by using close observations of malware behaviour on the
network to develop a set of observable features which can identify and differentiate between network
traffic generated by Locky ransomware from normal network traffic. The choice of isolating Locky
was made because of its prominence as a crypto-ransomware. The multi-classifier works in multiple
layers with one classifier monitoring packets and one classifier monitoring network flow.

3.9.1. Feature Mapping

The features used in this system were not built or decided on by using an algorithm but by using
observations on the packets and the network flow. The first distinguishable feature identified is the
IP(Internet Protocol)-wise reset connections ratio [17]. The authors noticed that the in 15-min time
frame the malicious traffic would repeat the same set of IP addresses with a high reset connection ratio
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in nearly every time frame. This feature does not have significant longevity because future variants
of Locky could easily terminate their connections early using TCP(Transmission Control Protocol)
and FIN(Finished Flag) without RST(Reset Flag) to make their traffic seem more benign. The second
distinguishable feature is the increase in the number of HTTP-POST within the traffic stream because of
Locky. It is observed that most Locky variants use the HTTP-POST without specifying the User-Agent
with no such instances being found in normal traffic. The third distinguishable feature is the large
volume of DNS(Domain Name System) name errors in malicious traffic. This feature is identified as a
behavioural feature because Locky is based on the DGA algorithm, which is designed to generate a lot
of pseudo-random domain names. The underlying technology behind the malware would have to
change for this feature to be classed as non-behavioural. The next feature found was the DNS labels
used by the malware. It was noted by the authors that Locky only used DNS names with two labels,
whereas benign traffic used multiple labels for DNS names. The final feature used was the presence of
NBNS (NetBIOS Name Service) packets in 6.05% of malicious traffic.

3.9.2. Bayesian Networks

A Bayesian network (BN) is a relationships network that uses statistical methods to represent
probability relationships between different nodes. It is a compact representation of the joint probability
distribution for reasoning under uncertainty. The mathematical notation for a Bayesian network is
shown in Equation (8), as displayed in Reference [40]. Bayesian networks tend to be computationally
expensive because they rely on many data samples to train a network effectively. The computational
complexity of a Bayesian network should be considered when using it. In addition to the complexity,
the Bayesian network will not be able to model cyclic relationships, and, if three variables correlate to
each other, a Bayesian network will not be able to model this. Bayesian networks will enforce a cause
and effect relationship on variables; therefore, when modelling using a Bayesian network, the variables
must have a cause-effect relationship, or this will be enforced when it does not exist.

p(h|e) = p(h|e)· (h)
p(e)

. (8)

Here, p(h) is the prior probability of the hypothesis, h : p(e) is the prior probability of evidence,
e; p(h|e) is the probability of h given e; p(e|h) is the probability of e given h [40].

3.9.3. Experiments

The experimental setup used in this system consists of 5 PCs, the first PC, PC1 being the victim
machine where the ransomware is infected. The second PC, PC2, hosts two virtual machines, VPC1 and
VPC2, which represent three clean machines on the network and will show how the ransomware
attempts to spread through the network. PC3, the third PC, will use Wireshark to capture traffic
for analysis. PC3 will run Ubuntu, and its NIC(Network Interface Controller) is set to promiscuous
mode to prevent infection. The extracted data is fed into the packet and flow-based classifiers which
will then make a decision based on the choices of the two classifiers; these classifiers are built using
random forest, LibSVM, Bayesian networks, and random trees. The technical aspects of how these
classifiers contribute are not specified. In terms of the packet-based classifier, the random trees prove
most effective, with an accuracy of 98.72%. The flow-based classifier displays the most success with
Bayesian networks, with an accuracy of 99.83%. On average, the flow-based classifiers were more
accurate than the packet-based classifiers.

3.9.4. Discussion

This approach comes with several positives, while also having drawbacks; the system does achieve
a high accuracy rate at 98.72% for packet-based detection and 99.83% for flow-based detection for
Locky ransomware. The novelty of this approach is that it uses two vectors to detect the ransomware,
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a packet-based detection algorithm and a network flow-based detection algorithm. The multi-layered
approach allows not one but two angles to monitor for ransomware activity.

The main issue with this research is that it only uses one family of ransomware, Locky to perform
all tests and training. The research was published in 2019, so it would be very limited when it came to
detecting any other type of ransomware because of how many ransomware variants exist. Using Locky
alone seems redundant, which brings us to the second largest issue with the system. The features
were all collected based on the observations of the authors and not based on any mathematical feature
engineering/extraction approach, which would have chosen from many extracted network features.
Using only observed features could bypass valuable information, a feature extraction method would
have obtained. For the system to move forward, it would need to be exposed to more ransomware
families because of the vast number of them in the modern environment. It is redundant to train a
detection algorithm to only detect one family out of dozens of existing ransomware families. Using a
mathematical feature extraction method as opposed to manual observations would enhance the system.

This approach used Bayesian networks as the detection algorithm. The Bayesian algorithm
has drawbacks when being used for a live system like this. A Bayesian network is computationally
expensive, and with a live system like this which will be sitting on the network, detection will need to
be fast, especially if acting as the first line of defence. A Bayesian network will be unable to capture
cyclic relationships. Cyclic relationships limit the complexity of the network behaviour it can watch
out for. Overall, for a live detection system, Bayesian networks may not be the optimal choice.

The approach used in this study could be used for IoT ransomware. The setup can be replicated
in an IoT environment with a machine set up to monitor ransomware behaviour using a network
monitoring tool, like Wireshark. The exact setup cannot be replicated because of the nature of virtual
machines, but the concept is a viable method of using machine learning methods to extract network
stream data and train models. Much like the other network-based studies, it is transferable; however,
there is not a concept alone which makes it stand out from the other studies, like the SDN concept.

3.10. Analysis Framework

For the Analysis Framework [18], the authors have developed a framework which performs
multi-level analysis on a sample. The multi-level analysis involves the analysis of binaries, assembly
code, and function calls, such as API calls. The framework uses a combination of these features to make
an informed decision on ransomware detection with the use of different machine learning classifiers.
They have achieved strong results, with detection rates over 90% for almost all of the machine learning
algorithms used.

3.10.1. Feature Mapping

The feature set consisted of reverse-engineered binary features which are constructed from
assembly code and DLL(Dynamic Link Library)features extracted from the executables. The feature
extractor would extract the DLL and assembly features from the executable. Cosine similarity is used
to measure the similarity of two samples based on their DLL and assembly features. Cosine similarity
will give a good idea of which features give the most discrimination between benign and ransomware,
as shown in Equation (9).

cos ϕ =
P ·Q
|P||Q| . (9)

3.10.2. AdaBoost

The most successful approach in this research is AdaBoost, an iterative ensemble learner.
The AdaBoost learning method will learn from mistakes of previous classifiers, considered weak
and will turn these classifiers into stronger ones. In a random forest, boosting would be applicable for
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classifiers which have a non-satisfactory accuracy. All the trees would learn from each other’s incorrect
classifications to build an overall stronger classifier.

Gini(n) =
|Y|

∑
y

py(1− py). (10)

3.10.3. Experiments

The experiments consisted of a dataset, containing 302 malware samples [18]. The experiment
aimed to determine whether the classifier could tell ransomware apart from other types of malware.
The total number of ransomware samples used was 178 from this dataset with an uneven split from
various families, most of which consisted of Locky and Teslacrypt. There was also an additional
178 benign samples chosen specifically to act similarly to ransomware to harden the training of
the classifiers further. There are three sets of experiments carried out, one with assembly code
features, one with DLL features, and the last with both sets of features combined. The third round
of experiments is the most successful, with the accuracy of 97.95% with Random Forests; similarly
strong results are achieved with J48 and Random Forests which use AdaBoost. In terms of accuracy,
when identifying individual families (Locky and TeslaCrypt), the most accurate algorithm is the
Random Forest with AdaBoost.

3.10.4. Discussion

This research has positives and negatives to it. The use of a variety of learning algorithms shows
the coverage of options when it comes to detection solutions. Because the model is created as a
framework, it increases in flexibility in terms of the algorithms that can be used with it. The first issue
with this study is that they use very few ransomware samples to train their classifier. While using a
variety of different families, they make the mistake of heavily weighting their samples towards just
Locky and TeslaCrypt and much less for the rest of the ransomware families they use. The features
used are restricted to assembly and DLL features; these features could be further expanded to provide
a complete picture of ransomware and better means of detecting them.

In terms of applicability in IoT, this kind of framework could be useful if the feature set could be
converted to be applicable in IoT devices. In its current state, the framework would not port directly
to IoT devices. In addition, the framework would have to be more calibrated to work in a network
scenario as opposed to relying heavily on static and DLL features. The use of an ensemble may be too
complex in lightweight devices.

3.11. Feature Selection-Based Detection

Regarding feature-selection-based ransomware detection with machine learning of data analysis,
Reference [19] focuses on the network aspect of ransomware detection, which bases its methods on
big data. This approach uses a BiFlow concept to replace packets because of size reduction in data,
with data size being reduced by a ratio of 1000:1 when using BiFlows over packet data. This system
uses six selection algorithms for classification purposes and an additional decision tree model to
enhance the performance of the intrusion detection system.

3.11.1. Feature Mapping

The features used are 36 network features identified by analysis of PCAP files, which builds the
basis for the research as this is where all of the data comes from. The algorithms were matched to
the features based on six characteristics which were gain ratio, information gain, correlation ranking,
OneR feature, ReliefF ranking, and symmetrical [19]. The six feature selection algorithms were used
together, and their scores normalised to give a combined score for each feature.
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3.11.2. Experiments

The dataset contains a combination of Cerber, Locky, and benign software. The experiments
carried out are not extensive but use different amounts of attributes, depths, and number of leaves.
The most successful configuration of this was using 25 of the 36 attributes, with 19 leaves and tree size
of 31, achieving a precision rate of 90.62%. There is a variation of around 2% for precision between the
different configurations used for the decision trees, which varied in leaves and tree depth.

