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Abstract: Classifying fluctuating operating wireless environments can be crucial for successfully de-
livering authentic and confidential packets and for identifying legitimate signals. This study utilizes
raw in-phase (I) and quadrature-phase (Q) samples, exclusively, to develop a low-order statistical
feature set for wireless signal classification. Edge devices making decentralized decisions from I/Q
sample analysis is beneficial. Implementing appropriate security and transmitting mechanisms,
reducing retransmissions and increasing energy efficiency are examples. Wireless sensor networks
(WSNs) and their Internet of Things (IoT) utilization emphasize the significance of this time series
classification problem. Here, I/Q samples of typical WSN and industrial, scientific and medical
band transmissions are collected in a live operating environment. Analog Pluto software-defined
radios and Raspberry Pi devices are utilized to achieve a low-cost yet high-performance testbed. Fea-
tures are extracted from Matlab-based statistical analysis of the I/Q samples across time, frequency
(fast Fourier transform) and space (probability density function). Noise, ZigBee, continuous wave
jamming, WiFi and Bluetooth signal data are examined. Supervised machine learning approaches,
including support vector machines, Random Forest, XGBoost, k nearest neighbors and a deep neural
network (DNN), evaluate the developed feature set. The optimal approach is determined as an XG-
Boost/SVM classifier. This classifier achieves similar accuracy and generalization results, on unseen
data, to the DNN, but for a fraction of time and computation requirements. Compared to existing
approaches, this study’s principal contribution is the developed low-order feature set that achieves
signal classification without prior network knowledge or channel assumptions and is validated in a
real-world wireless operating environment. The feature set can extend the development of resource-
constrained edge devices as it is widely deployable due to only requiring received I/Q samples and
these features are warranted as IoT devices become widely used in various modern applications.
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1. Introduction

Wireless sensor networks (WSNs) are increasingly being integrated into safety-critical
applications such as, for example, the Internet of Things (IoT), which has evolved WSNs
into essential elements of current technology. These networks are being adopted across a
diverse application space, including missile defense [1], health care (wireless body area net-
works) [2], remote patient monitoring [3], space exploration [4,5], aerospace, surveillance,
industrial sensing, control and monitoring systems [6]. This broad array of machine-to-
machine and machine-to-people deployments creates new challenges relating to security,
spectral coexistence and threat identification, due to radio spectrum variations and diverse
fluctuating operating environments. This is clearly evident in the utilization of WSNs as
the communication link from the “things” to the access point in IoT applications (Figure 1).
The emerging area of the IoT [7] is rapidly changing the wireless landscape, as advances
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are directly affecting (or creating) broadly accepted models such as smart cities/homes [8],
edge/cloud computing and big data analytics‘, amongst others. These critical applica-
tions will, likely, continue to embrace WSNs in the modern cost-centered age, due to
enabling easier design, installation and maintenance, while simultaneously providing new
deployment opportunities.
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Figure 1. An example IoT architecture showing the potential utilization of WSNs and the security
vulnerability produced by the wireless channel.

As the adoption of WSN deployments increases so too does the number of active
edge devices. It is predicted that over 29 billion connected devices are likely by 2023 [9]
(including 14.7 billion machine-to-machine connections) and will increase in the subse-
quent years. Any loss of service (or transmissions) from these edge devices can have
significant consequences for privacy, safety and system performance [10]. These, typically,
computationally and energy constrained edge devices can use information regarding the
fluctuating wireless environment [11] in making decentralized decisions. Wireless trans-
mission performance is heavily linked to the quality of the wireless channel and, so, edge
devices reacting autonomously to channel variations can accelerate the optimal response.
This hypothesis can eradicate obsolete central controller responses due to transmission
latency. It is enhanced if the data used are always available to a functioning receiver, that is
raw received in-phase (I) and quadrature-phase (Q) samples.

In this paper, raw I/Q samples are collected using software-defined radios (SDRs) in
a typical live wireless environment and visualized and analyzed across time, frequency
and space (probability density). The analyzed signals (transmitted from commercial
and SDR sources) are visualized using a Tektronix real-time spectrum analyzer (RTSA)
and associated Digital Phosphor Technology (DPX) [12] in Figure 2. No prior knowledge,
except that signals can have different bandwidths, including relationships between samples
and symbols or channel assumptions, is used. Classification decisions are based entirely
on low-order features extracted from the raw I/Q samples. The contribution and novelty
here are the use of received raw I/Q samples and no channel assumptions to develop a
feature set for industrial, scientific and medical (ISM) band wireless signal classification
using a constant sampling rate based on the WSN protocol, ZigBee [13]. This investigation
explores the hypothesis of making high-level edge device/network decisions based entirely
on the lowest available data, raw I/Q samples, and low-order statistics. The use of the I/Q
samples will be shown to enable the classification of different wireless channels/signals
and to distinguish between two different IEEE802.11 versions/transmitters. Utilizing the
raw I/Q samples is validated by focusing on, typically, fundamental machine learning
algorithms that are verified as being fit for purpose. The developed feature set is verified by
analyzing the achieved accuracy and ability to generalize to unseen data. The algorithms
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used are support vector machines (SVMs), Random Forest [14], k nearest neighbors (k-
NNs), XGBoost and deep neural networks (DNNs).

2.445 2.449 2.453 2.457 2.461 2.465 2.469 2.473 2.477 2.481 2.485
Frequency (GHz)

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

P
ow

er
 (

dB
m

)
Pluto SDR Python Generated

ZigBee @2.450 GHz

WiFi @ 2.462 GHz 
Range = 2.451 to 2.473 GHz

Pluto Generated CW 
Signal @ 2.470 GHz 

Digi XBee Generated 
ZigBee @ 2.475 GHz

Bluetooth Advertising
Channel @ 2.480 GHz

Figure 2. DPX visualization of noise, ZigBee (commercial node), ZigBee (Pluto SDR), CW (Jammer)
and coexistence with Bluetooth and WiFi.

The desired deployment is on embedded edge devices (i.e., typical WSN and IoT
devices), which can use the designed signal classification model to autonomously adapt
procedures in accordance with identified channel information. This operation will enable
enhancements in edge device operation and efficiency. This study concentrates on open
source platforms, with low cost yet high performance, to enable interoperability. Machine
learning is appropriate for this application as the computationally intensive model training
and optimization stage can be performed off-line. Thus, only the optimized model is
required to be uploaded to the edge device. Here, models are fine-tuned using available
test data, including unseen data, and implemented on a Raspberry Pi embedded device.

The remainder of this paper is organized as follows: Section 2 describes related
literature and how this study differentiates itself. The materials and methods as discussed
in terms of the data collection process and associated hardware in Section 3.1 and the
wireless I/Q data feature engineering approach in Section 3.2. The signal classification and
initial implementation results are specified in Section 4. Section 5 concludes this paper and
outlines future work.

2. Related Work

A brief review of the main related topics and what differentiates this study from the
literature are presented in this section. The topics include concentrating on the use of raw
I/Q samples and wireless signal classification methods. It is worth noting that focusing
on using received raw I/Q samples as the basis for decisions is a relatively unexplored
concept. In [15], the authors exploit I/Q component characteristics of a transmitter and
deep learning techniques for uncooperative direction finding using a single uncalibrated
directional receiver. The authors in [16] use the I/Q imbalance information to learn high-
dimensional features for transmitter identification. A generative adversarial network is
then employed to detect rogue transmitters, while convolutional and fully connected deep
neural networks are used to classify different trusted transmitters. In [17], the authors
used I/Q information and recurrent neural networks (RNN) to predict primary user (SDR
transmitters) activity in dynamic spectrum access networks. Similarly, in [18], I/Q data and
RNNs are leveraged to identify specific universal software-defined radio peripherals. While
in [19], deep learning and I/Q samples are used once again for radio device identification
(fingerprinting) by learning unchanging hardware-based characteristics of individual
transmitters. Finally, in [20], Matlab simulations showed how I/Q samples have promise
in detecting interference in WSNs. The majority of the literature using raw I/Q samples
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focuses on transceiver or directional identification, which proves the value of raw I/Q
samples and opens up new areas for investigation.

