The Tyranny of Arm-Wrestling Methyls on Iron(II) Spin State in Pseudo-Octahedral [Fe(didentate)₃] Complexes.

Neel Deorukhkar, Timothée Lathion, Laure Guénée, Céline Besnard and Claude Piguet^{*}

Supporting Information

(22 pages)

Molecular formula, Mw /g·mol ⁻¹	Elemental analysis
[Fe(L5) ₃](CF ₃ SO ₃) ₂ ·1.5H ₂ O	calcd. %C 46.69 %H 3.71 %N 15.94
MM = 1053.9 g/mol	found %C 47.03 %H 3.52 %N 15.58
[Ni(L5) ₃](BF ₄) ₂ ·1.5H ₂ O·1.5CH ₃ CN	calcd. %C 50.70 %H 4.41 %N 18.98
MM = 993.6 g/mol	found %C 50.59 %H 4.26 %N 19.13
$[Zn(L5)_3](BF_4)_2·4H_2O$	calcd. %C 47.66 %H 4.50 %N 17.10
MM = 983.8 g/mol	found %C 47.22 %H 4.02 %N 17.53

Table S1. ElementalAnalysisoftheprimary $[Fe(L5)_3](CF_3SO_3)_2 \cdot 1.5H_2O,$ $[Ni(L5)_3](BF_4)_2 \cdot 1.5H_2O \cdot 1.5CH_3CN$ and $[Zn(L5)_3](BF_4)_2 \cdot 4H_2O$ complexes.

CCDC number	1988655
Empirical formula	$C_{13}H_{12}N_4$
Formula weight	224.27
Temperature	180 K
Wavelength	1.54184 Å
Crystal system	Monoclinic
Space group	$P2_{1}/c$
	a = 19.8873(10) Å
	b = 3.90974(16) Å
Unit call dimensions	c = 14.8924(7) Å
Unit cen dimensions	$\alpha = 90^{\circ}$
	$\beta = 107.876(5)^{\circ}$
	$\gamma = 90^{\circ}$
Volume	1102.04(9) Å ³
Z	4
Density (calculated)	1.352 Mg/m ³
Absorption coefficient	0.678 mm^{-1}
<i>F</i> (000)	472
Crystal size	0.27 x 0.107 x 0.071 mm ³
Theta range for data collection	2.334 to 69.013°
Index ranges	$-23 \le h \le 23, -4 \le k \le 4, -8 \le l \le 17$
Reflections collected	3876
Independent reflections	2010 [R(int) = 0.0146]
Completeness to theta = 67.500°	99.50%
Absorption correction	Analytical
Max. and min. transmission	0.955 and 0.872
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2010 / 0 / 156
Goodness-of-fit on F^2	1.086
<pre>Final R indices [I>2sigma(I)]</pre>	R1 = 0.0385, wR2 = 0.0987
R indices (all data)	R1 = 0.0424, wR2 = 0.1010
Largest diff. peak and hole	0.209 and -0.186 e.Å ⁻³

Table S2Crystal data and structure refinement for L5.