3.11.3. Discussion

This study is interesting in because their focus is on the feature selection process and alteration
of network data. They transform packet data to BiFlow format to reduce data size. The main issue
with this research is simply the lack of information provided about their data and their approach.
The reasoning behind only selecting Locky and Cerber is not provided, and the dataset is not described
at all. There is also a lack of justification for their selection of features. The use of network features
alone might not be a complete solution as there are behavioural and static components to ransomware
detection, which could be considered.

J48 decision tree implicitly performs feature selection; this makes using a feature selection
algorithm on top of it unnecessary. The omission of a feature selection algorithm in this research paper
could be attributed to this; however, this is not specifically mentioned. The use of decision trees in
this process can be quite complex because of how complex and diverse ransomware can be; this study
uses Cerber and Locky, which means the trees will be biased towards detection of these two families.
The diversity of ransomware families has not been captured, meaning the random forests will have
trees which cannot classify the vast amount of unseen ransomware. Expectations in decision trees play
a big part in the classification process, while expectations are realistic, the classifications are strong;
however, if expectations are irrational, this can lead to errors. There is no mechanism to compensate for
unreliable predictions decision trees can be prone to, especially if there is a shifting concept. Decision
trees can be adapted to shifting concepts through local replacement of nodes; however, this is not
addressed in this research.

In terms of the use of this research in IoT, it could be viable because it focuses on network
features. While it could be appropriate to include behavioural features in IoT device detection of
ransomware, these features would have to be heavily modified if coming from a regular PC detection
system. Network features, such as those in this research, can be easily taken and adapted to IoT.
The use of BiFlows significantly reduces the size of data, which shows that the approach is capable of
being lightweight.

3.12. Machine Learning-Based File Entropy Analysis

In Machine Learning-Based File Entropy Analysis for ransomware Detection in Backup Systems,
Reference [20] focuses on ransomware infections in cloud backups. This research recognises that
cloud services cannot recognise that the files it is backing up are possibly encrypted by ransomware.
The researchers of this paper propose using entropy analysis of infected files to distinguish between
infected files and normal files. The main motivator behind this is to protect back up systems and
back up files if a ransomware infection has occurred as the file backups will be crucial to system
restoration. Encrypted and infected files must be kept away from back up systems. It is difficult to
point to negatives of this research, besides that they need to make sure that they test and train this
system on a very large range of ransomware which ensures they can keep track of the possible effects
different types of ransomware can have on files.

3.12.1. Feature Mapping

This research does not use traditional features, like the other studies we reviewed. Since it is not a
traditional detection system which monitors the endpoints of a network, it does not necessarily need
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to have static, network or behavioural features. Instead of these traditional features, the system uses a
measure of entropy which measures the entropy between the files incoming from and endpoint, and the
corresponding backup on the backup server. Through the entropy measure, it is possible to detect
whether the incoming file is infected by ransomware. If system resources permit, machine learning
models will be added to this detection system, and the synchronised files in the backup server will be
used as a test set to detect ransomware infections [20].

3.12.2. Entropy

Entropy is a measure of randomness or uncertainty in the outcome of an event. Entropy can be
derived in many different ways. The formula for measuring entropy is shown below in Equation (12).

E(S) =
c

∑
i=1
−pilog2 pi. (11)

The backup system will store the data for the user, and when detecting ransomware, the entropy
reference value of each user’s backup data is measured. The detection module detects infected files by
comparing the measured entropy of the synchronised files with the reference value of the file format
received from the backup system [20]. It is also proposed to store the entropy reference value as the
average of a collection of files. It should be noted that the entropy characteristics for each user can
differ, so this should be taken into account when calculating these figures. The backup system learns
and measures the entropy of the files stored in the backup system for each user, thereby deriving
an optimal reference value specific to the user files, which leads to more accurate detection of the
files infected by ransomware [20]. The data used for the machine learning models in the proposed
system consists of file format, the entropy measured by the most common value estimate, the entropy
measured by the collision test estimate, the entropy measured by the Markov test estimate, the entropy
measured by the compression test estimate, and whether or not the file is infected by ransomware [20].

3.12.3. Experiments

The results obtained in these experiments appear very impressive with the majority of the machine
learning models obtaining test set detection rates of 100%. The dataset is comprised of 1200 files in
total, with 100 examples of each file format included, additionally with 100 encrypted examples of
each file format. The results are promising as the dataset is varied and not small, and it is comprised of
over 1000 files.

3.12.4. Discussion

This research provides promising results, with a near 100% detection rate of infected files on all
the detection algorithms they have used. This aspect of detecting ransomware has not been covered
well, and this solution does protect backup systems from taking on encrypted or infected files because
backups are the last line of defence against ransomware. Backups must be protected from infection
and being overwritten with encrypted files.

This research is different from the other research studies that have been reviewed. The main focus
of detection is on the file entropy and how the underlying machine learning algorithm interprets the
differences in entropy to detect files which have been encrypted by ransomware. The main weakness
of this study is that there is no consideration of how ransomware encryption may be altered to avoid
a system like this. The entropy calculations between benign and infected files will rely on specific
differences and patterns which define how an infected and encrypted file is identified. It remains to be
seen whether the system would be resistant to attempts to mask encrypted files as normal files.

In terms of future work, it would be advisable to ensure the system is trained on the most up to
date ransomware in combination with older samples. The system needs to be ready to deal with any
eventuality when it comes to the way the ransomware may encrypt and alter files. While this system
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shows promising results, all it would take is for a strain of ransomware to alter the way it encrypts
files, in a method which the system is unaware of, to trick the system into accepting the encrypted files
as backups.

In terms of IoT implementation, this approach would be suitable for IoT devices and networks
which have data stored, which is of value. Data backups in IoT can depend heavily on the type of
system is involved, so this implementation may not be needed in lightweight IoT networks. However,
in larger-scale networks which will store mass amounts of data about millions of users, and will have
subsequent backups of all of their data, it will be applicable.

3.13. Digital DNA Sequencing

The digital DNA sequencing engine for ransomware detection using machine learning is a research
approach which uses a DNA sequencing approach to ransomware detection. The ransomware sample
data is converted to resemble a DNA sequence to detect ransomware before the initial infection stage.
This approach is because current ransomware detection studies rely on the analysis of ransomware
network or behavioural patterns, which imply the attack is already taking place during detection.
Code obfuscation makes it difficult to detect based on code. It is known that only portions of code are
revealed during certain parts of executions [21].

3.13.1. Feature Mapping

This system uses MOGWO (Multi-Objective Grey Wolf Optimiser), and BCS (Binary Cuckoo
Search) used to select the relevant features for the framework. MOGWO builds on GWO (Grey Wolf
Optimiser), which is an algorithm inspired by grey wolves. GWO searches for the optimal method for
hunting prey. MOGWO divides the objective space into a grid which contains all possible solutions.
The archive decides if a solution should be added or not depending on whether the solution dominates
any solutions already in the grid. BCS builds on CS (Cuckoo Search) algorithm, which is adopted from
the reproduction strategy of cuckoo birds. Along with these two methods, the accuracy determines
which function is maximised and which features are chosen.

3.13.2. Digital DNA Sequencing

The novelty of this study is the use of digital DNA sequencing, a synthetic DNA representation of a
digital artefact rather than biological DNA. A digital artefact is represented by only the characters A, G,
C, T, where adenine (A), guanine (G), cytosine (C), and thymine (T) molecules, commonly referred to as
“bases” [21]. An example of this process of converting a regular dataset to a DNA sequence is: a sample
with the binary features ‘0 1 0 0 0 1 0 1 0 1 0’ would be converted to ‘CGAACGCGCG’ which is a digital
DNA sequence containing features from the “bases”. A DNA sequence should follow constraints which
take into account H-Measure, continuity, melting temperature, and GC Content. DNAct-Ran uses three
constraints for the DNA sequences it produces. The TmConstraint as represented in Equation (13),
the GCConstraint as shown in Equation (14) and the ATGCRadioConstraing, as shown in Equation (15).

Tm = 4 ◦C(G + C) + 2 ◦C(A + T), (12)

GCC =
G + C

A + T + G + C
× 100%, (13)

(A + T)/(G + C). (14)

Using the constraints defined by the DNAct-Ran system, a regular dataset is converted to a
synthetic DNA dataset, and, from there, machine learning algorithms are trained on the synthetic
dataset to detect ransomware.
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3.13.3. Experiments

The detection algorithm uses an active learning approach which is broken down into
four strategies:

• Query strategies based on uncertainties, where instances with the lowest prediction confidence
are queried.

• Query strategies based on disagreement which queries the instances on which the hypothesis
space has the most disagreement degree on their predictions.

• Minimise the expected variances and error by labelling the instances on the pool of unlabelled
instances.

• Exploiting the structure information among the instances.

The initial classifier uses a linear regression model which will be used with the active learning
principles to train and predict the classification of the data. Once the DNA sequence of the ransomware
is learned, the individual families are analysed by machine learning algorithms. The dataset used
for this study is the dataset from the EldeRan system, which contains 1524 samples, split into 582
ransomware and 942 benign software samples. The testing was carried out on 150 ransomware and
150 benign samples. Overall the active learning solution achieved an overall accuracy of 87.91%, which
is promising because of the novelty of the approach used. However, there are detection studies which
achieve much higher early detection results with much less complex systems.

3.13.4. Discussion

In terms of positives, this study uses a highly sophisticated DNA-based detection system which
focuses on early detection. The detection rates are on the lower end of the scale with an accuracy of
87.9%, which is lower than the majority of the studies that have been reviewed. This research was
published in the year 2020; however, it uses a dataset with software from the years 2013–2015. The age
of the data would be considered unsuitable, especially because, through our experiments on the same
dataset, we saw significant concept drift in ransomware since 2015. The representation of the data as
DNA is a very novel angle on this topic; however, it is unknown how this approach will react when
faced with significant concept drift. It is an unknown as to how the changes represented by concept
drift will translate to a system which used a “DNA” approach. In terms of future work, the system
would need to be trained on more up to date ransomware, and the system itself would need to present
a higher detection rate. The use of the linear regression algorithm could be changed to something
more suitable for ransomware data. Taken into consideration, this is the only system we reviewed that
uses linear regression; it may be wise to alter the data to try the machine learning algorithms others
have used.