The majority of approaches use I/Q samples as that is how the data are received.
However, the samples are generally used to gain access to higher levels of data for analysis,
for example, symbols/chips and/or bits. These higher-level samples are then used in trans-
forms (Wavelet, Discrete Evolutionary, etc.) to extract information for modulation scheme
identification. Chip sequence error patterns are utilized in [21] for channel identification
and, as a result, the emitting interference/co-existing signal. Chip analysis is just above the
level of I/Q samples but has implementation drawbacks as it requires devices to buffer
known patterns for classification.

Wireless signal identification is evolving with hardware and software enhancements.
Typically, techniques are used to classify wireless signals based on their modulation
schemes. This crucial technology enables transceivers to efficiently utilize available re-
sources [22], especially in cognitive networks. A maximum likelihood-based approach for
coherent and non-coherent modulation estimations was proposed in [23], where optimal
performance is achieved through the application of mathematical channel models with
end-to-end settings. However, likelihood-based methods are, typically, unsuitable for real-
world deployments due to high computational costs and, typically, poor generalization in
complex environments [22].

Traditional feature-based signal classification consists of data pre-processing, feature
extraction and classification (decision algorithm). Designed approaches focus, generally,
on digital modulation classification and produce robust performance and low complex-
ity [24]. This is achieved by efficiently extracting features from a statistical analysis of
the signals. Various features have been employed in this area, such as cyclic features [25],
wavelet transforms [26], higher-order statistics [27] and cumulants [28–31]. The authors
in [22] employ spectral features and higher-order cumulants as input features to machine
learning-based classifiers. In [32], a Matlab simulation approach is demonstrated, which
uses higher-order cumulants, derived from the received signals, as the input features for
various classifiers. The work in [33] focused on combining features extracted from a spec-
tral correlation analysis and SVMs. These different features are employed across various
machine learning approaches including decision trees [34], SVMs [26], k nearest neighbors
(k-NNs), Back Propagation (BP) neural networks [32] and Naive Bayes. These were typi-
cally chosen for their performance in pattern recognition but their performance typically
generalizes poorly to previously unseen data/scenarios [22]. This study demonstrates
that fundamental algorithms can indeed generalize to unseen data, given a sufficiently
descriptive feature set.

Focusing on deep learning, O’Shea et al. [35] have outlined the compelling possibility
of using deep learning techniques for radio signal identification, based on modulation
schemes, and provide methods for real-world adoption. In [36], a SDR prototype for
spectrum sharing is developed that utilizes a convolutional neural network for real-time
wireless signal modulation classification. This concept is continued in [37], where deep
learning methods are shown to outperform both a maximum–minimum eigenvalue ratio-
based method and a frequency domain entropy-based method. Other successful examples
of deep learning for signal classification based on modulation schemes include [29,38,39].
The majority of these approaches leverage deep learning’s ability to learn the features auto-
matically from the input data. This is a data-driven approach and training such data-driven
deep networks on large volumes of data typically requires appropriate computational
resources and extensive time, both of which are rarely found in deployed communication
systems [40]. The approach in [41] focuses on low-cost sensors and a reduced data-driven
model, while, crucially for this investigation, identifying wireless classification over fre-
quency, time and space dimensions as an active research problem.

The majority of previous work concentrates on identifying radio devices and/or the
modulation scheme being implemented. Typically, statistical features are employed based
on cyclic features, wavelet transforms and/or high order statistics and cumulants. Inves-
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tigations focused on I/Q samples, generally, use I/Q imbalances to distinguish different
transmitters. This study is most comparable to the work in [42] as I/Q samples, RSSI
samples and image-based spectrograms, based on fast Fourier transform (FFT) algorithms,
are all used for signal classification. However, the authors in [42] focus on a different
signal set that consists of LTE, WiFi and DVB-T signals. The study proves the usefulness
of using different samples and analyzes both manual and deep learning-based automatic
feature extraction for deep learning and supervised machine learning approaches. Notably,
the study concluded that low-complexity models need to be developed to reduce the
operational costs of future intelligent devices.

Here, a low-complexity feature-driven approach, that can generalize to unseen data,
for wireless signal classification aimed at edge device operation is produced. It is novel by
the exclusive use of raw I/Q samples and the developed low-order feature set, extracted
entirely from received over-the-air I/Q samples in a typical wireless operating environ-
ment. To the best of the authors’ knowledge, this study applies Hjorth parameters [43]
and FFT dynamics in a novel method. Additionally, no assumptions are made about the
wireless channel and network data are neglected. Data are collected from an active wireless
environment that is typically changeable. The raw I/Q data approach to create a concise
novel feature set based on time, frequency and space dimensions, is the main contribu-
tion. The need for, and importance of, this type of real over-the-air practical research is
discussed in detail as a challenge that needs a solution in [44]. This study uses over-the-air
experimentation to produce a low-complexity model for making high-level decisions based
on low-level data.

3. Materials and Methods
3.1. Experimental Data Collection

Before extracting the features and designing the detection approach, a data strategy
accounting for data quality, quantity and source was established. This is necessary as
classifiers will, generally, not perform adequately if the training set is too small, or if the
data are not representative, is noisy, or is “polluted” with irrelevant features. The strategy,
as shown in Figure 3, was built around an Analog Devices Pluto SDR and Raspberry Pi
design to maximize the data collection process using low-cost hardware. The Pluto SDR was
selected as it is relatively low cost, has Python and Matlab libraries, previous experimental
success [45] and encompassed suitable parameters for operating as a data receiver and
controlled data transmitter. These parameters include a 12-bit analog to digital converter
(ADC) resolution, a 20 MHz maximum attainable bandwidth and frequency and sample
rate ranges of 325 MHz–3.8 GHz and 65.2 ksps–61.44 Msps, respectively. The embedded
Raspberry Pi device uses a USB connection to power, program and control (both directly
and remotely) the Pluto SDR. Python3 can be utilized to develop various signal types for
transmission and the “pyadi-iio” library programs the necessary Pluto parameters, such as
center frequency, gain, sample rate, etc. The developed wireless data collection system is
depicted in Figure 4, where ISM radio frequency (RF) band antennas are utilized. Typically,
the chosen RF antenna is a critical element in the wireless data transmission process. Here,
a ZigBee Siretta stubby antenna, designed for use in the 2.4–2.5 GHz range, was utilized.
This antenna has a 2 dBi gain, vertical polarization, a maximum VSWR of 2.0 and an input
impedance of 50 Ω. All experiments utilize the Raspberry Pi/Pluto SDR approach to access
received I/Q samples at various center frequencies using a 4 MHz sampling rate.

Wireless signals are received from both commercial and SDR sources. The commercial
signals are typical ISM RF band transmissions and include WiFi both with (IEEE802.11ac
and IEEE802.11n) and without internet access (IEEE802.11b and IEEE802.11g), Bluetooth,
where the advertising channels are targeted, and DIGI XBee ZigBee nodes. SDR sources
produce Python3 generated CW and ZigBee signals, that are based on previous Matlab
simulations [20], where the Matlab code has been translated to Python3. In Figure 2,
the Python3-based ZigBee Pluto SDR transmissions are confirmed to be comparable to
commercially transmitted ZigBee signals. This DPX visualization in Figure 2, which is a
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digital signal processing software that rasterizes samples into pixel information, allows
the presence and operating center frequencies of the necessary signals to be confirmed
before commencing a test. The commercial XBee nodes are controlled using the Python3
“digi-xbee” library, powered using a Raspberry Pi and transmit real data by utilizing the
Raspberry Pi SenseHat sensor. This operation was validated in an IoT ZigBee testbed
in [45]. Hence, the Raspberry Pi embedded device operates both the SDRs and XBee nodes
and enables environmental data acquisition using the SenseHat sensor.

SDR 
Receiver

Wireless Channel

DIGI XBee

SDR 
Transmitter

Figure 3. Proposed SDR approach for achieving the desired data strategy for I/Q samples in the ISM
RF band between 2.4 and 2.5 GHz.

Raspberry Pi & Pluto SDR 
Receiver 

Raspberry Pi & Pluto SDR 
Transmitter

ZigBee
Antenna

External 
Storage 

Figure 4. SDR and Raspberry Pi I/Q wireless data collector and signal transmitter for wireless
transmissions in the 2.4–2.5 GHz ISM RF band.