	Ι	II
CCDC numbers	1988657	1988659
Empirical formula	$C_{39}H_{36}Cl_2FeN_{12}O_8$	C ₃₉ H ₃₆ Cl ₂ N ₁₂ NiO ₈
Formula Unit	$C_{39}H_{36}Cl_2FeN_{12}O_8$	$C_{39}H_{36}Cl_2N_{12}NiO_8$
Formula weight	927.55	930.41
Temperature	180 K	180 K
Wavelength	1.54184 Å	1.54184 Å
Crystal system	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$
	a = 8.2485(3) Å	a = 8.27280(10) Å
	<i>b</i> = 38.5553(14) Å	<i>b</i> = 38.2659(6) Å
Unit cell dimensions	c = 13.0716(5) Å	c = 12.9930(2) Å
	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
	$\beta = 104.291(4)^{\circ}$	$\beta = 104.434(2)^{\circ}$
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$
Volume	4028.5(3) Å ³	3983.31(11) Å ³
7	4	4
Density (calculated)	1.529 Mg/m^3	1.551 Mg/m ³
Absorption coefficient	4.818 mm ⁻¹	2.538 mm^{-1}
F(000)	1912	1920
	0.245 x 0.173 x 0.047	0.273 x 0.132 x 0.056
Crystal size	mm ³	mm ³
Theta range for data collection	2.292 to 68.768°	2.309 to 70.759°
T 1	$-8 \le h \le 9, -45 \le k \le 46,$	$-9 \le h \le 7, -46 \le k \le 32,$
Index ranges	$-15 \le l \le 15$	$-15 \le l \le 15$
Reflections collected	17901	16391
Independent reflections	7364 [$R(int) = 0.0243$]	7483[R(int) = 0.0382]
Completeness to theta	(67.684°) 99.8%	(67.684°) 99.7%
Absorption correction	Analytical	Gaussian
Max. and min. transmission	0.801 and 0.489	1.000 and 0.732
Refinement method	Full-matrix least-	Full-matrix
	squares on F^2	least-squares on F^2
Data / restraints / parameters	7364 / 158 / 582	7483 / 0 / 565
Goodness-of-fit on F^2	1.032	1.094
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0390, wR2 =	R1 = 0.0563,
	0.0934	wR2 = 0.1408
R indices (all data)	K1 = 0.0435, WK2 =	$KI = 0.065^{7}$
	0.0964	WKZ = 0.1451
Largest diff. peak and hole	$0.466 \text{ and } -0.371 \text{ e.A}^{-3}$	0.000 and -0.830 e.A

Table S3 Crystal data and structure refinement for $[Fe(L5)_3](ClO_4)_2$ (I) and $[Ni(L5)_3](ClO_4)_2$ (II).

	III		
CCDC number	1988656	1988657	
Empirical formula	$C_{78}H_{76}B_4F_{16}N_{24}Ni_2O_2$	$C_{39}H_{36}Cl_2N_{12}O_8Zn$	
Formula Unit	$C_{39}H_{36}B_2F_8N_{12}Ni + H_2O$	$C_{39}H_{36}Cl_2N_{12}O_8Zn$	
Formula weight	1846.28	937.07	
Temperature	180 K	180 K	
Wavelength	0.71073 Å	1.54184 Å	
Crystal system	Monoclinic	Monoclinic	
Space group	$P2_{1}/c$	$P2_{1}/c$	
	a = 23.0916(4) Å	a = 8.2559(3) Å	
	b = 23.1612(5) Å	b = 38.5861(9) Å	
TT.:: 4 11 .1'	c = 15.8218(2) Å	c = 13.0163(3) Å	
Unit cell dimensions	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	
	$\beta = 99.1601(14)^{\circ}$	$\beta = 104.250(3)^{\circ}$	
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	
Volume	8354.0(3) Å ³	4018.9(2) Å ³	
Ζ	4	4	
Density (calculated)	1.468 Mg/m^3	1.549 Mg/m^3	
Absorption coefficient	0.549 mm^{-1}	2.668 mm ⁻¹	
<i>F</i> (000)	3792	1928	
Crystal size	0.44 x 0.32 x 0.238 mm ³	0.192 x 0.09 x 0.028 mm ³	
Theta range for data collection	1.787 to 28.156°	2.290 to 68.857°	
Index ranges	$-25 \le h \le 30, -30 \le k \le 28, -20 \le l \le 20$	$-9 \le h \le 9, -30 \le k \le 46,$ $-15 \le l \le 10$	
Reflections collected	42210	17094	
Independent reflections	17452[R(int) = 0.0306]	7341[R(int) = 0.0261]	
Completeness to theta	(25.242°) 99.7%	(67.684°) 99.7%	
Absorption correction	Gaussian	Gaussian	
Max. and min. transmission	1.000 and 0.344	1.000 and 0.728	
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	
Data / restraints / parameters	17452 / 225 / 1187	7341 / 124 / 611	
Goodness-of-fit on F^2	1.034	1.019	
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.0476, w $R2 = 0.1151$	R1 = 0.0348, wR2 = 0.0847	
R indices (all data)	R1 = 0.0668, w $R2 = 0.1287$	R1 = 0.0475, w $R2 = 0.0918$	
Largest diff. peak and hole	0.789 and -0.541 e.Å ⁻³	0.444 and -0.351 e.Å ⁻³	

Table S4Crystal data and structure refinement for $[Ni(L5)_3](BF_4)_2 \cdot H_2O$ (III) and
 $[Zn(L5)_3](ClO_4)_2$ (IV).