The most successful algorithm used by the DNA-based system was Random Forests compared
to Naive Bayes and the Decision Stump. The random forest will be able to capture complex patterns
displayed by a variety of ransomware samples in the EldeRan dataset, regardless of how old they
are. The main issue faced by this DNA-based approach is the complexity of it while using Random
Forests with a synthetic DNA dataset. DNA is highly diverse and complex; the additional complexity
of representing ransomware as DNA coupled with a random forest can represent a high level of
complexity. It is uncertain whether the complex and specific patterns generated by the synthetic DNA
dataset may cause over-fitting in decision trees. However, because there will be multiple trees in a
Random Forest, each tree will have captured different patterns and characteristics in the synthetic
DNA which define ransomware, which makes the trees more robust and stable when dealing with
unseen ransomware as concept drift will not affect every tree at once.

In terms of usage in IoT, this approach may be too resource-heavy to port to lightweight IoT
devices. The synthetic DNA and usage of multiple layers of learning algorithms may indeed be too
heavy. For larger-scale IoT networks, it is suitability may be higher; however, its low detection rates in
comparison to its high complexity makes it doubtful as to whether it can be used for critical systems.
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3.14. Resilient Machine Learning

This research paper evaluates whether machine learning approaches on their own are resilient
enough. The authors of this paper test the resiliency and trustworthiness of machine learning
algorithms. They use a generative adversarial network (GAN) to carry out these tests. The GAN
generates dynamic features which would reduce the efficacy of black-box ransomware classifiers [22].
The main objective of this is to prove that machine learning classifiers need to be further reinforced
and be resilient to what the GAN samples represent. The quality of each GAN samples is examined to
measure their statistical similarity with real ransomware. The sample space the GAN samples lie in are
also investigated; we get an insight into why these samples cause machine learning models to degrade.

3.14.1. Feature Mapping

The execution log of each sample contains a timestamp, event name, targetted file, and file
entropy. The four file actions are “create”, “delete”, “rename”, and “change”. The entropy level of
the file is combined with the event of a file change [22]. Each execution log is a sequence of events,
and the maximum length of a sample is capped at 3000 events. Samples with a sequence of events
less than 3000 are padded with zeros, so all samples are the same length.

3.14.2. GAN

Adversarial Machine Learning is a method of fooling machine learning models by giving the
model an input which is specifically designed to deceive the classifier. The reason behind this is that
machine learning models are trained to work on and classify very specific problems. Often, they do not
take into consideration that when these models are applied to the real world, the data they deal with
may be different or in the case of malware, evolve. Once these classifiers are identified, adversaries will
attempt to use data, or malware which does not follow the statistical assumptions made by the model.

A GAN (Generative Adversarial Network)is a connected neural network architecture for both
discriminator and generator [22]. The generator produces samples from the generated distribution PG,
which is supposed to be as close to the real distribution PR. The discriminator will classify the samples
generated by the generator and decides whether the sample is from PG or PR. The discriminator’s
aim to find the real from the fake and the generator’s aim is to fool the discriminator. By the end
of the training, the generator is supposed to maximise fooling the discriminator. These generated
samples are put through a quality assessment phase, which is a sample-based adversarial quality
metric. Each sample will be quality tested in order to be sure it is fit for use in testing. This process is
repeated until a defined number of samples which pass the quality assessment are generated.

3.14.3. Experiments

There are seven models trained on the initial dataset. The models used are Text-CNN
(Convolutional Neural Network), XGB (XGBoost), LDA (Linear Discriminant Analysis), Random
Forest, Naive Bayes, SVM-linear, and SVM-radial. The ransomware samples are from late 2017 to 2018.
The training set contains 1292 benign samples and 3736 ransomware samples. The test set contains
324 benign samples and 934 malicious samples. The training to test ratio is 80% to 20%. On the test
set, the detection rates were promising with Text-CNN achieving an accuracy of 98.9%, with a true
positive rate of 99.98%. The highest performing algorithms were then tested on the adversarial samples
which were produced by the GAN; the results showed significant degrading with Text-CNN detecting
none of the adversarial ransomware samples, XGB detection rate falls to 12.73%, and random forest
falls to 36.35%, whereas SVM radial detects 100% of the adversarial samples. The experiments have
proved the lack of resiliency in machine learning models and how the models can be reinforced with
the samples generated by the GANs.
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3.14.4. Discussion

This study takes steps to address what may be a growing issue in the future which is adversarial
machine learning. The methods used to prove the weaknesses in machine learning have effectively
proved an interesting point. The experiments carried out did focus on the ransomware, with the
datasets being heavily skewed towards ransomware with relatively little benign software. In a real-life
scenario, the ratio of ransomware to benign files a system would encounter would be the opposite.
It would be wise to include more diverse benign files in training. The samples used are varied and will
give the model a good spread of ransomware families, which display diverse and complex behavioural
patterns. The features are somewhat limited as they do not take any network or static features into
account but do use I/O features. The reliance on file entropy and file interaction would suggest
needing the ransomware to begin execution before detection. The most important theoretical issue
with this study is the need for the generation of potential samples. When it comes to ransomware,
there is no guarantee that the changes or evolution of the ransomware can be predicted. Realistically,
the GAN has to be heavily tuned and specialised to operate within strict parameters that would ensure
it behaved like real ransomware while displaying some behaviour which would make it appear benign
to a classifier. The next issue with this approach would be the fact that, when altering the statistics of
each sample, the actual behaviour it is representing has to be taken into account. Regardless of the
potential issues, the overall concept of the work is promising and raises valid issues.

In terms of IoT, there is no reason why the technique could not be applied when it comes to
defending against potential IoT ransomware. The features would need to be adapted, but the concept
of adversarial machine learning can be used to exploit IoT detection mechanisms, so there would be
no reason a technique like this would not be applicable.

3.15. API Sequence-Based Detection

This study takes an approach that a lot of the other reviewed studies have not considered, which is
differentiating ransomware from other malware, not just benign software. This research uses API
execution sequences which are converted to n-gram sequences. These n-gram sequences are used to
identify ransomware and differentiate them from other malware and benign software. Each element
of the input can be represented as “1” if an n-gram appears in the n-gram sequence or as “0” if the
n-gram is not present in the sequence [23].

3.15.1. Feature Mapping

The features used in this research are Windows API calls. The sequences of API calls of each
executable are gathered and then converted to n-grams. The n-gram sequences are used to differentiate
between malware, ransomware and benign software. Extraction of the Windows API calls is done
by the Intel Pin tool. CF-NCF (Class Frequency Non-Class Frequency) values are calculated for each
sample, and these values act as the weights of each element.

3.15.2. CF-NCF (Class Frequency-Non-Class Frequency)

CF-NCF acts as an indicator for classification models, based on the Term-Frequency-Inverse
Document Frequency. This technique is used to emphasise the features of each class, therefore giving
further ability to differentiate between malware, ransomware and benign files. CF-NCF calculates
weights on an element in a class, to provide a higher accuracy on classification experiments [23].
The calculation of this equation can be seen in Equations (16)–(18).

CF(s, C) = f (s, c), (15)

NCF(s, N) = log(
1

0.001 + f (s, N)
), (16)
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CF− NCF = CFxNCF. (17)

In these equations, s is an n-gram, and f (s, C) is the number of times that the n-gram s occurs in
the n-gram sequence C of a particular class. N is the n-gram sequences of the other classes, and 0.001
serves to prevent the denominator from becoming zero [23].

3.15.3. Experiments

The experiments used six machine learning algorithms which included Random Forests, Logistic
Regression, Naive Bayes, Stochastic Gradient Descent, K-Nearest Neighbours, and SVM. The dataset
was comprised of 1000 ransomware samples, 900 other malware files and 300 benign files. Only 2064
of the 2200 samples were used due to improper execution of some of these files. The API invocations
were limited to 50,000 to limit the size of the samples and regulate the number of n-grams produced.
In regard to n-grams, the best results were obtained when the n-value was set to 4, and it was Random
Forests which displayed the best rate of accuracy, with 97.29%. When detecting ransomware against
other malware, it was Random Forests which had the highest accuracy rate of 96.61%. The algorithms
were from the Scikit learn libraries.

3.15.4. Discussion

This study focuses on the need to distinguish ransomware from other types of malware.
Detection ideally should stop a ransomware attack before infection or encryption, but, in the event
of some encryption, the type of reactive measures that need to be taken out if ransomware is
attacking your machine will be different than other types of malware. The detection of a ransomware
attack on one machine can stop it spreading through a network, which is a key aspect of detection.
The permanent nature of ransomware attacks would make a system like this useful. The results
obtained are promising; however, this study lacks any future-proofing and acknowledgement of
evolving ransomware. The dataset used in this research is skewed heavily towards ransomware and
malware, with only 300 benign files. In reality, the model is far more likely to encounter benign files
than malware. The lack of variety in the benign samples used means the model could display high
false positives when coming across unseen types of benign files. It is important to include a high
number of benign files, so the model captures at least some of the diversity that exists in benign files.

In terms of applicability in IoT, the main issue with this study would be the use of Windows
API calls. The feature-set would have to be modified to use network activity sequences to pick up
ransomware infections on IoT devices. If the features were changed, the use of certain sequences of
behaviour would work very well if used in IoT.

3.16. Two Stage Ransomware Detection

This research uses a two-staged approach to detecting ransomware [24]. The authors acknowledge
the increasing diversity in ransomware and the difficulty in detecting ransomware. This research uses
a Markov model in combination with a Random Forest to detect ransomware. The Markov model
focuses on the API call sequences of the ransomware, and the Random Forest is used to model the
remaining data to reduce the false positive and false negative rates.