The developed data strategy, which incorporates hardware testbeds and commercial
devices, produces the necessary I/Q data for off-line analysis and feature investigation. I/Q
samples are received, using a 4 MHz sampling rate, in individual data grabs, from which
the required I/Q data are identified and extracted. Data collection occurred in a wireless
operating environment consisting of changeable service requirements for WiFi and Blue-
tooth, including the number of connected devices and service load (large download or
constant music streaming, for example). A summary of the collected data for training and
testing (“unseen”) is provided in Tables 1 and 2, respectively, which specifies the center
frequency(ies), signal type, approximate number of data grabs and source. Approximately
400 test instances were collected for each of the six signal types and designated as an
“unseen” test data set to investigate how the designed classification approach generalizes
to new data. Emphasis was given to the XBee ZigBee signals as these are WSN operating
signals. However, the number of received signals in each data grab is protocol specific,
as data grabs of certain protocols, for example, WiFi, can contain multiple signals for
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analysis. The collected data are fully explored in Section 3.2, while the model development
results and how each model generalizes to unseen data is described in Section 4.

Table 1. Summary of Collected Data—Model Development.

Signal Center Total Data SourceType Frequency (MHz) Grabs

WiFi 2427 536 Commercial

Router 2447, 2462 270 Commercial

Bluetooth 2402, 564 CommercialAdvertising 2480

ZigBee 16 ZigBee 944 Commercial(XBee) Frequencies

ZigBee 16 ZigBee 1120 SDR(SDR) Frequencies

CW 16 ZigBee 1120 SDRFrequencies

Noise 16 ZigBee 492 ChannelFrequencies

Table 2. Summary of Collected Data—Unseen Test Data.

Signal Center Total Data SourceType Frequency (MHz) Grabs

WiFi 2427 144 Commercial

Router 2442 107 Commercial

Bluetooth 2402, 206 CommercialAdvertising 2480

ZigBee Subset-ZigBee 240 Commercial(SDR) Frequencies

CW Subset-ZigBee 240 SDRFrequencies

Noise Subset-ZigBee 210 ChannelFrequencies

Before the data could be analyzed, it needed to be pre-processed. As shown in
Figure 3, the wireless channel is open to any accessible wireless transmitter and spurious
interference. It is difficult to receive only a specific type of signal when collecting a data
grab during a random time period using an unconnected device (SDR). As a result, most
data grabs contained multiple signals of interest along with, potentiality, other “unwanted”
signals. The data grabs required processing to obtain the correct signal samples before the
feature engineering stage. This processing stage was used to reduce the error/noise in the
collected data and to discard clear outliers. Without this data processing stage poor-quality,
unrepresentative, noisy, or polluted (with irrelevant features) measurements could be
employed in the model development process.

The I/Q samples were initially examined in the time domain to visualize the signal
patterns (I/Q samples) of interest and to compare them with expected sequences. An ex-
ample is shown in Figure 5 to illustrate that the signals can be clearly identified compared
to the received noise (or operating wireless channel), as signals have an “on-off” nature.
Then, the Pluto ADC specifications were used to convert received I/Q samples into the
range [−1, 1] from the original Pluto range of [−2048, 2047]. The Pluto SDR uses the
Analog Devices “AD9363” RF chip, which has a 12-bit ADC, where the 12-bit data from the
ADC are stored in the lower 12 bits of the output value and sign-extended to 16 bits. This
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conversion supported the development of features having similar ranges, even when the
ADC is close to saturation, and produces higher performing machine learning classifiers.
The probability density function (PDF), the Tektronix RTSA and the time series plots were
utilized to identify any outliers. This analysis permits the removal of outliers and the
acquisition of I/Q samples for each received signal type. The chosen sample length for
analysis is 1250 I/Q samples and relates to the shortest signal length received, the Bluetooth
Advertising channel. Using this designed experimental data strategy, sufficient wirelessly
received I/Q data were collected. These data enabled a novel low-order feature extrac-
tion investigation, where the feature engineering and developed features are discussed in
Section 3.2.
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Figure 5. Example time series representations of received wireless signals on the I-channel, which
establishes the need for correct sample identification.

3.2. Feature Engineering

The feature engineering in this study initially leveraged previous features extracted
from simulated ZigBee data in [20], which focused on identifying error-free ZigBee sig-
nals from interference injected ZigBee instances. The wired approach developed in [11]
provided additional evidence that a live practical implementation had promise. As per
these previous cases, features are entirely based on received I/Q samples and initially
extracted from the calculated PDF and statistical analysis of the I/Q data. This wirelessly re-
ceived I/Q data analysis and feature extraction was implemented in Matlab, while the final
implementation targets using available Python3 libraries on a suitable embedded platform.

As per Section 3.1, the time series analysis granted access to the required received I/Q
samples and the calculation of associated PDFs. In certain circumstances, it was discovered
that the ADC can become saturated and, so, the PDFs can become less distinctive (Figure 6).
However, it is envisaged that a specific interference detection approach (using different
features) [20] can be used to determine if a jamming signal is present. This topic will
be discussed further in Section 4.3, where an interference detection use-case using this
paper’s features is discussed. Here, wireless devices were non-malicious and, so, the ADC
saturation was typical of this operating environment. Here, specific features are developed
to identify signals, even when saturation occurs. The automatic gain control (AGC) of
the receiver can also affect the produced PDF as two spikes can occur at the limits, since
the initial receiver gain changed to a lower value after initial packet reception. However,
the calculated PDF is extremely useful in identifying the distinct signals or, at the very least,
narrowing the search to a smaller number of possible signals.
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Figure 6. Example PDFs for receiver saturation, emphasizing how PDF become difficult to distinguish
and the need for features not dependent on the PDF.

During this study, it was determined that if transmitted signals use comparable
modulation schemes (Bluetooth and ZigBee can both use phase-shift keying approaches)
or saturate the receiver, further features are required. Thus, the focus diversified to the
frequency domain, specifically, the fast Fourier transform (FFT). By utilizing the FFT, it
was envisaged that the larger bandwidth signals could be identified from signals with a
smaller channel width. For example, ZigBee has a 2 MHz wide channel while Bluetooth
channels are 1 MHz in width. This allows, potentially, for a categorization to be made from
the FFT of the received I/Q samples. This method exploits the information gained from
using the RTSA, and its associated DPX technology (Figure 2), to visualize the spectrum
before grabbing the data. Statistical analysis expanded the feature set, to gain additional
understanding of the received signals. The time series representation produces features
associated with, for example, the number of zero crossings, Hjorth parameters [43], mean
value and variations of available Entropy functions.

Figure 7a–d present the calculated averaged signal PDFs for the received signal types
including noise, WiFi, router (no internet access), Bluetooth Advertising Channels, CW
and ZigBee. Distinct features are identifiable in most cases. The exhibited PDFs are the
averaged PDFs for each signal across all available data and ZigBee center frequencies [6].
The individual data grabs, as defined in Section 3.1, can contain more than one signal
and, so, multiple extractions are permitted, where possible. As the sample length was
chosen to be 1250 I/Q samples, which was associated with the received length of the
Bluetooth signals, other received signals were also divided into 1250 sample segments.
This process meant that the start, middle and end of the packets were accounted for and
that a specific part of a signal packet is not required, only 1250 samples from the channel
are required. Calculating the PDFs using this method provided an opportunity to find
the PDF distribution for each, even in the presence of spurious wireless transmissions.
The PDFs for some of the signals include multiple variations of what the PDF can exhibit,
for example, the Bluetooth PDF displays both the receiver saturation and non-saturation
cases, which is also reflected in the PDFs for the CW and ZigBee signals.