Figure S1 ORTEP view of the ligand L5 (ellipsoids are drawn at 50% probability) with numbering scheme.

Table S5: Selected bond distances (Å) and bond angles (°) for ligand L5.

Bond distances (Å)				
1.3862(17)	C(1)-C(6)	1.4012(19)		
1.3163(18)	C(2)-C(3)	1.381(2)		
1.3775(17)	C(3)-C(4)	1.399(2)		
1.3755(17)	C(4)-C(5)	1.379(2)		
1.4518(17)	C(5)-C(6)	1.3914(19)		
1.3397(19)	C(7)-C(9)	1.4769(18)		
1.3326(19)	C(9)-C(12)	1.403(2)		
1.333(2)	C(10)-C(11)	1.377(2)		
1.3409(19)	C(12)-C(13)	1.496(2)		
1.3940(19)				
	Bond dist 1.3862(17) 1.3163(18) 1.3775(17) 1.3755(17) 1.4518(17) 1.3397(19) 1.3326(19) 1.333(2) 1.3409(19) 1.3940(19)	Bond distances (Å) $1.3862(17)$ $C(1)$ - $C(6)$ $1.3163(18)$ $C(2)$ - $C(3)$ $1.3775(17)$ $C(3)$ - $C(4)$ $1.3755(17)$ $C(4)$ - $C(5)$ $1.4518(17)$ $C(5)$ - $C(6)$ $1.3397(19)$ $C(7)$ - $C(9)$ $1.3326(19)$ $C(9)$ - $C(12)$ $1.333(2)$ $C(10)$ - $C(11)$ $1.3409(19)$ $C(12)$ - $C(13)$ $1.3940(19)$ $C(12)$ - $C(13)$		

Bond angles (°)				
C(7)-N(1)-C(1)	104.67(11)	N(2)-C(6)-C(5)	131.55(13)	
C(6)-N(2)-C(8)	124.58(11)	C(5)-C(6)-C(1)	122.77(12)	
C(7)-N(2)-C(6)	106.18(11)	N(1)-C(7)-N(2)	113.37(11)	
C(7)-N(2)-C(8)	129.16(11)	N(1)-C(7)-C(9)	124.45(12)	
C(10)-N(3)-C(9)	116.95(13)	N(2)-C(7)-C(9)	121.87(12)	
C(11)-N(4)-C(12)	117.56(13)	N(3)-C(9)-C(7)	114.84(12)	
N(1)-C(1)-C(2)	130.00(13)	N(3)-C(9)-C(12)	122.19(13)	
N(1)-C(1)-C(6)	110.10(11)	C(12)-C(9)-C(7)	122.94(13)	
C(2)-C(1)-C(6)	119.89(12)	N(3)-C(10)-C(11)	121.20(15)	
C(3)-C(2)-C(1)	117.59(13)	N(4)-C(11)-C(10)	122.42(14)	
C(2)-C(3)-C(4)	121.73(13)	N(4)-C(12)-C(9)	119.69(14)	
C(5)-C(4)-C(3)	121.68(13)	N(4)-C(12)-C(13)	117.37(13)	
C(4)-C(5)-C(6)	116.34(13)	C(9)-C(12)-C(13)	122.94(13)	
N(2)-C(6)-C(1)	105.67(11)			

 Table S6: Selected least-squares planes data for Ligand L5

Least Squares Planes Description	Mean Deviation (Å)	Max. Deviation (Å) and atom	Dihedral Angle (°)
Pyrazine 1	0.002	0.03 (N3)	
C9 N3 C10 C11 N4 C12	0.002	0.05 (115)	25.2
Benzimidazole 1	0.012		33.2
C7 N2 C6 C5 C4 C3 C2 C1 N1	0.012	0.020 (C7)	

Figure S2 ORTEP view of *mer*- $[Fe(L5)_3]^{2+}$ in the crystal structure of $[Fe(L5)_3](ClO_4)_2$ (I) with partial numbering scheme. Ellipsoids are drawn at 50% probability. Hydrogen atoms and ClO_4^- counter anions are omitted for clarity.