3.16.1. Feature Mapping

This study uses Windows API calls; it is not limited to a specific set or number of API calls.
The researchers acknowledge that there are varying numbers of API call sequences for each executable;
however, these are not limited or normalised. The additional features extracted from the analysis
tasks are registry operations, file system operations, strings, file extensions, directory operations, and
dropped file extensions.
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3.16.2. Markov Chains

A Markov chain is a state machine system in which events transition from state to state.
The Markov chain operates on the assumption that regardless of what the present state is, the future
states are all fixed, and no possibilities outside these states can occur. The probability of future events
depends on the state in the previous event. In this case, the state space is 303 of the most common API
calls used as decided by the authors. The Markov chain is built to predict a classification, using the
built probability model which uses the sequence of API calls.

3.16.3. Experiments

The dataset used in the experiments contained 2507 ransomware sample and 3886 benign samples.
The Markov chains are used to decide on a classification based on the API call sequences of a sample
and the Random Forests to classify based on the remaining features. The Markov chains provide a
low rate of false negatives, and the Random Forests provide a low rate of false positives. The Markov
chain will classify in the first stage, and the Random Forests will classify all the samples the Markov
chain classifies as benign to provide a second layer of security. During the experiments, the threshold
value of the Random Forest was altered to extract the best results. With a threshold of 0.2, the highest
achieved is 97.28%.

3.16.4. Discussion

This study takes a double-layered approach to detect ransomware. The Markov chains combined
with a Random Forest has shown to have promising results although it is not specified on which
samples the Random Forest is trained on. The Markov chain may be limited when it comes to
ransomware which will change over time as its future states are set, and there are limited futures
available for each state to go to next. The reliance on certain API calls may be a risk considering any
drastic changes in the way the ransomware uses API or changes in the sequence of API calls will
compromise the Markov chain’s ability to predict what will happen next in the sequence. In terms of
the features and dataset used, this research is comprehensive and covers static and dynamic features.
The only lacking component is a set of network features. The dataset uses a larger amount of benign
software than ransomware, ensuring the models will be trained to identify diverse benign files from
the many families of ransomware that exists.

In terms of IoT, the use of the Markov chains could be used to identify sequences of behaviour
within an IoT network which may be unique to ransomware. The Random Forest component may
not be applicable because of the nature of the features used in this component of the detection system.
The applicability of the system in IoT networks would depend on where the system is deployed and
the likelihood of an attack on said system. The sequence of attack would be different if the attack was
on an IoT device and act more like Locker ransomware.

3.17. Multi-Tier Streaming Analytics Model

In this paper, the authors propose a hybrid machine learner model, which is a multi-tiered
streaming analytics model [25]. The model classifies each sample into 1 of 14 ransomware families by
using 24 different static and dynamic features. The model classifies ransomware versions into their
ancestral families numerically. For ransomware which descends from multiple families, the model
fuses the multi-descendant families statistically [25]. This model attempts to categorise 0-day models
into their respective ancestral family or identify if it has multiple ancestors. This research uses the
most extensive dataset of ransomware reviewed in this paper, using a dataset of 35,000 ransomware
samples, 500 malware samples, and 500 benign files.
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3.17.1. Feature Mapping

The feature set used in this research includes 14 dynamic features and ten static features.
The dynamic features work through the accessing queries of files and directories, read/write/delete
operations, edit the system’s digital certification, and modify system files’ headers, as well as the
entropies of buffering data. The static features involve file content, and file paths, as well as spoofing
the links to particular directories [25]. Each sample will have a classification of “01” to “14”, so the
family it belongs to can be identified. The label “00” is assigned to benign software and the label “99”
to other malware types. Naive Bayes is impractical with large feature sets and heterogeneous trait
values. However, it spends a short computation time in learning the training vectors of traits and
predicting their actual classes by using Bayes’ probabilistic theorem with the assumption that all the
examined traits are independent of each other [25]. Thus, NB (Naive Bayes)is applied by HML(Hybrid
Machine Learner) to trace the predictive classes of all overlooked traits in the indecipherable nodes of
DT(Decision Trees) that optimises the adaptive classification [25].

3.17.2. HML Learner

The proposed learner, called HML, is a hybridised version of Naive Bayes and Decision Trees.
The main benefit of combining these two classifiers is so they can compensate for each other’s
weaknesses. Decision trees are known to classify quickly and efficiently on large training sets; however,
they are not as effective against previously unseen threats with irrelevant traits [25]. HML trains
the fetching batch of trait vectors through cutting the decision edges off the Decision Tree with
Naive Bayes pruning margins in an iterative splitting of the training trait vectors into sub-training
vectors [25]. The training feature matrix (T = T1, ..., TK) such that (Ti = Tij i∈K,j∈|Ti |

) with the

predictive labels (Pclass = C1, C2 : C1 = 1 and C2 = −1). Each feature vector is represented
as (Ti = Cm, Ti,j i∈|TK |m∈|CM |

). The prior class probability P(Cm) is computed in Equation (19).
This predicts how often a class occurs over (T) in relation to its trait vector (Ti). The conditional
probability is shown in Equation (20). Equation (20) represents the relevance between the predicted
class (Cm) and its corresponding trait (Ti,j) as indicated by P(Ti,j|Cm).

P(Ti|Cm) = P(Cm) Π
e=1−>p

(Ti,j|Cm), (18)

Cm = Ci− > Pms(Ti, Cm). (19)

3.17.3. Experiments

The system initially trains itself by building the classifier and the relationships between attributes
and their relation to specific families of ransomware. The system will also identify samples which
descend from multiple families and what relationships constitute this. The experiments are carried out
in three phases; phase one compares HML’s accuracy and detection rates to other popular machine
learning algorithms. The second phase tests HML against signature-based ransomware detection
solutions. The third phase of experiments tests HML against machine learning-based solutions like
EldeRan and RANDS(). HML consistently outperformed each of the comparative machine learning
algorithms and also outperformed the machine learning solutions it was compared to which were
RANDS and EldeRan. The accuracy of the HML system was tested in a realistic environment over
30 days and maintained an accuracy rate of above 97.4% and a mistake rate between 2.2 and 2.6%.

3.17.4. Discussion

This research goes far to ensure the system produced is resilient to varied ransomware. The system
uses a hybridised version of Decision Trees and Naive Bayes to compensate for each algorithms
shortcomings. The extent of testing carried out in this research is impressive, with the system tested
out in a realistic scenario for 30 days to monitor accuracy and mistake rates over 30 days. The other
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unique aspect of this study is the system’s ability to identify which ransomware the samples are
related to. Being able to identify the ancestry of the sample will make zero-day samples easier to
identify. Unless a sample is truly unique and a new family which does not derive from any previous
ransomware families, it is highly likely to be detected by the HML system. A problem may arise if the
zero-day samples it encounters are not descendants of any previous ransomware family. This system
also attempts to classify as fast as possible, and its results are impressive with HML classifying faster
than every system it is compared to. The time it takes to classify is crucial as ransomware can do
damage if not detected quickly. In terms of negatives, this research study has few, besides the questions
over whether the system will be as effective on strains which have no known ancestors. The decision
to include 35,000 ransomware samples is a step towards the system being trained comprehensively;
however, the decision to only include 500 benign software is hard to justify. In a realistic setting,
the system would come across far more benign software than ransomware. Therefore it would
be logical to train using a large number of diverse benign software, as well as a large number of
ransomware samples. There could be more focus on training the system with benign software which
behaves similarly to ransomware.

In terms of IoT integration, this system would need to be shifted to work with only network
features. This system could be considered computationally expensive to work with lightweight IoT
devices due to using two machine learning algorithms working as one. The system also relies on the
combination of many types of features, and the effectiveness with a reduced feature set would be
unknown. In the event, this system was deployed on IoT the ancestral aspect of the system would
be limited for a considerable amount of time due to the scarcity of IoT ransomware to descend from.
A system like this would have to have reduced complexity and would need more ransomware to be
released, which targets IoT devices specifically in order to be effective in IoT.

4. Deep Learning Detection Studies

4.1. Deep Neural Networks

In this study, the authors use a network-based approach and use a combination of network
monitoring with a deep neural network to detect ransomware. The common approach to detection
today used by AV is matching binary patterns and monitoring API calls [26]. These are recognised
as signature-based approaches and would not be effective in detecting novel types of malware.
If ransomware changes their behaviour in terms of API calls or begins to change its binaries, then they
would no longer be seen by the AV until a signature update is released [26]. The usage of API calls
and binary patterns relies on detection after execution starts and cannot detect immediately before
infection starts [26].

Using the analysis of network behaviour in ransomware, a deep neural network is constructed,
which is trained on critical payloads selected from packets which were extracted from real network
traffic [26]. This method is designed to detect the infection as soon as it starts and is designed to be
implemented on SDN switch, giving it potential to be easily integrated into real network architectures.
In terms of the network, ransomware can enter a system in many ways: malicious emails, drive-by
downloads, and compromised websites, to name a few. Through the analysis of ransomware network
behaviour, it is evident, upon infection, ransomware will request a DNS query to a DNS server for
the C&C information for a configuration file. The ransomware will then contact the C&C servers [26],
which will give the ransomware further instructions on how to behave. Through this analysis,
it is decided that the DNS query and HTTP requests are what is most important for the analysis
of ransomware network traffic. Domains for C&C servers can vary; HTTP requests become very
important [26].
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4.1.1. Feature Mapping

Deep learning models use a method of feature engineering which utilises carefully crafted feature
detectors [41]. The neural network is capable of starting with raw data and developing features as
it goes along. If one is using deep learning, the use of separate feature engineering is considered
obsolete [41].

4.1.2. DNP

Deep Neural networks were chosen for the task of classification because of their ability to build a
better feature set than a shallow model. The dropout method was introduced to reduce over-fitting,
dropout will randomly ignore neurons during the training process, ignoring their contribution on the
forward pass with weight updates being introduced during the backward pass. Dropout is represented
in Equation (21).

Oh
i = f (yh

i ) = f (∑
l<h

∑
j

whl
ij bl

jO
l
j). (20)

where Oh, i is the output of unit i in layer h, y, i is the output vector of the ith layer, w are the weights,
and f serves as the activation function. blj is the Bernoulli random vector, where P(blj = 1) = pl, j,
the dropped neuron, will depend on the Bernoulli random vector.