Based on the above feature investigation, a set of 28 features, which could classify the
received I/Q samples, was developed. This initial feature set included some comparable
features and some features were included to evaluate their potential. However, by focusing
on calculating the early results using this set, the informed decision to progress to model
optimization and generalization performance, or remain in the feature engineering stage,
could be made. As presented in Section 4.1, these 28 features provided the necessary classi-
fication results to warrant model development and optimization. This initial feature set
contained features extracted from the PDFs, including the area in specific bins (centre and
sides), averaged and combined area of the two side bin ranges, the zero bin value, the num-
ber of non-zero entries and the maximum value in the PDF. The feature set was expanded
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by extracting statistical features from the time series representation including the Hjorth
parameters of activity, complexity and mobility, the absolute mean value, the absolute
maximum value, root mean square value, the standard deviation and different variations
of entropy functions (four in total). The Hjorth parameters are particularly interesting as
they have been useful in medical signals but have not been applied to communication
signals before. Other time series features included skewness, kurtosis, number of peaks and
number of zero crossings, while additional PDF features included the number of peaks and
a function characterizing the PDF’s uniformity. The FFT provided features that analyzed
the received bandwidth, power and number of peaks over a predefined threshold.
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Figure 7. Calculated PDFs of the wirelessly received I/Q samples for a subset of signals operating in the 2.4 GHz ISM band.
Signals are split into groups for ease of visualization. (a) The calculated PDF for the inactive noise channel in the operating
environment, illustrating the relatively quite channel. (b) The computed PDFs for received WiFi, router without internet
connectivity and Bluetooth advertising signals. (c) The PDFs for the received CW and ZigBee signals for various power
levels. (d) The calculated PDFs of the received legitimate ZigBee-XBee and ZigBee-SDR.

Some features will have more distinctive characteristics and, so, will provide more
useful information. Hence, the initial feature set was investigated to determine the most
important/useful features. Both the theory underlying what each feature was supposed to
highlight and built in Matlab functions for estimating predictor (feature) importance were
used to optimize the feature set. For this purpose, the Random Forest supervised machine
learning approach was adopted as it is envisaged that its associated ensemble concept
will be advantageous in identifying the correct received signal, as is shown in Section 4.
Two Matlab functions were used with the Random Forest specifications applied, namely,
TreeBagger and fitcensemble. Both functions were investigated using different numbers of
trees with the full number of predictors available at each decision point. Hence, the model
was trained using the available data and the out-of-bag predictor importance function
was applied to each trained model. This was repeated for a number of iterations for each
function and the final result combined the averages of the two individual approaches.
The results of this feature importance investigation are supplied in Figure 8, where fourteen
features were chosen, based on the results and the theory underlying the features, since,
to be useful, the model will need to generalize to unseen data. The final feature set
encompassed: (1) number of non-zeros entries of PDF (2) area in centre PDF bins (3) area
in left PDF side (4) PDF centre bin value (5–7) the Hjorth parameters (activity, mobility
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and complexity) (8) the number of zero crossings (9,10) two entropy representations (11)
absolute mean of samples (12) RMS value of samples (13) number of unique FFT thresholds,
and (14) a unique FFT function that provides a differentiation between signals of different
bandwidths. The final set of features is displayed in Table 3, where the initial feature
number corresponds to Figure 8 and the final feature number corresponds to the input
data, X, in the final models as developed in Section 4.

Table 3. PDF, Time and Frequency Domain-Optimized Features Extracted from the Raw Received
I/Q Data.

Domain
Initial Final Feature

Feature Feature Description
Number Number

PDF

1 1 Number of non-zeros entries of PDF
2 2 The area in the center bins ([−0.1:0.1])
3 3 The area in the left hand side bins (<−0.1)

28 14 The center bin (0) value

Time

8 4 Hjorth parameters [43]-Activity (Sample Variance)
10 5 Absolute mean value
12 6 The root-mean square (RMS) value
13 7 Hjorth parameters [43]-Mobility
14 8 Hjorth parameters [43]-Complexity
16 9 Shannon Entropy-using use specific approach
18 10 Matlab’s “approximateEntropy” function
24 12 Number of zero crossings

Frequency
21 11 Number of FFT points over a predefined threshold

27 13 Unique function that uses the FFT points
to estimate signal bandwidth

The final feature set contains elements which have theoretical justifications explaining
why the corresponding importance estimates were high. For example, the PDF features
classify the received signal into a specific pattern which can be used to identify a specific
signal type directly (for example, noise or a group of signals). The FFT-based features
provide access to information regarding the bandwidth of the received signal, which can
be used to help identify tones or signals with larger bandwidths and similar modulations
schemes. Currently, the FFT size is the next power of two above the signal length, meaning
an FFT of length 2048 was applied. This will need further investigation to see if this can be
reduced, given that the motivation is to apply this methodology to low-power edge devices.
Finally, the time series low-order statistical features help to identify the correct samples
that correspond to the distinctive signal, as CW differs from IEEE802.11, for example.
Section 4 verifies that the features are effective by focusing on the generalization error
of the developed machine learning model. The feature count remains at fourteen, as it
is envisaged that the extra features will provide additional options in different wireless
environments and allow the methodology to be applied with a greater probability of
success. This aspect is discussed further in Section 4.3, where the applicability of the
fourteen features to different scenarios is identified.
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Figure 8. The estimated predictor importance measurements using the built in MatLab functions
averaged across multiple iterations, feature depths and number of trees using two distinct functions-
TreeBagger and Fitcensemble.

4. Results and Discussion: Signal Classification

The features developed in Section 3.2 are used to classify received samples into one of
six signals/channel types—noise, WiFi (IEEE 802.11ac/n), a WiFi router without internet
access (IEEE802.11b/g/n), a Bluetooth advertising channel, CW and ZigBee. A feature-
based approach was chosen as it can provide a relatively low-complexity solution with near
optimal performance [24], as discussed in Section 2. As the data from signals operating in
the 2.4 GHz ISM RF band can be clustered relativity close-by, supervised machine learning
techniques that incur relatively fast optimization and training times (compared to deep
learning, see Section 4.2) are chosen. The fundamental approaches chosen include SVMs,
Random Forest, k-NNs, Gaussian Naive Bayes and XGBoost [46], whilst a feature-based
DNN is studied to assist the validation of the selected approach. Since an emphasis is
applied to developing a single multi-class classifier rather than multiple binary classifiers,
the majority of the work focuses on multi-class classification. This study comprises a
classification problem since the required output is categorical (discrete). In each supervised
learning approach, the algorithm is employed to learn the mapping function ( f ) from the
input variable (x) to the output variable (y); that is y = f (X). Each algorithm attempts to
estimate the mapping function ( f ) from the input variables (x) to discrete or categorical
output variables (y).

An important characteristic to identify is the designed machine learning model, which
is based on data collected in a specific wireless environment under a unique set of channel
fluctuations. The proposed machine learning algorithms are adopted to fully validate the
suitability of the developed feature set for classifying wireless ISM band signals. Even
though more modern deep learning approaches are available, the results in this study,
through a comparative approach, indicate that fundamental approaches are still fit for
purpose. They incur relatively fast optimization times, compared to deep learning, have low
complexity and are shown to generalize well to new data. Thus, this investigation’s overall
strategy of data collection, feature extraction and model development can be applied to
various deployed communication environments, where extensive time and computational
resources are rare [40]. As a result, this section provides results identifying the value in
the developed feature set and how well known and extensively studied machine learning
approaches continue to be effective, especially when the desired deployments require
off-line analysis to be as fast as possible.

The collected data were split into training and testing datasets, where test data in-
cluded an unseen testing dataset collected after the original. This allowed an estimate of
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the error rate of new cases, known as the generalization error (or out-of-sample error), to be
found. This generalization error value outlines how the designed model would perform
on instances it never encountered before and, so, is used as the main verification of model
suitability to the problem and potential real-world operation. For this discussion, it is
worth noting that received wireless signals are, typically, unique on reception. The wireless
channel varies over time and signals, generally, interact with other signals and obstacles
differently on each signal transmission. The concept of signals incurring different interac-
tions once transmitted is acceptable and data instances can be perceived as unique. Hence,
testing data are relatively unseen to the training instances used in model development.
However, as one packet of data can be divided into multiple instances and used in either
training and/or testing, some test points may not be unseen. The test data discussed in
Section 3.1 ensure the use of unseen data.

The conventional data split between training and testing data of 80%:20% was ap-
plied, respectively. This data split was chosen as the dataset was of a reasonable size for
experimentation, meaning that tests could be completed in a suitable time-frame for model
development and, so, a validation set was not required. Additionally, an “unseen” test
dataset was collected to investigate how the developed model generalizes to completely
new data that were not used during model training. The data for each signal type were
randomly split in the ratio of 80%:20% by initially creating a column array of unique ran-
dom positive integers in the range of the number of individual signal instances. This array
of random numbers was then split, using the 80:20 ratio, and used to select the training
and testing instances. The sampling bias of the data split procedure was examined by cal-
culating the percentage of each classification type in the datasets, on the scale of 0.0→ 1.0.
The results are provided in Table 4, where it is clear that the percentage split is maintained
across all developed datasets. Approximately 400 instances were added to each test signal
type as unseen data, but there is a slight variation which leads to a small deviation in the
sampling for test data, including the additional unseen data. These datasets are used in the
following Matlab and Python3 investigations to determine whether the extracted features
are suitable for wireless signal classification using machine learning approaches.