Table S7	Selected bond distances (Å) and bond angles (°) for $[Fe(L5)_3](ClO_4)_2$ (I).
----------	--

Bond distances (Å)					
Fe(1)-N(2C)	2.2074(18)	Fe(1)-N(2B)	2.2757(19)		
Fe(1)-N(1B)	2.1609(18)	Fe(1)-N(1)	2.1327(18)		
Fe(1)-N(1C)	2.1343(18)	Fe(1)-N(2)	2.2427(19)		
	Bond ang	les (°)			
N(2C)-Fe(1)-N(2B)	81.33(7)	N(1C)-Fe(1)-N(2)	101.46(7)		
N(2C)-Fe(1)-N(2)	178.12(6)	N(1)-Fe(1)-N(2C)	102.85(7)		
N(1B)-Fe(1)-N(2C)	99.07(7)	N(1)-Fe(1)-N(1B)	101.92(7)		
N(1B)-Fe(1)-N(2B)	75.86(7)	N(1)-Fe(1)-N(1C)	87.22(7)		
N(1B)-Fe(1)-N(2)	82.72(7)	N(1)-Fe(1)-N(2B)	175.60(7)		
N(1C)-Fe(1)-N(2C)	76.69(7)	N(1)-Fe(1)-N(2)	77.27(7)		
N(1C)-Fe(1)-N(1B)	170.64(7)	N(2)-Fe(1)-N(2B)	98.60(7)		
N(1C)-Fe(1)-N(2B)	95.15(7)				

Least Squares Planes Description	Mean Deviation (Å)	Max. Deviation (Å) and atom	Dihedral Angle (°)
Pyrazine 1	0.017	0.025 (C9A)	
N2 C13 C12 N4 C10 C9	0.017	0.025 (0)11)	40.4
Benzimidazole 1	0.004	0.006 (N3A)	т 0. т
N1 C8 N3 C6 C5 C4 C3 C2 C1	0.004	0.000 (113A)	
Pyrazine 2	0.022	0.033 (C0P)	
N2B C13B C12B N4B C10B C9B	0.022	0.033 (C9B)	40.2
Benzimidazole 2	0.028	0.040 (C(D)	40.2
C8B N1B C1B C2B C3B C4B C5B C6B N3B	0.028	0.040 (C0B)	
Pyrazine 3	0.026	0.054 (COC)	
N2C C13C C12C N4C C10C C9C	0.030	0.034 (C9C)	24.0
Benzimidazole 3	0.02	0.027 (CPC)	54.9
C8C N3C C6C C5C C4C C3C C2C C1C N1C	0.02	$0.027(C\delta C)$	

Table S8Selected least-squares planes data for complex for [Fe(L5)₃](ClO₄)₂ (I).

Figure S3 ORTEP view of *mer*- $[Ni(L5)_3]^{2+}$ in the crystal structure of $[Ni(L5)_3](ClO_4)_2$ (II) with partial numbering scheme. Ellipsoids are drawn at 50% probability. Hydrogen atoms and ClO_4^- counter anions are omitted for clarity.