The use of root mean square propagation (RMSprop) is used to adjust the learning rate, so the step
size stays on the same scale as the gradient where λ is the forgotten coefficient, Q(w)2 is the gradient
at w. The use of the root square propagation is similar to the use of weight decay; it keeps the moving
average of the gradient; this is presented in Equations (22) and (23).

V(w, t) = γV(w, t− 1) + (1− λ)OQ(w)2, (21)

w+ = w = − n√
(w, t)

OQ(w)2. (22)

4.1.3. Experiments

The dataset constructed comprises of 23 different types of ransomware, the most prominent being
CryptoWall, TeslaCrypt, CryptXXX, Locky, CrypMIC, and Cerber [26]. The majority of ransomware
traffic was obtained on traffic analysis websites, along with traffic obtained from user’s sandbox
environment. The normal traffic was captured by capturing network data of users carrying out normal
tasks. Initial extraction yielded over 600,000 malware packets; however, under the assumption that the
essential packets were DNS and HTTP requests, this is reduced to 0.3% of the initial number down to
2631 packets. The training set used 80 samples of ransomware found between February 2015 and May
2016, whereas the test set used 77 samples of ransomware which were found post-June 2016. All inputs
are normalised to make inputs set to equal vector; this is achieved by using Maximum Transmission
Unit. The noise which is caused by samples differing in length is resolved with Central-Slide shifting
all inputs to the middle and padding them with zeros. The strongest results obtained from the deep
learning neural network was the accuracy of 93.92%, with a false positive rate of 0.12%.

4.1.4. Discussion

The deep learning approach is becoming more and more popular for malware detection,
and research into it is also increasing for it in ransomware. This approach has a lot of positive aspects to
it while also having some limitations which need to be monitored. Firstly, the deep learning approach
used for this model uses ReLU(Rectified Linear Units), which increases the speed of the training rate,
slow training rates being one of the main hindrances of deep learning models. The use of network
features allows detection before encryption can begin or even earlier in the process, which gives this
model an edge over those that do not have any network monitoring capabilities. The approach taken by
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the authors also isolates types of network communications to look for as opposed to analysing massive
amounts of packets. The usage of deep learning also removes the need for the author to engineer their
features. While this model does have a lot of positive aspects to it, it does have limitations. Firstly,
over 70 thousand inputs are making the feature engineering process undertaken by the algorithm
longer; this can easily be streamlined instead of feeding raw sandbox data into the neural network.
The amount of ransomware samples used is very low in comparison to other studies. Deep learning
requires large amounts of data. The relatively small amount of data used in this dataset may not be
enough to create a strong model. The future of this system is to move execution from a static state to a
dynamic execution on an SDN switch which is set in a real network environment [26]. The systems
use of network features alone could be further enhanced by the addition of behavioural and static data
to take advantage of the power of Deep Neural Networks.

In terms of IoT, this research can easily be ported over as it used network features, in this case,
HTTP requests which are network protocols. Through experimentation in IoT networks, it is feasible
to identify which protocols are most prominent when it comes to ransomware attacks. The number
of times certain protocols appear or the pattern and order in which protocols appear can be key in
detecting ransomware attacks or ransomware being spread through the network. Like previous studies,
we looked at the patterns in network traffic that are useable in IoT ransomware detection. The research
in this study would have to adapt because of the use of Sandboxes using VMs and not a simulation of
an IoT network; however, the concept is a viable one.

4.2. Long Short Term Memory (LSTM)

This deep learning LSTM designed for ransomware detection uses the analysis of an API call
sequence to create a metric to identify the behaviour of a process [27]. Having analysed multiple
ransomware families, the fact that they share common behaviours is identified. Ransomware nearly
always makes a short term connection to a command and control centre, delete shadow volume
copies of files, and cause a large system overhead by conducting a massive amount of file operations.
This deep learning approach creates a model which can identify these properties and classifies a sample
as either ransomware or benign [27]. The data for analysis is obtained in Cuckoo Sandbox Modified,
a modified version of the cuckoo sandbox which is designed to circumnavigate anti-sandbox measures.

4.2.1. Feature Mapping

The exact features used in this model are not specified, from the specification on columns used in
the dataset, being 73,989 would suggest that there are this amount of characteristics which contribute
to the final feature set used. Deep learning models use a method of feature engineering which utilises
carefully crafted feature detectors [41]. While using feature detectors, the neural network is capable
of starting with raw data and developing features as it goes along. Despite this, the feeding of
73,989 columns of raw data may be excessive and produce a massive overhead when the LSTM is
engineering features from a massive amount of raw data. The research does not specify the exact
amount of features and their type, which is a shortcoming.

4.2.2. LSTMs

LSTM neural networks are a form of Recurrent Neural Network (RNN) which is capable of
learning long term dependencies [27]. They utilise a memory unit called a cell to retain information.
The LSTM has four neural network layers interacting with each other deciding whether to add or
remove information to a cell state. The issue with a regular RNN is that it does not look back far in
terms of time steps. LSTMS will include functions which hold on to certain predictions from multiple
time steps ago for them to continually contribute to predictions the neural network makes until those
predictions are deemed to be forgotten. In this sense, an LSTM works much like the human brain in
the way it learns through experience.
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Initially, an LSTM will determine how much information from the previous layer a cell must
retain. Information retention is decided by a sigmoid layer which acts as a forgetting mechanism.
The sigmoid activation function ∅ takes xt and ht−1 and returns a value between 0 and 1 as output,
which is multiplied by the value of ct−1. An output of 1 for the sigmoid will completely retain the
previous value, and a value 0 will remove it [27].

ft = σ(W f [ht−1, xt] + b f ). (23)

The next step is updating the memory cell, the sigmoid layer which decides on which values to
update, and the tanh layer, a hyperbolic tangent function which returns values between 1 and −1.
The tanh layer creates ct, which is the vector of new candidate values.

it = σ(Wi[ht−1, xt] + bi), (24)

Ct = tanh(WC · [ht−1, xt] + bC). (25)

The old state ct−1 is multiplied with ft, which forgets the values we decided in the previous
step. The results is then added to it · ct. The resulting candidate value will then be stored in the cell.
This stage gathers new information in the cell.

The output ht is a filtered version of the values in the cell state. The sigmoid layer will decide
which part of the cell is going to be output. The value of the cell is passed to the tanh function,
the output will be multiplied with the output of the sigmoid layer, and the output is then passed to the
next layer in the network [27].

ot = σ(Wo[ht−1, xt] + bo), (26)

ht = ot · tanh(Ct). (27)

4.2.3. Experiments

The dataset contains 157 ransomware executables and benign files which were obtained from
online repositories and default programs obtained from a fresh Windows install. When executed, in
Cuckoo modified, 239 different API calls were identified in different frequency and order. From the
239 API calls, 38 of them are common in all executed samples; these are labelled between 1 and 39.
The difference in API sequence length from executable to executable the API sequence is converted
into an integer and appended with 0s to match the longest sequence length. Each sequence is labelled
and converted to an integer the dataset is split 80/20 with the 20% being for testing purposes. The first
column of the input is the label (benign or ransomware), with the remaining 73,989 columns being
the input sequence [27]. The LSTM model chooses the most accurate model during the training phase
to be put forward for testing. The training layer is built on three layers with 64 nodes. The highest
accuracy training model is used to achieve a test accuracy of 96.67%. The sigmoid function and Adam
optimiser are applied to this network [36].

4.2.4. Discussion

The use of LSTM deep learning networks to detect ransomware is a particularly novel approach
because of how powerful LSTM is. This model is a strong one yielding very good results; however,
it does have limitations. The detection rate for a start is very high, at 96.67%; however, it must be
noted it is not specified whether these results are on zero-day ransomware samples. The authors used
sequences of API calls to train the model to detect ransomware. The sequences can make it possible for
the system to detect ransomware early in its execution based on API calls. This system uses an extended
timeout to compensate for ransomware which delays execution. The feature engineering system used
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by deep learning models greatly reduces the time taken by creators of the model to reduce features
and carry out manual feature engineering. While being a strong model, it does have its limitations.
Firstly, the dataset uses common API between all samples. The system relies on ransomware following
particular patterns of API usage which could be rendered obsolete in future especially if polymorphic
ransomware arises which can alter its behaviour dynamically. Finally, this model makes the mistake
of having a very limited dataset, using only 157 ransomware samples and benign files from a fresh
Windows installation. Basic Windows programs cannot produce the diverse behaviour required to
build a strong deep learning model. In the future, this system should be trained on more ransomware
samples and a more diverse set of benign programs. The benign programs only being taken from a
fresh Windows installation limits the dataset and gives a false representation of how high the detection
rate is. Little to no programs in a fresh Windows install will behave in any way close to how a
ransomware executable will behave. The use of only 38 types of API calls could be expanded, or a new
metric could be proposed to identify ransomware because there is no solid rule that ransomware will
always rely on the same set of API calls to execute their payloads.

In terms of IoT usage, these concepts would struggle because of the focus on API calls used
by the ransomware samples in Windows systems. The behavioural characteristics of ransomware
in IoT would differ significantly with the feature-set having to be completely redesigned to fit IoT
devices. The main issue is that the system’s approach in its current form is flawed in that it only looks
at 38 common API calls which may limit its ability to deal with new emerging ransomware threats.
New samples only have to use a few different API calls to that of the defined 38 API calls to cause the
classifier difficulties. In addition, relying on behavioural characteristics alone can cause issues as this
implies the system waits until infection to act. If it monitors the network traffic or flows of traffic, it is
possible to be more preventive than reactive.

4.3. Shallow and Deep Networks

This study uses deep and shallow networks to detect and classify ransomware. The models
classify ransomware and identify which family of ransomware they belong to. All experiments are run
up to 500 epochs with a learning rate in the range [0.01–0.5] [28]. The model claims 100% accuracy
when classifying ransomware from benign and a 98% accuracy rate when classifying ransomware into
their respective families. The dataset is comprised of API calls from Cuckoo Sandbox.