Table 4. Sampling Bias Comparison in Developed Datasets.

Signal Model Training Testing Testing + Unseen
Data Data Data Data

Noise 0.0938 0.0938 0.0938 0.1335

WiFi 0.1511 0.1511 0.1511 0.1601

Router 0.1077 0.1077 0.1077 0.1405

Bluetooth 0.1099 0.11 0.1097 0.1372Advertising

CW 0.1805 0.1805 0.1805 0.1669

ZigBee 0.3569 0.3569 0.3571 0.2617

4.1. Initial Matlab Investigation

Analysis initially focuses on Matlab machine learning functions, specifically the
“fitcsvm” and both the “TreeBagger” and “fitcensemble” functions for SVM and Random
Forest models, respectively. Adaptive boosting is also investigated, based on an optimiza-
tion study, and is applied in the “fitcensemble” case. Matlab operated as a continuation
from the feature extraction environment and granted easy access to the I/Q data.

Based on previous work [11] and insights into SVMs, clearly multiple binary classifiers
are required to classify the different signal types. This means potentially six classifiers
using the one-versus-all method or fifteen using the one-versus-one method. An additional
logic decision stage would also be required based on the SVM outputs [47]. Multiple
models would, typically, increase the computational load and be time consuming, leading
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to potential implementation problems on resource-constrained WSN/IoT edge devices.
Hence, a single multi-class classifier was the preferred approach. As a result, one SVM
ZigBee versus all other signals binary classifier was developed for a performance com-
parison. As the RTSA-confirmed SDR-transmitted ZigBee signals sufficiently matched
XBee transmitted signals (see Figure 2), both were classified as ZigBee. This combination
provided a greater ZigBee operating range, as the SDR transmit power was controllable,
whereas the XBee’s had limited control.

The aim of the binary classifier was to identify received samples as either being ZigBee
or some other 2.4→ 2.5 GHz ISM band signal. In essence, this is taking the WSN signal
focused binary classifiers from the one-versus-all classification method. This approach
would be suitable for potential applications of this methodology, which will be discussed
later. The results of this binary classifier development are shown in Table 5, where four
kernels were investigated using the “fitcsvm” function. The results focus on using all
available testing data, including the additional “unseen” data, and datasets containing both
28 and 14 features were applied. Table 5 shows that the reduction in features enhanced
the model’s performance, which reiterates the idea that only the most useful features were
retained during feature optimization. The fourteen features did incur an increase in training
time for specific kernels. However, in this study, prediction time is the more important
as model training time can be carried out off-line. The associated prediction times for the
reduced feature set did not increase and the model error was reduced, resulting in a positive
outcome when applying the reduced feature set. The optimal kernel was chosen based
on the achieved training and prediction times and model error, as per Table 5. The kernel
that produced the highest performance was the third-order polynomial, which provided
an area under the curve of approximately 0.9997 when using the 14 element feature set.
This means the receiver operating characteristic (ROC) curve is near the optimum for a
binary classifier. The confusion matrix and ROC for this kernel are provided in Figure 9a,b
respectively, which shows that the errors were false positives. These results indicate that
the SVM can identify ZigBee signals with a relatively low generalization error and, so,
could be used to identify ZigBee signals in new environments. This is advantageous as
the methodology discussed in this study could then be applied to multiple operating
environments. The SVM performance will be compared to identifying the same ZigBee
signals in the subsequent multi-class approaches.

Table 5. SVM Signal Classification Generalization Error Results: ZigBee versus All.

Kernel
Training Average Test 10 Fold Cross

AUCTime Prediction Data Validation
(ms) Time (ms) Error (%) Error (%)

28 Features and All Test Data

Linear 520 1.85 0.219 0.173 0.9969

Gaussian 388 1.89 0.176 0.025 0.9975

Radial Basis 383 1.85 0.176 0.025 0.9975Function

Polynomial 355 1.83 0.132 0.039 0.9985(3rd Order)

14 Features and All Test Data

Linear 508 1.84 0.329 0.4863 0.9956

Gaussian 390 1.83 0.066 0.00 0.9993

Radial Basis 534 1.84 0.066 0.00 0.9993Function

Polynomial 384 1.81 0.044 0.00 0.9997(3rd Order)
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Figure 9. In-depth results for the selected third-order polynomial kernel for the ZigBee vs. all SVM
classifier. (a) The confusion matrix for testing data. (b) The ROC.

However, the requirement for creating multiple binary classifiers, either using the one-
versus-all or one-versus-one method, and the associated complexity, which rises as more
signal types are added to the dataset, is undesirable. Therefore, a single multi-class model is
targeted, where previous success was established based on wired signals and the Random
Forest algorithm in [11]. Generally, if other signals are discovered and require classification,
additional samples can be included in the dataset and the multi-class model retrained.
A similar process is available for expanding the developed model to include the 2.4 GHz
ISM RF band signals operating in different environments. In comparison, the binary
classification would require additional models to be developed and the associated logic
decision approach to be updated. Hence, a multi-class model is advantages, as developed
models have the potential for expansion to include 2.4 GHz ISM band signals operating in
various operating environments and other signal types.

Initially, the Random Forest [14] classifier was chosen, as it fulfilled the multi-class
classification requirement for a subset of wired signals in [11]. The Matlab “TreeBagger”
and “fitcensemble” functions were utilized to show that performance is not limited to a
specific Matlab approach. Additionally, the fitcensemble approach was used to find an
optimal approach for this methodology. As a result of this optimization investigation,
an adaptive boosting algorithm was examined in the form of the Matlab “AdaboostM2” to
see if performance could be enhanced. AdaBoostM2’ is an adaptive boosting dependent
ensemble algorithm, where the “M2” is a Matlab specification for multi-class operation.
Adaptive Boosting, or “AdaBoost”, is a specific method for a predictor (decision tree) to
correct its predecessor by focusing on the training instances that the predecessor underfitted,
resulting in new predictors concentrating on the hard cases. This is achieved in AdaBoost
by initially training a base classifier (a decision tree, for example) and making predictions on
the training set. The algorithm then increases the relative weight of misclassified training
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instances and trains a second classifier, using the updated weights, and again makes
predictions on the training set, updates the instance weights, and so on. These approaches
are analyzed across a range of feature depths and number of decision trees, focusing
on the generalization error, as available test instances were predominantly comprised of
unseen data.

Each Random Forest investigation was iterated over the number of grown trees and
the feature depth available at the decision points, where the random seed was set to the
same value at the start of each interaction, for reproducibility. The main generalization
error results for the Random Forest approaches are provided in Figure 10, where the total
available testing data was used in each case (“TreeBagger” and “fitcensemble”) for the
original 28 features and the optimized set of 14 features. In each model, the achievable
generalization error was less than 2.5% and, in most cases, the smaller the feature depth
the smaller the error. The training and average analysis (prediction) times were also
investigated. It was determined that both the training and average prediction time increase,
as the number of grown trees and/or feature depth increase. These trends are maintained
across all of the investigated approaches and show that there is a trade-off between reducing
the error and minimizing the prediction and training times. Typically, the training time
increases with the number of features to consider at each decision node when looking for
the best split. These trends are expected for the Random Forest approach. As the training
can be completed off-line on a resource heavy device, the main focus is on the average
prediction time.
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Figure 10. The generalization error results for the developed Random Forest approaches for a range of grown trees and
feature depths (only certain depths marked as most follow a similar trend). (a) “TreeBagger” function and the original set of
28 features, where the error stabilizes between 1 and 2.15% as the number of trees increases. (b) “TreeBagger” function
and the optimized set of 14 features, where the error stabilizes between 1.25 and 2.5% as the number of trees increases. (c)
“fitcensemble” function and the original set of 28 features, where the error stabilizes between 1 and 2.1% as the number of
trees increases. (d) “fitcensemble” function and the optimized set of 14 features, where the error stabilizes between 1.5 and
2.5% as the number of trees increases.
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The Random Forest results indicate that a certain small number of features can be used
to produce the prediction. However, that approach has a high probability of overfitting
the model to the available data and reducing the probability of successfully generalizing
to new data or new wireless operating environments. Therefore, the optimized set of
14 features has, even if it incurs a slightly reduced performance, the best potential to enable
the developed methodology to generalize and be useful in new operating environments.
Suitable optimization and performance enhancing model development techniques such as
boosting, are also options to help the overall designed approach to adapt to new signals
and help reduce the possibility of overfitting.