	Bond distances (Å)				
Ni(1)-N(1A)	2.069(3)	Ni(1)-N(2A)	2.117(3)		
Ni(1)-N(1B)	2.070(3)	Ni(1)-N(2B)	2.142(3)		
Ni(1)-N(1C)	2.114(3)	Ni(1)-N(2C)	2.162(3)		
	Bond an	gles (°)			
N(1A)-Ni(1)-N(1B)	86.25(11)	N(1B)-Ni(1)-N(2C)	176.17(11)		
N(1A)-Ni(1)-N(1C)	173.50(11)	N(1C)-Ni(1)-N(2A)	97.34(10)		
N(1A)-Ni(1)-N(2A)	78.94(10)	N(1C)-Ni(1)-N(2B)	81.94(10)		
N(1A)-Ni(1)-N(2B)	101.75(10)	N(1C)-Ni(1)-N(2C)	78.27(10)		
N(1A)-Ni(1)-N(2C)	95.87(11)	N(2A)-Ni(1)-N(2B)	179.18(10)		
N(1B)-Ni(1)-N(1C)	99.76(11)	N(2A)-Ni(1)-N(2C)	82.33(10)		
N(1B)-Ni(1)-N(2A)	101.24(10)	N(2B)-Ni(1)-N(2C)	97.14(10)		
N(1B)-Ni(1)-N(2B)	79.28(11)				

Table S9Selected bond distances (Å) and bond angles (°) for $[Ni(L5)_3](ClO_4)_2$ (II).

Table S10 Selected least-squares planes data for complex [Ni(L5)₃](ClO₄)₂ (II)

Least Squares Planes Description	Mean Deviation (Å)	Max. Deviation (Å) and atom	Dihedral Angle (°)
Benzimidazole 1 N2A C13A C12A N4A C10A C9A	0.04	0.061 (C9A)	22.6
Pyrazine 1 C8A N1A C1A C2A C3A C4A C5A C6A N3A	0.019	0.027 (C3A)	33.6
Benzimidazole 2 C13B C12B N4B C10B C9B N2B	0.022	0.034 (C9B)	
Pyrazine 2 C8B N1B C1B C2B C3B C4B C5B C6B N3B	0.005	0.008 (C5B)	38
Benzimidazole 3 N2C C9C C10C N4C C12C C13C	0.024	0.037 (C9C)	
Pyrazine 3 C8C N1C C1C C2C C3C C4C C5C C6C N3C	0.034	0.053 (C6C)	39.7

Figure S4 ORTEP view of the two different *fac*-[Ni(L5)₃]²⁺ cations in the asymmetric unit of the crystal structure of [Ni(L5)₃](BF₄)₂·H₂O (III) with partial numbering scheme. Ellipsoids are drawn at 50% probability. Hydrogen atoms and BF₄⁻ counter anions are omitted for clarity.

Bond distances (Å)			
Ni(1)-N(1)	2.101(2)	Ni(2)-N(2E)	2.108(2)
Ni(1)-N(1B)	2.067(2)	Ni(2)-N(1F)	2.059(2)
Ni(1)-N(2)	2.1199(19)	Ni(2)-N(2D)	2.147(2)
Ni(1)-N(1C)	2.0756(19)	Ni(2)-N(1D)	2.084(2)
Ni(1)-N(2C)	2.138(2)	Ni(2)-N(1E)	2.094(2)
Ni(1)-N(2B)	2.122(2)	Ni(2)-N(2F)	2.127(2)

Table S11Selected bond distances (Å) and bond angles (°) for $[Ni(L5)_3](BF_4)_2 \cdot H_2O$ (III).

Bond angles (°)			
N(1)-Ni(1)-N(2)	79.73(8)	N(2E)-Ni(2)-N(2D)	96.02(8)
N(1)-Ni(1)-N(2C)	83.30(8)	N(2E)-Ni(2)-N(2F)	96.36(9)
N(1)-Ni(1)-N(2B)	176.06(8)	N(1F)-Ni(2)-N(2E)	86.11(8)
N(1B)-Ni(1)-N(1)	102.44(8)	N(1F)-Ni(2)-N(2D)	174.08(8)
N(1B)-Ni(1)-N(2)	84.56(8)	N(1F)-Ni(2)-N(1D)	98.99(8)
N(1B)-Ni(1)-N(1C)	99.30(8)	N(1F)-Ni(2)-N(1E)	102.97(8)
N(1B)-Ni(1)-N(2C)	174.27(8)	N(1F)-Ni(2)-N(2F)	78.28(8)
N(1B)-Ni(1)-N(2B)	78.98(8)	N(1D)-Ni(2)-N(2E)	174.86(8)
N(2)-Ni(1)-N(2C)	96.78(8)	N(1D)-Ni(2)-N(2D)	78.84(8)
N(2)-Ni(1)-N(2B)	96.81(8)	N(1D)-Ni(2)-N(1E)	99.74(8)
N(1C)-Ni(1)-N(1)	99.00(8)	N(1D)-Ni(2)-N(2F)	84.19(8)
N(1C)-Ni(1)-N(2)	176.13(8)	N(1E)-Ni(2)-N(2E)	79.54(8)
N(1C)-Ni(1)-N(2C)	79.42(8)	N(1E)-Ni(2)-N(2D)	82.87(8)
N(1C)-Ni(1)-N(2B)	84.33(8)	N(1E)-Ni(2)-N(2F)	175.57(8)
N(2B)-Ni(1)-N(2C)	95.32(8)	N(2F)-Ni(2)-N(2D)	95.97(8)