4.3.1. Feature Mapping

The exact selection of the features is not specified. The alternative approaches used, such as SVM,
would require some feature selection process; however, this is not specified either. The features used
considered around 131 API calls, and the frequency of them from the Cuckoo Sandbox logs are selected
and considered features [28]. The feature set does not appear to use any feature reduction methods to
reduce the feature count.

4.3.2. ANN

Artificial Neural Networks represent a directed graph in which a set of artificial neuron generally
called units in a mathematical model connected by edges [28]. The most common variants of ANNs
are RNNs (Recurrent Neural Networks) and FFNs (Feed-Forward Networks). The algorithm used
for this model, Multi-Layer Perceptron (MLP) is a subset of FFN. This network will contain three or
more layers [28]. The minimal three layers will contain an input layer, at least one hidden layer and an
output layer [28]. The number of hidden layers will depend on the complexity of the data. All these
units will form an acyclic graph with signals moving forward from layer to layer.

4.3.3. Experiments

The models used are trained using backpropagation with non-linear activation function on
TensorFlow [42]. The gradient descent calculations are accelerated by running TensorFlow in a single
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NVidia GK110BGL Tesla k40 [43]; this allows increased training speed [44]. The dataset contains seven
different ransomware families comprising of Cerber, CryptoLocker, CryptoWall, Maktub, Sage, and
TorrentLocker. The 131 API calls used are extracted from the Cuckoo Sandbox logs. The training
data will be ransomware samples found from January 2015 to March 2016. Testing data uses samples
from April 2016 to May 2016. A training rate of 0.1 is used with three network topologies: MLP 1
layer with 1000 units, MLP 2 layer with 1000 and 500 units, and MLP 3 layer with 1000, 500, and
250 units. All MLP network topologies have used ReLU activation functions which increases training
rate. Dropout is used to prevent overfitting [43]; using this approach randomly removes units during
training in the forward pass. The MLP with three hidden layers performs the best in binary and
multi-class classification. The MLP has a 100% accuracy rate when classifying files as either benign or
ransomware. It has a 98% accuracy rate when classifying ransomware into their respective families.

4.3.4. Discussion

This model boasts very good results and has many strengths, while also having some weaknesses.
The main strength of this approach is that the MLP model with three hidden layers manages to achieve
a 100% detection rate on the test data when it came to classifying between ransomware and benign
files. The model allows the classification of files into their respective ransomware families. However,
it is not mentioned specifically how many ransomware samples or benign files are used, making it
difficult to judge how strong the model is. Multi-layer perceptrons (MLP) as an approach is strong
when it comes to classifying problems with a large number of parameters, such as this one. In terms of
weaknesses, the simplicity of MLP in comparison with other more complex deep learning approaches
may undo it when it comes to dealing with next-generation ransomware. The reliance on just API calls
and no kind or network or static features could be an area in which this approach misses out on.

This approach has similar issues as the other deep learning approaches that use Windows API
calls as the main feature set. In terms of samples, the issue with deep learning approaches is that there
is a significant lack of IoT ransomware which can be used to train a strong model. The scarcity of
IoT ransomware means the researchers would have to either spend a long time waiting for malware
creators to create more samples of IoT ransomware which will attack different types of IoT devices
or researchers will have to create these samples themselves. Because of the lack of IoT ransomware
available, deep learning and neural network approaches may not be the ideal approach for now.

5. Experimental Observations & Open Issues

The main lessons learned from the reviewed literature are:

• Effective ML and DL: Machine learning models can be effectively trained to detect ransomware,
albeit with some issues which can be addressed.

• Effective Feature Types: The research reviewed points towards the idea that the use of behavioural,
network, and static features can all prove effective, despite none of the research papers combining
the use of all three types of features.

• Evolution: There is a lack of emphasis on the evolution of ransomware and how the models
created would become obsolete over time.

Overall, the lessons learned are that machine learning algorithms can be trained to detect
ransomware without a huge amount of tuning; however, to achieve longevity and adaptability
to new threats, it would require research and modification of how the algorithms work. Table 3
shows the detection statistics for all of the studies we reviewed. Table 4 shows how the key statistics
are composed.
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Table 3. Current ransomware detection studies with learning algorithms detection rates.

Research Studies Detection Rate Recall FPR FNR Precision F1 Score

EldeRan [10]: 2016 96.34% 96.33% 0.16 % 3.66% 0.9983 0.9805

RansomWall [11]: 2018 98.25% 97.28% 0.056% 2.75% 0.9994 0.9884

RansHunt [12]: 2017 97.1% 97.04% 2.1% 2.9% 0.9788 0.9749

Deep-Learning [26]: 2016 93.92% 88.76% 38% 7.08% 0.7119 0.8099

Long Short Term Memory (LSTM) [27]: 2017 96.67% N/A N/A 3.33% N/A N/A

Behavioural-Based [13]: 2018 78% Ransomware family classification rate. N/A N/A N/A N/A N/A

Support-Vector Machines [14]: 2018 97.18% 97.13% 1.64% 2.82% 0.9834 0.9772

SDN [15]: 2018 87% 85.14% 12.5% 2.9% 0.8744 0.872

NetConverse [16]: 2018 97.1% 97.05% 1.6% 2.9% 0.9838 0.9774

Shallow and Deep Networks [28]: 2017 100% 98% Ransomware family classification rate. 98.01% 1% 2% 0.99 0.9950

Bayesian Networks [17]: 2019 99.83% 97.1 % 2.09% 0.17% 0.979 0.971

Analysis Framework [18]: 2018 N/A N/A N/A N/A 0.9062 N/A

Feature Selection-Based Detection [19]: 2018 97.95% N/A N/A 2.05% N/A N/A

Machine Learning-Based File Entropy Analysis [20]: 2019 100% N/A N/A 0% N/A N/A

Digital DNA-Sequencing [21]: 2020 87.9% 87.9% 10% 12.1% 0.897 0.888

Resilient ML [22]: 2019 98.90% 99.89% 3% 1.1% 0.995 0.979

API-Sequence-Based Detection [23]: 2019 99.53% 99.35% N/A 0.47% 0.994 0.997

Two-Stage Detection [24]: 2020 98.8% 96.65% 6.93% 1.2% N/A 0.974

Multi-Tier Streaming [25]: 2020 N/A N/A N/A N/A N/A N/A
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Table 4. Formula composition.

Metric Calculation Value

Detection Rate TP/(TP+FN) Correct classification of Ransomware.
False Positive Rate (FPR) FP/(FP+TN) Benign software classed as Ransomware.

False Negative Rate (FNR) 100-Detection Rate Ransomware classed as benign.

Open Issues

After reviewing prominent papers which use machine learning and deep learning approaches
for ransomware detection, there are open issues which will need to be addressed in future research.
The biggest open issue is lack of acknowledgement of concept drift that has occurred in ransomware
over the last 4 to 5 years. The lack of concept drift incorporation in testing does create a significant
gap in the domain because of the zero-day testing carried out by some of the papers. They do not
explicitly take into account the testing of ransomware from a future period, only testing on zero-day
threats from a similar period. Testing on zero-day threats does not appear a priority, as the majority of
the studies we reviewed do not explicitly simulate zero-day performance. The most consistent issues
are the limitations in the datasets use and the fact they do not take into account the concept shift in
ransomware across the years. The ransomware samples used could be further diversified because of
the vast amount of ransomware which exists on the internet. We also found that there is a considerable
amount of research put into the mathematical theory behind the machine learning algorithms that
are used, which we view as appropriate and necessary. However, there is a lack of research into the
execution of malware and how it interacts with a system. We find background research on ransomware
in all of the studies we review, but not all of them have had an in-depth look into the different aspects of
ransomware for which machine learning can be used to detect. The feature-sets used in future studies
need to have as much work put into them as the mathematical theory behind the detection algorithms.

6. New Directions/Ransomware Evolution

In terms of the directions ransomware detection is heading, there is compelling evidence that
machine learning and deep learning will play a pivotal role in the future of ransomware detection,
based on the research we reviewed. Judging from the research studies surveyed, the accuracy and
detection rates provided by these approaches are very difficult to dispute. How machine learning
approaches are used to detect ransomware will need to adapt as ransomware evolves. Machine learning
approaches will have to be trained to learn and anticipate new ransomware trends which will appear
in the future. The evolution of ransomware may attempt to avoid or trick machine learning techniques
with adversarial learning, like in [22]. Ransomware which will display polymorphic behaviour and
hybrid ransomware. It is essential that machine learning and deep learning models be fine-tuned
and modified to take into account polymorphic and hybrid ransomware strains. Deep learning may
become more prevalent for next-generation ransomware which can be polymorphic or hybrid strains;
this is because of how efficient they are with determining relationships that exist among features.
As ransomware evolves patterns of behaviour will diversify, and deep learning may be required to
spot these highly complex behavioural patterns. Hasan et al. carry out the exercise of predicting
the future of ransomware, the RansHunt system [12] is trained on ransomware and worm data to
anticipate “ransom worm”, which is a ransomware and worm hybrid, which the authors predict to
be a future strain of ransomware. Researchers being able to test systems on new threats can be very
helpful when hardening detection systems. The research provided in Reference [16] also acknowledges
the use of techniques to avoid ML-detection and proposes approaches and a feature set which attempts
to remedy this. One of the most significant limitations of the current research is probably the coverage
of the datasets used. Currently, the data used is limited in terms of the depth of the number of
ransomware and benign samples used. Therefore, it is hard to predict how viable current solutions are.
Only two of the studies reviewed tests explicitly against zero-day attacks, which is a huge oversight.
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Testing on known samples within a very limited dataset can very easily lead to over-fitting and,
therefore, deceptive results. None of the approaches reviewed takes into consideration the use of
hardware data to detect ransomware with machine learning. Ransomware will affect on the computing
device, not only in terms of behavioural data but in terms of hardware and network behaviour.