Based on the “HyperparameterOptimizationOptions” input into the fitcensemble
function, the available training data were used to obtain an optimized set of parameters.
The results indicated using the “AdaBoostM2” function with a learning rate of 0.61992 and
a minimum leaf size of 3. This setup was investigated for different numbers of decision
tree learners in the range [1, 5, 10, 15, ..., 100] and feature depths ([1:14]) available at the
decision points. The results are visualized in Figure 11, where the lowest error (1.2956%)
occurred for the combination of sixty learners and a feature depth of seven and seventy
learners and a feature depth of eight. These results indicate the importance of using the
14 element feature set and not reducing the features based on the Random Forest results
using basic hyper-parameter optimization. The sixty learners incurred a training time of
749.1 ms and an average prediction time of 20.94 ms. In contrast, the seventy learners
incurred a training time of 993.58 ms and an average prediction time of 24.46 ms. As the
training and analysis times were shorter for the smaller number of learners, it was chosen
as the optimal “AdaBoostM2” Matlab combination. A more focused set of results was
obtained, specifically the confusion matrix for this combination is depicted in Figure 12a.
The majority of the errors occur when classifying between the two different IEEE802.11
signals. Thus, the model has generalized well to signals from different sources and has
high accuracy in classifying the wireless signals being received and generalizes well to
“unseen” data. This result further validates the feature set and methodology that has been
developed in this study. Additionally, as this approach focuses on the hard instances and
aims to improve on predecessors, it has a higher likelihood of aiding this methodology in
adapting to different wireless operating environments.
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Figure 11. The generalization error results for the AdaBoostM2 ensemble method with a minimum
leaf size of 3 and a learning rate of 0.61992, for a range of decision tree learners and feature depths.
The error stabilizes between 1.2 and 1.9% and the unique feature depth trends are marked.

This initial Matlab investigation section focused on determining the usefulness of the
extracted features (Table 3) and if applying machine learning techniques was applicable to
this classification problem. The results indicate that ensemble methods are suitable to this
classification problem and dependent methods are optimal. However, for WSN/IoT deploy-
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ments, a more lightweight machine learning programming language is required. As a result,
the leading machine learning programming language, Python, needs to be investigated.

1 2 3 4 5 6
Predicted class

1

2

3

4

5

6

T
ru

e 
cl

as
s

608

724

5

53

587

625 1

759

1192

(a)

1 2 3 4 5 6
Predicted class

1

2

3

4

5

6
T

ru
e 

cl
as

s

608

725

31

4

609

625

1 759

1192

(b)

1 2 3 4 5 6
Predicted class

1

2

3

4

5

6

T
ru

e 
cl

as
s

608

713

15

16

625

624 1

760

1192

(c)

Figure 12. Confusion matrix for the (a) designed Matlab AdaBoostM2 method using sixty decision tree learners, a feature
depth of seven, a minimum leaf size of three and a learning rate of 0.61992; (b) designed XGBoost method, which produced
a generalization error of 0.7905%; (c) designed DNN, which produced a generalization error of 0.7027%. The predictors are
as follows: (1) noise (2) WiFi (3) router (4) Bluetooth advertising (5) CW and (6) ZigBee.

4.2. Python Investigation

The main objective of this work is to permit decentralized computation and allow
specific embedded devices to identify signals present in their surroundings. This approach
can lead to methods to increase security by monitoring the wireless channel and adapting
to changes in real time, such as frequency hopping when a CW jamming wave is detected,
for example. To initially investigate this embedded implementation and to employ the
leading machine learning programming language, the developed classification approach
was translated to Python3 and computed on a RaspberryPi embedded device. This imple-
mentation focused on the optimized 14 features and the same training and testing datasets
as the Matlab approach. As a result, this section identifies the optimal machine learning
approach for this study’s wireless signal classification problem.

For this initial embedded device investigation, the “scikit-learn” machine learning
library was utilized, specifically the “RandomForestClassifier” function. A summary of the
results of this approach is shown in Table 6 and in Figure 13, where the Raspberry Pi results
(Figure 13b) are compared with an implementation on the same Desktop PC that produced
the Matlab results (Figure 13a). A Dell XPS8930 was used as the PC to compute the results,
where 16 GB of RAM and an Intel i7 processor (3 GHz) were available, while the Raspberry
Pi (as shown in Figure 4) has 1 GB of RAM and a quad-core Broadcom Arm Cortex
A53 processor (1.4 GHz). Table 6 shows that the embedded device had a larger training
and prediction time compared to the PC. However, the prediction time of the embedded
device is acceptable for real-time operation, as the average prediction time is 0.0679 ms.
The achieved model error is the same for both devices and the training time increase can
be rectified by training on the resource extensive device and transferring the trained model
to the embedded Raspberry Pi. These results show that the Python3 approach aligns with
the Matlab results, while providing a faster implementation time and further validating
the extracted feature set. The Python3 “RandomForestClassifier” function was analyzed
further by investigating additional metrics using a specific random state including the
number of trees, maximum number of predictors, maximum tree depth, the maximum
number of samples, minimum number of samples required to split an internal node and
the minimum number of samples required to be at a leaf node. In total, 197,568 iterations
were completed and the optimum generalization error was 1.098%, which shows that the
Python3 investigation benefits from delving deeper into the model development. As the
Raspberry Pi achieved the same model error as the PC, the remaining aspects of this
investigation can be processed on the PC device to provide efficient model development,
as the Python3 models will achieve similar model error results on the Raspberry Pi device.
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Table 6. Random Forest Classification Results: Device Comparison for Wireless Data.

Device Predictor No. of Training Avg. Prediction Test Data
Depth Trees Time (ms) Time (ms) Error

Raspberry 1 85 1564 0.0679 1.142Pi 3-B

Specifications: 1 GB of RAM and
Quad-core Broadcom BCM2837B0, Cortex-A53 CPU @ 1.4 GHz

PC 1 85 139.6 0.005 1.142

Specifications: Dell XPS8930, 16 GB of RAM
and an Intel i7-9700 CPU @ 3 GHz, 8 Cores
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Figure 13. The generalization error for the designed scikit-learn Python Random Forest method
using variable number of grown decision trees, variable feature depths and an unspecified maximum
depth for each tree, where the error stabilizes between 1.14% and 2.57%. The same python scripts
were implemented on (a) a Desktop PC and (b) a Raspberry Pi 3 Model B.

To further aid in minimizing the effect of overfitting, the dependent decision tree-
based “XGBoost” [46] algorithm was investigated across typical parameters that enable the
training of a decision tree boosted model. This algorithm stands for “eXtreme Gradient
Boosting” and, in general, produces strong learners based on the correction of errors
produced from weak learners. Based on the improvement seen in the Matlab investigation
when applying AdaBoost, which increased model performance, boosting (dependent
ensemble approaches) is seen as an appropriate method for creating an accurate and
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strong classifier from a set of weak classifiers. XGBoost, which applies a gradient boosting
approach, was the chosen Python3 boosted tree approach. For this investigation, several
parameters were optimized, including (1) the number of decision trees, (2) the applied
learning rate, (3) the maximum tree depth, (4) the minimum child weight, (5) the percentage
of available data used per decision tree, (6) the applied booster algorithm, (7) the sub-
sampling percentage of the feature columns and (8) the applied minimum loss reduction
when determining if a further partition is required. The XGBoost approach produced
the highest accuracy (and lowest generalization error of 0.7905%) in this study before
developing deep neural networks. The confusion matrix for the designed approach is
seen in Figure 12b, where the majority of errors occur between classifications of different
IEEE802.11 protocols. The final algorithm contained five trees, a learning rate of 0.8,
a maximum tree depth of 10, a minimum child weight of 2, used 95% of available data per
tree, used the “gbtree” booster, sub-sampled 75% of the feature columns and applied a
minimum loss reduction of 0.5 when determining if a further partition is required. This
produced a smaller error and training time, when compared to the AdaBoost approach in
the Matlab investigation (see Table 7), using the same data. By using XGBoost, an error
reduction of 38.98% was achieved (1.2956%→ 0.7905%), where the improvement occurred
in the classification between the separate IEEE802.11 signals. This result indicates that
gradient boosting is more beneficial for this classification problem and that using the
decision tree approach is applicable.