Table S12 Selected least-squares planes data for complex $[Ni(L5)_3](BF_4)_2 \cdot H_2O$ (III).

Unit 1

Least Squares Planes Description	Max. Deviation (Å)	Dihedral Angle (°)
Benzimidazole 1	0.01	
N1 C8 N3 C6 C5 C4 C3 C2 C1	0.01	43.86
Pyrazine 1	0 029	13.00
N2 C13 C12 N4 C10 C9	0.029	
Benzimidazole 2	0.009	
C8B N3B N1B C1B C6B C5B C4B C3B C2B		36.1
Pyrazine 2	0.026	
C9B C10B N4B C12B C13B N2B		
Benzimidazole 3	0.008	
C8C N3C C6C C1C N1C C5C C4C C3C C2C		40.8
Pyrazine 3	0.029	
N4C C10C C9C N2C C13C C12C		

Unit 2			
Least Squares Planes Description	Max. Deviation (Å)	Dihedral Angle (°)	
Benzimidazole 1	0.009		
C8D N1D C1D C2D C3D C4D C5D C6D N3D	0.007	40.8	
Pyrazine 1	0.032	10.0	
C9D N2D C13D C12D N4D C10D	0.032		
Benzimidazole 2	0.011		
N1E C8E N3E C6E C1E C2E C3E C4E C5E	0.011	38.3	
Pyrazine 2	0.032	56.5	
C9E N2E C13E C12E N4E C10E	0.032		
Benzimidazole 3	0.007		
N1F C1F C2F C3F C4F C5F C6F N3F C8F	0.007	25.57	
Pyrazine 3	0.020	55.52	
C9F N2F C13F C12F N4F C10F	0.029		

Figure S5ORTEP view of mer- $[Zn(L5)_3]^{2+}$ cation in the crystal structure of $[Zn(L5)_3](ClO_4)_2$ (IV) with partial numbering scheme. Ellipsoids are drawn at 50% probability.Hydrogen atoms and ClO_4^- counter anions are omitted for clarity.

Bond distances (Å)			
Zn(1)-N(2)	2.1901(18)	Zn(1)-N(1B)	2.0992(18)
Zn(1)-N(1C)	2.1369(17)	Zn(1)-N(2C)	2.3130(19)
Zn(1)-N(1)	2.1081(17)	Zn(1)-N(2B)	2.2554(18)
	Bond an	gles (°)	
N(2)-Zn(1)-N(2C)	81.53(7)	N(1)-Zn(1)-N(2B)	101.22(7)
N(2)-Zn(1)-N(2B)	177.47(7)	N(1B)-Zn(1)-N(2)	104.37(7)
N(1C)-Zn(1)-N(2)	98.46(7)	N(1B)-Zn(1)-N(1C)	102.17(7)
N(1C)-Zn(1)-N(2C)	75.73(7)	N(1B)-Zn(1)-N(1)	88.61(7)
N(1C)-Zn(1)-N(2B)	82.19(7)	N(1B)-Zn(1)-N(2C)	174.03(7)
N(1)-Zn(1)-N(2)	77.70(7)	N(1B)-Zn(1)-N(2B)	77.83(7)
N(1)-Zn(1)-N(1C)	169.18(7)	N(2B)-Zn(1)-N(2C)	96.29(7)
N(1)-Zn(1)-N(2C)	93.62(7)		

Table S13Selected bond distances (Å) and bond angles (°) for $[Zn(L5)_3](ClO_4)_2$ (IV).