It would be useful to use network features, static and behavioural data to have a comprehensive
method of detection rather than rely on just static and behavioural or just network features alone.
It would be advisable to have systems with multiple Machine Learning or Deep learning components,
each handling one aspect of the detection process. For example, one algorithm would handle
behavioural data, another would handle hardware, and a third algorithm would handle the network
data. The use of multiple algorithms is present in [24,25] where the systems use a Markov Chain and
Decision tree, and a Naïve Bayes and Decision Tree hybrid, respectively. The most suitable machine
learning or deep learning approaches would have to be selected and aggregated to take decisions from
all three components and then decided whether a sample is a ransomware or not. The RansomWall
system [11] takes an approach which attempts to be comprehensive as it uses multiple layers; however,
the machine learning component aggregates all data as opposed to being assigned to individual aspects
of the system.

A gap in the majority of these research techniques is because detection seems to depend on the
execution of the ransomware, with the features taken from the sandboxes all during full execution.
Unless the samples are executed on sandboxes before installation or execution, these methods would
still lead to the infliction of some damage to the system when relying on behavioural patterns,
such as read/write frequencies and file access patterns. The execution within sandboxes could
lead to performance overhead and increases the time required to execute the files. The majority
of the studies we reviewed do not address early detection directly, and the studies which do not
provide why their chosen time-period of detection is optimal for ransomware. It is useful for systems
to detect ransomware before they encrypt files; therefore, researchers need to state how long their
test and training samples took on average, to start encrypting files. The time-sensitive aspect for
ransomware needs to be looked at in-depth to know how soon a sample needs to be stopped to
preserve files. The EldeRan system [10], for example, addresses early detection and states it monitors
the first 30 s of execution; however, this time frame needs to be justified. Early ransomware detection is
relative; early detection can be defined as identifying an infected machine and preventing the infection
from spreading across the network or can be defined as identifying a ransomware executable in the
earliest stages of its execution before encryption. Early Detection solutions, like Reference [10,16,21,39],
are critical in ransomware detection and will be critical in ransomware detection going forward.
The early detection approach is important because of the damage ransomware can do to a system
and businesses. For early detection systems, various approaches, like identifying behavioural traits
the malware exhibits during initial execution before encryption or static analysis, can be applied.
Studies we reviewed do take into account binary features, network features, and behavioural features.
A combination of these three features can be used to identify traits of ransomware before encryption of
files. Static features alone will not be enough for early detection due to the increase of file-less attacks;
however, ransomware execution methodology allows early detection as it carries out tasks before
encryption, such as calling out to C&C servers and receiving encryption keys. The steps before infection
will require specific network behaviour patterns and the invocation of specific API calls, which makes
early detection a strong possibility, given a classifier knows to identify this behaviour. It must be
acknowledged that intelligent ransomware strains will be more difficult to detect as they will aim to
obfuscate samples and mask malicious behaviour; however, despite this, ransomware core behaviour
must be retained; otherwise, it cannot fulfil its purpose. Ransomware will still attempt to call to a C&C
server for encryption keys and will require iteration of folders and files to encrypt files. Theoretically,
an AI-based ransomware strain will attempt to fulfil the core ransomware functionality in the most
covert and disguised way possible. AI-based malware cannot change completely beyond the point that
its core behaviour is irrelevant to its goals; therefore, machine learning-based detection systems need
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to be able to see through obfuscation and disguises generated by AI-based malware. The possibility
of AI-based malware does not detract from the importance of machine learning detection systems,
as they are equipped to identify the signs of disguised malicious behaviour and obfuscated samples.
Moreover, there is a high possibility that ransomware could begin to use adversarial machine learning
or deep learning techniques. With the advancements and integration of AI, machine learning, and deep
learning into mainstream technology and life itself, it is only a matter of time until malware developers
begin to create more and more intelligent strains. A solution to adversarial ransomware is addressed in
Reference [22], in which a GAN is used to generate potential samples to trick a ransomware classifier.
Using trained samples generated by a GAN, the system in Reference [22] proves effective, but this
is not to say this area of research cannot be expanded further. With the increased use of AI-based
techniques in the detection of malware and ransomware, in particular, the inevitable step of malware
creators integrating machine learning techniques into ransomware draws closer; this stems from the
need for malware to become more intelligent to keep pace with the intelligence of detection systems
ever increasing. The need to research and analyse the behaviour of next-generation ransomware will
increase. It will be necessary to train models to take into account adversarial learning and intelligent
AI-based malware, especially training models, to spot the subtle differences between malign software
and ransomware data which is modified to look benign. The creation of intelligent machine learning
or deep learning-based ransomware is still theoretical.

In addition to intelligent ransomware strains, the introduction of ransomware in IoT is almost
a certainty. The expansion of IoT into critical infrastructure will pose the biggest vulnerability with
attackers targetting critical systems, like transport, airports, smart grids, and entire smart cities,
in which attacking IoT devices could cripple economies. Mass IoT integration means a high reward for
attackers and more incentive for victims to pay the ransom. Locker type ransomware could be used
to maximum effect when targetting critical infrastructure. This steps away from the more popular
crypto-ransomware; locker ransomware will prevent access until a ransom is paid as opposed to
encryption of files. In the event of infection of critical infrastructures, such as power plants, airports,
hospitals, or entire smart grids, victims may be inclined to pay. IoT is becoming more integrated
into the automotive industry with predictions of up to 14 million semi- or fully autonomous vehicles
on the roads in the U.S. by the year 2025 [45]. This IoT integration is not only limited to personal
transport, as the New York Metropolitan Transportation Authority is planning full integration of
IoT into public transport through built-in WiFi, security cameras, and charging. IoT connectivity
will allow manufacturers to release software updates, with companies, like BMW, leading the way
in this technological revolution in the automotive industry. Alphabet’s Waymo and Apple are also
investing heavily in the development of autonomous vehicles, and Waymo is expected to be worth
$105 billion and hold an 18% stake in the AV market by 2030 [45]. This IoT connectivity in vehicles
will create vulnerabilities and opportunities for attackers to exploit these vulnerabilities. If a car relies
on remote updates, there is no reason an attacker cannot use this to upload ransomware onto a car’s
computer system. If the ECU (Electronic Control Unit) is encrypted or locked, the car’s drivetrain will
fail to function and render the vehicle useless. This approach is not very different from traditional
Petya ransomware corrupting a Windows system MBR (Master Boot Record) to prevent it booting
normally. In a scenario where an autonomous or IoT integrated car’s ECU is disabled by ransomware,
the car will be disabled until the ECU is allowed to function as normal. If an attack scenario involving
an autonomous car happens in a deserted location, where the victim will struggle to get assistance,
the victim will be inclined to pay immediately [46]. In the event a victim can get help, they will still be
left with a car which has an encrypted or locked ECU. An encrypted ECU will require a replacement,
and, unless the manufacturer can decrypt the ECU data or replace under warranty, the victim will be
inclined to pay, as long as the cost of the ransom is less than that of the ECU replacement. If this type
of attack was carried out on public transport on a train, an attacker could cause severe disruption on
train lines by encrypting or locking a train’s control unit. The scenarios described in [46] are possible
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as systems become more integrated with IoT, with the public and personal transport scenarios being
on the milder end of the spectrum.

7. Our Experiments and Results

In the interest of research, we ran our experiments on a modified version of the dataset used by
the EldeRan system [10]. The dataset used was available in a raw format, with the inclusion of all
the behavioural data from Cuckoo sandbox executions of ransomware samples found from the years
2013 to 2015. This dataset alone was used without the use of any other datasets from papers reviewed
in this survey because none of the authors of the other papers has made their datasets available to
the public. The main motivation for carrying out these experiments is to demonstrate how concept
drift can degrade a machine learning model. By studying concept-drift, we will be able to understand
how far back we need to go and use data for training learning algorithms. The models used for these
experiments were trained on the EldeRan dataset, which includes ransomware from 2013 to 2015.
We then test these models on ransomware from 2016 and 2017 to observe how severely the models
degrade. All experiments were run on WEKA, using the most possible approaches from the studies
we reviewed. All of the behavioural data was taken from Cuckoo sandbox. The original dataset
consisted of 581 ransomware samples and 942 benign samples. The benign samples included variants
of AxCrypt, Bitlocker, 7zip, and VerCrypt. We included genuine encryption software so the classifiers
could be trained to distinguish between genuine encryption software and ransomware.

WEKA follows a five-step process when analysing data.

• Data Entry: WEKA can take dataset inputs in the form of WEKA’s Attribute-Relation File
Format(ARFF) format or Comma-Separated-Value (CSV) files.

• Data Mining: The data mining phase includes pre-processing, classification, clustering, association
rules, and regression [31].

• Data Evaluation: Data Evaluation assesses the models of the results of the algorithm used.
• Visualisation: WEKA is capable of providing visual representations of the data and the results

obtained by the algorithm.
• Storage: Once results are obtained, the data can be stored to be viewed.

In our initial experiments, we used the whole dataset and split or cross-validate it, depending
on the method of detection used. The parameters used for our models are provided in Table 5. In the
second round of experiments, the whole EldeRan dataset is used as a training set with the test set
being a dataset of 100 modern ransomware samples and 300 benign files. The samples in the test set
are from the families WannaCry, Cerber, and Locky. The Locky and Cerber variants are from 2016,
and the WannaCry variant is from 2017. Out of the experiments we carried out, the best detection
rates are achieved by regularised logistic regression and a multi-layer perceptron with 20 hidden
layers. Overall, the results obtained through WEKA with minimal modification to the algorithms
themselves are promising, albeit with slightly high false-positive results. Table 6 illustrates how the
detection, false negative, and false positive rates differ between ransomware samples up to a year
apart. The feature set we use for these experiments is a collection of 318 API calls used by Windows
executables. These 318 API calls were selected as they are the API calls hooked by Cuckoo Sandbox.