Table 7. Random Forest Selection Evidence-Supervised Approaches.

Algorithm Lowest Achieved Training IterationsError (%) Time

XGBoost/SVM 0.527 122.54 ms n/a

DNN 0.7027 1937.04 s 400

XGBoost 0.7905 78.1 ms 400,000

Random Forest 1.098 265.57 ms 197,568

AdaBoost (Matlab) 1.2956 749.1 ms n/a

K Nearest Neighbors 3.3816 26.93 ms n/a
(17 Neighbors)

K Nearest Neighbors (20) 3.4695 15.6 ms 1152
(20 Neighbors)

K Nearest Neighbors 3.6232 35.934 ms 7166(within Radius)

Gaussian 5.907 3 ms 17Naive Bayes

Nearest Centroid 9.222 2 ms 8

To further validate choosing the XGBoost approach for this multi-class classification
problem, other distinct machine learning approaches were briefly examined. Each model
is investigated across a range of suitable available parameters, specific to each machine
learning approach. Analyzed algorithms included the “scikit-learn” neighbors-based
classification functions, namely “KNeighborsClassifier”, “RadiusNeighborsClassifier” and
“NearestCentroid”, and the “scikit-learn” Gaussian Naive Bayes (“GaussianNB”) function.

For both the “KNeighborsClassifier” and “RadiusNeighborsClassifier” investigations,
the examined algorithms were “ball_tree”, “kd_tree”, and “brute”, the associated leaf size,
where applicable, was an element of the set [5, 10, 20, 30, 40, 60, 80, 100], the weight function
used in prediction was either “uniform” or “distance” and the exponent for the Minkowski
metric was either 1 (equivalent to using Manhattan distance) or 2 (equivalent to using
Euclidean distance). For the weights, “uniform” results in all points in each neighborhood
being weighted equally and “distance” means points are weighted by the inverse of their
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distance, meaning closer neighbors of a query point will have a greater influence than
neighbors which are further away. For the “KNeighborsClassifier” the number of neighbors
was an element of the set [1, 2, 5, 10, 20, 40, 60, 80, 100]. For the “RadiusNeighborsClassifier”
approach, the range of parameter space to use was an element of the set [85, 90, 95, 100, 110,
120, 140, 150], where 85 was the lowest radius that ensured each instance had at least one
neighbor for each of the other parameters setups. The “NearestCentroid” approach was
investigated, where each class is represented by its centroid, with test samples assigned
to the class with the nearest centroid. The examined metric for calculating the distance
between instances in a features array included: {cityblock, cosine, euclidean, haversine, l1, l2,
manhattan, nan-euclidean}, which were all of the available distance metrics provided in the
“metrics.pairwise.distance_metrics()” section of the “sklearn” library. For this approach,
the centroids for the samples corresponding to each class are the points from which the
sum of the distances (according to the metric applied) of all samples that belong to that
particular class are minimized. If the “manhattan” metric is provided, this centroid is the
median and for all other metrics, the centroid is set to be the mean.

The optimal parameters for the “KNeighborsClassifier”, based on the parameter sets
above, corresponded to using twenty neighbors, any of the three algorithms, a leaf size
of 5, the uniform weight function and the Manhattan distance. This optimized parameter
set produced an error of 3.4695%. However, as an odd number of neighbors negates
the condition of multiple classes attaining the same number of maximum votes, this
optimization of 20 neighbors allowed for further investigation. The odd numbers around
twenty were investigated, while maintaining all other optimal parameters. The results
indicated that seventeen neighbors was the most optimal result and produced an error of
3.38%, which indicates better performance compared to the even number of neighbors,
but for an increase in training time (Table 7). For the “RadiusNeighborsClassifier” approach,
the optimal parameters are a radius of eighty-five, any of the three algorithms, a leaf size
of 5, the distance weight function and the Manhattan distance. These parameters resulted
in a calculated generalization error of 3.6232%. The “GaussianNB” was briefly investigated
across an array of values for the portion of the largest variance of all features that is added
to variances for calculation stability. The examined values were [1× 10−15, 1× 10−14, . . . ,
1× 10−10, 2× 10−10, 5× 10−10, 1× 10−9, 2× 10−9, 5× 10−9, 1× 10−8, 2× 10−8, 5× 10−8,
1× 10−7, 1× 10−6, 1× 10−5]. The optimal approach applied a portion of 1× 10−10 or lower,
and produced an error of 5.907%. These results are provided and compared to the other
investigated algorithms in Table 7, where the training times are provided as a complexity
metric. As shown in Table 7. the smaller training times, typically, lead to less accurate
models which are less complex to deploy.

A valuable insight is gained from comparing the XGBoost approach to the SVM binary
classifier. When compared to the ZigBee-versus-all case, this multi-class classifier achieved
similar, if not better, performance to the SVM. In fact, all ZigBee signals were correctly
classified in each case, but no signals were misclassified as ZigBee when XGBoost was
applied (Figure 12b). The SVM classifier misclassified two instances as ZigBee (Figure 9a).
Yet, the multi-class approach can be assisted by a binary classifier. The majority of the
XGBoost errors occurred when classifying between the different IEEE802.11 signals. A SVM
for this one-versus-one case was developed to examine if a higher performance was
achievable. The designed SVM produced 53 errors (3.8714%) when using the same third-
order polynomial kernel as the ZigBee case. By adopting the radial basis function the error
was reduced to 23 misclassifications (or 1.68%). The SVM obtained a 34% error reduction
in the classification of the IEEE802.11 signals compared to XGBoost.

This comparison discovered the optimal approach for using these fundamental algo-
rithms and the developed feature set. The Random Forest XGBoost method is optimal for
all but the classification between IEEE802.11 signals. Hence, for maximal performance,
if an IEEE802.11 signal is detected, the data instance is passed to a separate binary SVM
classifier focused on IEEE802.11 signals. This achieves optimal performance for the mini-
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mum amount of designed classifiers that generalize well to unseen data, when resource
management is key.

However, by focusing entirely on a resource-constrained operation, the most optimal
approach may be neglected. Thus, deep learning was investigated to explore how tradi-
tional techniques compare to a fully connected neural network in terms of generalization
error, computation load, training times, parameter optimization and hardware resources.
The DNN was optimized, using TensforFlow and the “KerasClassifier” function, over the
number of epochs, batch size, optimizer, number of hidden layers and neurons. When
selecting the optimal parameters, consideration was given to the training time, average
prediction time and required resources. The batch size was examined using the values
[5, 10, 20, 40], the number of epochs were [100, 200, 500, 1000, 2000], the investigated opti-
mizers were [adam, rmsprop, Adadelta, Adagrad, Adamax], the initial hidden layer sizes
were [50, 100, 200, 300] and the number of hidden layers were [1, 3, 5, 7, 9]. The hidden
layers were calculated by decreasing the number of neurons in each layer based on the
ratio of the number of neurons in the first hidden layer to the required number of hidden
layers. The input layer was fourteen and the output layer was six, which correspond to the
number of input features and output classes, respectively. The process was implemented
using the Python “GridSearchCV” function and 5-fold cross-validation, where the K-fold
accuracy was the chosen metric. The developed DNN architecture for this study is pro-
vided in Table 8 and it was optimized over the number of epochs, batch size, optimizer,
number of hidden layers and neurons. The developed DNN classifier consists of three
hidden layers, the “Adamax” optimizer, 2000 epochs and a batch size of five. The DNN
approach achieved high 5-fold cross-validation accuracy results and generalized well to the
unseen data. The DNN requires a training time of 1937.04 seconds and achieves an average
prediction time of 23.227 ms. These results correspond to being computed using Keras
on a NVIDIA GeForce RTX 2060 with 6GB of RAM. In contrast, the average prediction
times for the XGBoost and SVM approaches are 0.05 ms and 1.242 ms, respectively, while
the training times are 78.1 ms and 44.44 ms. The confusion matrix for the developed
Adaboost (Figure 12a), XGBoost (Figure 12b) and DNN (Figure 12c) models are compared
in Figure 12, where the results are near equivalent. Notably, if a DNN/SVM approach is
applied in a similar approach as the XGBoost/SVM method, the results will be equivalent.
This is due to the SVM being the optimal approach but limited to reducing the number
of errors in IEEE802.11 classification to 23, which is lower than the XGBoost and DNN
models. Table 7 provides a summary of the results, where it is evident that the XGBoost
approach achieves the lowest generalization error for the traditional supervised machine
learning approaches, while the DNN is the optimal approach.