Table S14Selected least-squares planes data for complex $[Zn(L5)_3](ClO_4)_2$ (IV).

Least Squares Planes Description	Mean Deviation (Å)	Max. Deviation (Å) and atom	Dihedral Angle (°)
Pyrazine 1 N2 C13 C12 N4 C10 C9	0.037	0.056 (C9)	25.0
Benzimidazole 1 C8 N1 C0AA C6 N3 C5 C4 C3 C2	0.019	0.028 (C8)	35.2
Pyrazine 2 N2B C13B C12B N4B C10B C9B	0.018	0.028 (C9B)	10 -
Benzimidazole 2 C8B N1B C1B C2B C3B C4B C5B C6B N3B	0.005	0.009 (C8B)	<u>40.5</u>
Pyrazine 3 C9C C10C N4C C12C C13C N2C	0.02	0.031 (C9C)	
Benzimidazole 3 C8C N3C C6C C5C C4C C3C C2C C1C N1C	0.029	0.042 (C6C)	41.3

	V	VI
Empirical formula	Cup coHu poBaFaNia zeNi	$C_{42}H_{40}$ co $B_2F_2N_{12}$ co Zn
Formula Unit	$C_{22,30}H_{41,25}D_{21,8}H_{13,75}H_{15,75}H_$	$C_{42}H_{40.50}D_{21} = (CH_{3}CN)_{15}$
Formula weight	976.84	973 35
Temperature	180.15 K	180 01(10) K
Wavelength	0.71073 Å	1.54184 Å
Crystal system	Trigonal	Trigonal
Space group	P3c1	P3c1
	a = 20.8028(3) Å	a = 21.05979(9) Å
	b = 20.8028(3) Å	b = 21.05979(9) Å
	c = 29.5237(4) Å	c = 29.40349(14) Å
Unit cell dimensions	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$
	$\gamma = 120^{\circ}$	$\gamma = 120^{\circ}$
Volume	11064.8(3) Å ³	11293.73(11) Å ³
Ζ	10.00002	10.0002
Density (calculated)	1.466 Mg/m^3	1.431 Mg/m^3
Absorption coefficient	0.522 mm^{-1}	1.461 mm^{-1}
F(000)	5024	4990
Crystal size	0.293 x 0.275 x 0.21 mm ³	0.293 x 0.275 x 0.21 mm ³
Theta range for data collection	2.076 to 28.169°	3.862 to 68.937°
Index ranges	-27≤h≤26,-27≤k≤26,-38≤l≤38	-25≤ <i>h</i> ≤25, -25≤ <i>k</i> ≤25, -35≤ <i>l</i> ≤35
Reflections collected	115787	175735
Independent reflections	16823[R(int) = 0.0438]	13967 [R(int) = 0.0323]
Completeness to theta	(25.242°) 99.90%	(67.684°) 100%
Absorption correction	Gaussian	Gaussian
Max. and min. transmission	1.000 and 0.332	1.000 and 0.670
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	16823 / 156 / 1043	13967 / 93 / 1034
Goodness-of-fit on F^2	1.031	1.036
<pre>Final R indices [I>2sigma(I)]</pre>	R1 = 0.0526, w $R2 = 0.1295$	R1 = 0.0534, wR2 = 0.1508
R indices (all data)	R1 = 0.0815, w $R2 = 0.1496$	R1 = 0.0564, wR2 = 0.1558
Extinction coefficient	n/a	n/a
Largest diff. peak and hole	1.679 and -0.687 e.Å ⁻³	1.608 and -0.434 e.Å ⁻³
Absolute structure parameter	0.50(2)	0.12(3)

Table S15 Crystal data and structure refinement for $[Ni(L5)_3](BF_4)_2 \cdot 1.75CH_3CN$ (V) and $[Zn(L5)_3](BF_4)_2 \cdot 1.5CH_3CN$ (VI).