As it can be seen in Table 6 and Figure 5, the detection rate of all the algorithms used in the
experiments falls when faced with ransomware variants from a different era to the ones it has been
trained on. In this instance, the test ransomware was mainly from 2016 with the WannaCry Variant from
2017. With the detection rate falling, false negatives sharply increase, and the increase in false negatives
is uniform and across all algorithms. This conclusion leads us to believe that the rapid evolution
of ransomware means that models can be out of date within the space of a year. How ransomware
evolves can also be rapid; therefore, new unseen ransomware may emerge just after training a model.
The algorithms used may lack the longevity required to detect on a long term basis. Of course, this is
without modification, with modification and “future-proofing” machine learning and deep learning
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should indeed be adapted into a long term solution. As demonstrated in Table 6, the multi-layer
perceptron, which achieved an initial detection rate of 96.4% using ten hidden layers, appears to
degrade the least when exposed to ransomware from a different era. In Table 6, it can be seen that
the results display a high level of false-positive. The false positives are because the dataset created
contains a small number of benign samples which display similar behaviour to ransomware; however,
it can be seen in Figure 6 that the level of false-positives increase during concept drift.

Table 5. Independent experiment parameters.

Method Parameters

GTB

• ZMax Value: 3.0
• Random Tree Classifier
• Likelihood Threshold: −1.7976931
• Weight Threshold: 100

Random Forest
• Bag Size Percent: 100
• Max Tree Depth: 0
• Iterations: 100

SVM

• SVM Type: C-SVC
• Eps: 0.001
• Gamma: 0
• Kernel Type: Radial Basis Function: Exp(−gamma · |u− v|2)
• Loss: 0.1
• Nu:0.1

Logistic Regression
• Max iterations: −1
• Ridge: 1.08 × 10−8

J48 Decision Tree

• Confidence Factor: 0.25
• MinNumObj: 2
• Folds: 3
• Use Sub Tree Raising

Deep Neural Network (10 fold Cross Validation)

• Instance Iterator: Default
• Neural Network configuration - Leaky RELU alpha: 0.01
• Optimisation: Stochastic Gradient Descent
• Updater: ADAM
• Beta1MeanDecay: 0.9
• Epsilon: 1.08 × 10−8

• Learning Rate: 0.1
• Weight Initialisation Vector: XAVIER
• Gradient Normalisation threshold: 1.0
• Intermediate evaluation: 5

MLP (10 Hidden Layers)

• Hidden Layers: 10
• Learning Rate: 0.3
• Momentum: 0.2
• Training Time: 500
• Validation Threshold: 20

MLP (20 Hidden Layers)

• Hidden Layers: 20
• Learning Rate: 0.3
• Momentum: 0.2
• Training Time: 500
• Validation Threshold: 20

Bayesian networks
• Estimator: BMAEstimator, alpha : 0.5
• Search Algorithm: K2
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Table 6. Independent experiments.

Detection Detection 13–15 16/17 13–15 16/17 13– 16/
Method Rate on on 16/17 False False False False 15 17

Samples Samples Positive Positive Negative Negative Precision Precision

Regularised Logistic Regression 88.6% 62.3% 13.6% 32.1% 11.4% 37.3% 86.4% 92.8%

Gradient Tree Boosting 94.6% 77.4% 5.5% 19.2% 5.4% 22.6% 95.5% 96.6%

Random Forests 94.0% 79.2% 5.6% 17.6% 6.0% 20.8% 94.5% 96.9%

SVM 33.1% 17.0% 36.1% 70.4% 76.9% 83.0% 74.9% 84.0%

J48 Decision Tree 89.8% 79.2% 8.0% 17.9% 10.2% 20.8% 92.2% 94.6%

Deep Neural Network Using 10 (Fold Cross Validations) 95.1% 84.9% 9.6% 13.6% 4.9% 15.1% 90.6% 93.4%

Multi-Layer Perceptron (10 Hidden Layers) 96.4% 85.0% 8.0% 14.0% 3.6% 15.0% 92.0% 92.2%

Multi-Layer Perceptron (20 Hidden Layers) 95.8% 58.5% 9.0% 35.5% 4.2% 41.5% 91.2% 90.7%

Bayesian Networks 93.4% 83.0% 13.3% 17.4% 6.4% 17.0% 87.1% 88.1%
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Figure 5. Detection rates.

Figure 6. False positive rates.
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Our results provide an insight into what gaps exist in machine learning-based ransomware
detection. We observe that detection studies that focus on zero-day detection have strong results;
however, we observe the sudden evolution of ransomware may prove to challenge ransomware
detection systems. Concept-drift has always existed in systems in which there are machine learning
systems; therefore, evolving malware behavioural patterns were always likely to exist in ransomware.
Our experiments are designed to highlight this, and we suggest that machine learning approaches
detecting ransomware take concept drift into account explicitly in order to adapt to sudden concept
drift. Our experiments demonstrate that machine learning approaches need to take sudden evolution
into account, not that machine learning is obsolete when detecting unseen strains of ransomware.
We believe that machine learning still has excellent potential when detecting unseen variants of
ransomware but will struggle to adapt to concept drift without mechanisms in place to counter
concept drift.

These experimental results show the speed at which ransomware has evolved over the last decade
or so. The complexity of ransomware on Windows OS alone has increased rapidly. The possibility
of ransomware attacks in IoT must be acknowledged. With IoT networks being on a massive scale,
the risk/reward pay-off is high with larger targets like smart cities and smart airports being critical
systems that cannot afford to go offline. Attackers are likely to take advantage of the connectivity of
millions of devices to use advanced propagation techniques to spread through vast networks, causing
massive amounts of damage. There is a need for solutions tailored to networks which will hold
thousands of different types of devices which not only operate on an endpoint level but sit within the
network monitoring the flow and behaviour of traffic to identify potential threats.

8. Concluding Remarks & Future Work

We reviewed research which uses machine learning and deep learning for the detection of
ransomware. In general, the approaches reviewed boast high detection rates in the mid to high 90s.
These models are all trained on a mix of network, behavioural, or static features. While most are
conceptual systems, like RansomWall and the EldeRan system, some have been tested via deployment.
The results achieved give us confidence that machine and deep learning models can be deployed
to detect ransomware. However, their ability to stand the test of time and evolve with the rapid
evolution of ransomware is debatable. We also seen the introduction of GAN and adversarial machine
learning being used to deceive ransomware detection systems, which is an area which will need to be
addressed as urgently as concept drift. We explore the concept of AI being integrated into ransomware
to create intelligent strains and how this will change the detection space. To test the longevity of the
models, we carried out new experiments using the ransomware and benign samples from the EldeRan
dataset and data we gathered ourselves. We simulated the effects of concept drift and observed the
behaviour of machine learning and deep learning classifiers under concept drift. We acknowledge the
rapid evolution of ransomware and introduce this evolution to trained classifiers by testing models on
ransomware from a few months to a year ahead of their time. Our experiments demonstrate possible
flaws in the approaches taken in all the proposed methods. Our experiments show that longevity
should be taken into account when learning algorithms are trained, and that machine learning and
deep learning algorithms will need to take concept drift in ransomware into account, to be considered
a long-term solution. Moreover, we looked into the suitability of these detection techniques when
applied to the IoT sphere. We believe the integration of detection systems in IoT is crucial because of
how expansive IoT is becoming; it is being implemented in critical infrastructure and people’s day
to day lives. The threat of ransomware is becoming very real and more dangerous with billions of
dollars at stake along with the risk of human lives being lost during services and system becoming
non-operational during ransomware attacks. We evaluated scenarios in which IoT can be compromised
by ransomware and how these scenarios can become widespread. Overall, we believe that ransomware
will continue to evolve and become more challenging for intelligent detection systems. The evolution
of ransomware and the advancement of detection evasion mechanisms follow the general pattern of
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malware evolution. It is important to acknowledge that signature-based detection was once the most
commonly used method of detection and how it became obsolete over time. The creators of intelligent
detection systems which use machine-learning and deep-learning systems will have to create ways in
which these systems can stand the test of time and will not be left behind, like heuristic approaches;
studies we evaluated in this paper have touched on adapting to change, but we believe it is an aspect
of detection which is not researched enough. To conclude, this paper has thoroughly summarised the
ransomware detection research space and conducted experiments to propose open issues which must
be addressed in the future.

Future Work

For our future work, we would like to compile IoT ransomware to test the applicability of the
detection methods we explored in this paper. We acknowledge the scarcity of ransomware in IoT
currently; therefore, it is impossible to evaluate the current ransomware detection approaches in an IoT
context. The viewpoint that ransomware will not target IoT devices and instead attack their back end
servers could well come to fruition, so we must take into account aspects of IoT back end architecture
might be vulnerable to ransomware. If the IoT ransomware threat does not emerge immediately, we do
aim to create or simulate IoT ransomware and their operation to analyse and prepare for what we
believe is an eventuality. We aim to analyse the viability of ransomware targetting IoT devices and the
data centres and servers which keep them running, as well as using this analysis to determine which
of the two is the more likely target.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programme Interface
AUC Area Under the Curve
AV Anti Virus
BCS Binary Cuckoo Search
BN Bayesian Network
C&C Command and Control
CF-NCF Class Frequency-Non-Class Frequency
CNN Convolutional Neural Network
CS Cuckoo Search
DLL Dynamic Link Library
DNA Deoxyribonucleic Acid
DNS Domain Name System
DT Decision Trees
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ECU Electronic Control Unit
FFN Feed Forward Network
FIN Finished Flag
FN False Negative
FP False Positive
GAN Generative Adversarial Network
GTB Gradient Tree Boosting
GWO Grey Wolf Optimiser
HML Hybrid Machine Learner
HTTP Hypertext Transfer Protocol
IDA Interactive Disassembler
IoT Internet of Things
IP Internet Protocol
KNN K-Nearest Neighbour
LDA Linear Discriminant Analysis
LMT Logistic Model Tree
LSTM Long Short Term Memory
MBR Master Boot Record
MLP Multilayer Perceptron
MOGWO Multi-Objective Grey Wolf Optimiser
NB Naive Bayes
NBNS NetBIOS Name Service
NIC Network Interface Controller
OS Operating System
PC Personal Computer
PCAP Packet Capture
PFE Programmable Forward Engines
ReLU Rectified Linear Units
RSA Rivest–Shamir–Adleman
RST Reset Flag
SDN Software Defined Network
SVM Support Vector Machine
TCP Transmission Control Protocol
TN True Negative
TP True Positive
WEKA Waikato Environment for Knowledge Analysis
XGB XGBoost
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