Table 8. DNN Structure: TensorFlow/Keras.

Layer Type Layer Size Activation Function

Input 14 neurons relu
Fully Connected 50 neurons relu
Fully Connected 34 neurons relu
Fully Connected 17 neurons relu

Output 6 neurons softmax

The main takeaways are the training (Table 7) and prediction times, which are much
lower for the supervised traditional XGBoost/SVM approach. As a result, the parameter
optimization for the non-deep learning approaches is orders of magnitude faster, which
pairs well with deployed wireless communication systems where extensive computational
resources and time are rarely found [40]. The desired deployment of edge devices requires
low complexity and fast optimization times for new environments. This requirement
validates the selection of the developed XGBoost/SVM machine learning approach, as the
XGBoost/SVM design achieves equivalent accuracy and generalization error results as the
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developed fully connected neural network, for a fraction of the computation requirements
and in a vastly reduced timescale.

The final implementation result from the Python experimentation indicates that the
same prediction accuracy can be achieved on a much more lightweight device but the
training and prediction times increase. This increase in training and prediction times would
be exceedingly larger for the deep learning approach. However, the increased training
time is generally not a concern as it can be rectified by simply training and optimizing the
model on a much more advanced machine. Only the optimally trained model is required
to be uploaded and used on the lightweight embedded device. Thus, the feature set and
optimal models developed in this paper can, potentially, be used on IoT edge devices.
The Raspberry Pi is suitable for this evaluation, as it is an example of how hardware has
advanced over the past decade or so. As we look to the future, it is not unreasonable to
suggest that edge devices will have similar specifications.

4.3. Summary and Discussion

This study of live wireless signals in a typical operating environment, which contained
different signal sources, devices, obstacles and service usage, incorporates some limiting
factors. The developed two-stage model approach would be heightened if data were
captured across multiple industrial environments, as more data would be available and
applied to the existing dataset developed in this study. The hardware specifications are also
a limiting factor since performance is linked to the ADC resolution (12-bit) and reference
voltage (1.3 V). A higher resolution would allow for received signals to be extracted in
greater detail from the channel. The reference voltage, which is the maximum voltage
available to the ADC, determines the ADC conversion ceiling for received analog inputs.
Essentially, a higher reference voltage allows for higher powered signals to be received
before saturation occurs. However, the novel feature set developed in this study has proven
its ability to differentiate between signals when receiver saturation occurs.

Despite these limitations, the wireless approach depicted in this study obtained high
performance in both classification accuracy and in generalizing to unseen data. This
study, which employs fundamental feature-based machine learning algorithms, are in
contrast to [22], which states that traditional feature-based approaches lack generaliza-
tion. The results prove the effectiveness of the designed methods, which differ from the
literature by only requiring access to raw received I/Q samples, permitting independent
device decisions and using low-order statistical features. Typically, the literature uses
high-order statistics [27] and/or cumulants [28–30] when applying traditional techniques.
The achieved generalization error of below 1% is comparable to performance levels of
other developed systems focused on the applied modulation scheme. However, unlike
image classification, unified datasets for wireless signal classification are, generally, not yet
available. So, the authors in [22] compared their system against various other feature-based
schemes. The results, at sufficient signal-to-noise ratios (SNR), vary from classification
accuracies of 80% up to almost 100%. In [42], similar results are achieved for a sufficient
SNR when classifying wireless signals. Hence, the achieved results in this study compete
with the literature and do so by using a low-complexity novel feature set and without
focusing on modulation schemes, using spectrograms or RSSI samples. Overall, despite
the trend to use deep learning approaches, as specified in Section 2, this study proves that
potent data analysis and signal processing permit traditional techniques to still be effective
(Table 7) when paired with sufficiently descriptive feature sets based on time, frequency
and space (PDF).

A use case for this investigation can apply to developing interference detection sys-
tems or edge device decentralized decision making. An interference detection approach
is, typically, developed based on data that are available to the system designer. This data,
as shown in this paper, can be leveraged from a known dataset, commercial nodes, designed
testbed, etc. However, the training data may be collected from a wireless environment that
differs significantly, or marginally, from the proposed deployment. Hence, having another
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approach that can generalize well and identify specific legitimate signals can leverage avail-
able optimized models and approaches to efficiently develop new interference detection
models in new operating environments. Additionally, edge devices making independent
real-time decisions based on the operating environment is the key development rationale
for this study. In any use case that implements this designed methodology, especially edge
devices, energy usage will be a key performance metric. Thus, it is envisaged that the
designed approach would not operate continuously and, instead, only operate on a certain
duty cycle, or when called upon. To demonstrate how the features and approach identified
in this paper can be used in other developments, the features and optimal models in this
study were leveraged in a domain adaption transfer learning study to develop a novel
WSN interference diagnostic framework in [48]. The work in [48] produced and tested
various interference detection scenarios which on average achieved a model accuracy
≥ 98%. These scenarios included interference detection, interference classification and
legitimate node identification. In each model, the features and optimized XGBoost and
DNN models developed in this paper were utilized. This utilization provides additional
validation of the work in this paper as the features can be transferred to different use cases
and data distributions.

5. Future Work and Conclusions

This study dealt with exclusively using raw received I/Q samples to develop a
low-order statistical feature set for typical WSN and ISM band wireless signal classifi-
cation. The signals included noise, IEEE802.11, Bluetooth advertising, CW and ZigBee
(IEEE802.15.4) signals, which were transmitted from commercial devices and SDRs, where
applicable. Features were extracted from the calculated PDF of received samples, statisti-
cal analysis of the time domain and from the frequency domain by implementing a FFT.
The feature set differs from previous approaches due to the use of low-order statistics and
novel uses of FFT samples and Hjorth parameters. Analog Pluto SDRs and Raspberry Pi
embedded devices were exploited as a low-cost yet high-performing analysis approach
for obtaining the required I/Q samples. The designed novel feature set was validated by
intensively investigating the Random Forest approach, briefly analyzing k-NNs and SVMs
and by developing a fully connected DNN. Test data included unseen data that were used
to examine how the developed models generalized to new data.

The optimal discovered approach was an XGBoost/SVM adaption, which achieved an
error of 0.527%. Most errors in the XGBoost model occurred between different IEEE802.11
signals and, so, the separate binary SVM classifier was developed to reduce the error if an
IEEE802.11 signal was detected. A DNN was developed to provide a comparison between
deep learning and supervised traditional approaches. The XGBoost/SVM model achieved
the same accuracy as the DNN, but for reduced computational and time requirements.
This proved that traditional feature-based approaches are still fit for purpose, particularly
for low-complexity solutions, and achieve high performance when potent data analysis
and novel descriptive feature sets are applied. A Raspberry Pi demonstrated that the
designed models achieve the same results on an embedded device. Overall, this study
showed that the lowest level of receivable data, I/Q samples, can be leveraged to make
higher-level decisions.

Future work encompasses adopting the developed models and techniques for use on
low-power edge devices, including power usage and hardware metrics, and investigating
the usefulness of the designed approaches in making real-time edge decisions. Additionally,
potential collaborations with other applications can be explored based on the successful
transfer learning of the features and optimized models to interference detection mecha-
nisms. The machine learning models and features can be optimized further by focusing on
reducing the size of the applied FFT, if possible. More data will, typically, produce a model
which can generalize to new instances in new environments with a reduced error. Thus,
relevant data from various industrial environments and/or WSN/IoT deployments can be
acquired, if possible.
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