Figure S6 ORTEP view of the five different *fac*-[Ni(L5)₃]²⁺ cations in the asymmetric unit of the crystal structure of [Ni(L5)₃](BF₄)₂·1.75CH₃CN (V) with partial numbering scheme. Ellipsoids are drawn at 50% probability. Hydrogen atoms and BF₄⁻ counter anions are omitted for clarity.

Figure S7 ORTEP view of the five different *fac*-[Zn(L5)₃]²⁺ cations in the asymmetric unit of the crystal structure of [Zn(L5)₃](BF₄)₂·1.5CH₃CN (VI) with partial numbering scheme. Ellipsoids are drawn at 50% probability. Hydrogen atoms and BF₄⁻ counter anions are omitted for clarity.

Figure S8. Optimized superimposition of the molecular structures of L2 (blue) and L5 (red) in their respective crystal structures. The nitrogen donor atoms of the α,α '-diimine chelate units are highlighted as spheres to show the anti-conformation.

Figure S9. a) Extended Hückel frontier orbitals computed from gas-phase geometries optimized at the MM2 level and b) experimental electronic absorption spectra for ligands L2 and L5 in acetonitrile at 293 K.

Figure S10. Gas-phase energies computed for L1 and L2 at the MM2 level using Chem3D as a function of the interplanar angle α [61].

Table S16: Energies of the intrashell d-d transitions, ligand-field strengths (Δ_{oct}) and Racah parameters (*B*, *C*) computed with eqns (10)-(13) for [Ni(L5)₃](BF₄)₂·H₂O (III) in the solid state and in 0.1 M acetonitrile solution at 298K.

	[Ni(L5) ₃](BF ₄) ₂ (solid)	$[Ni(L5)_3]^{2+}$ (0.1 M CH ₃ CN)
$\tilde{v}({}^{3}\mathrm{T}_{2} \leftarrow {}^{3}\mathrm{A}_{2})/\mathrm{cm}^{-1}$	$10672(3) [0.7]^b$	10777(3) [5.8] ^c
$\tilde{\nu} \left({}^{1}\mathrm{E} \leftarrow {}^{3}\mathrm{A}_{2} \right) / \mathrm{cm}^{-1}$	$12584(6) [0.52]^b$	12470(8) [3.2] ^c
$\tilde{\nu} \left({}^{3}\mathrm{T_{1}} \leftarrow {}^{3}\mathrm{A_{2}} \right) / \mathrm{cm}^{-1}$	$16763(3) [0.97]^b$	$17561(2) [10.5]^{c}$
$\Delta_{\rm oct}$ /cm ⁻¹	10672	10777
B/cm^{-1}	760	983
C /cm^{-1}	3413	2573
$\Delta_{\rm oct}$ /B	14.04	10.97
C/B	4.49	2.62
β^{a}	0.73	0.94

^{*a*} Nephelauxetic parameter $\beta = B/B^{\circ}$ using $B^{\circ} = 1042 \text{ cm}^{-1}$ for free Ni²⁺ ion [77]. ^{*b*} Absorbance are given between square brackets. ^{*c*} Extinction coefficients in M⁻¹·cm⁻¹ are given between square brackets.

Figure S11. a) Variation of absorption spectra and b) corresponding variation of observed molar extinctions at different wavelengths recorded for the spectrophotometric titration of L5 with $Ni(CF_3SO_3)_2$ (total ligand concentration: $2.4 \cdot 10^{-4}$ mol·dm⁻³ in acetonitrile, 298 K). c) Evolving factor analysis using four absorbing eigenvectors [48-50], d) re-constructed individual electronic absorption spectra [51-53] and e) associated computed speciation [81].

Figure S12. Ligand speciation computed with HySS2009 for the complex species $[Zn(L5)_n]^{2+}$ at a total ligand concentration of 1 M and using the stability constants collected in Table 3. [81].

Figure S13. Variable temperature ¹H-NMR spectra of the complex $[Zn(L5)_3]^{2+}$ in CD₃CN (233 K-333 K) with ligand numbering scheme.