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Abstract: We present a holistic crystallographic study of the antiviral ganciclovir, including insights
into its solid-state behavior, which could prove useful during drug development, making the process
more sustainable. A newly developed methodology was used incorporating a combination of
statistical and thermodynamic approaches, which can be applied to various crystalline materials.
We demonstrate how the chemical environment and orientation of a functional group can affect its
accessibility for participation in hydrogen bonding. The difference in the nature and strength of
intermolecular contacts between the two anhydrous forms, exposed through full interaction maps
and Hirshfeld surfaces, leads to the manifestation of conformational polymorphism. Variations
in the intramolecular geometry and intermolecular interactions of both forms of ganciclovir were
identified as possible predictors for their relative thermodynamic stability. It was shown through
energy frameworks how the extensive supramolecular network of contacts in form I causes a higher
level of compactness and lower enthalpy relative to form II. The likelihood of the material to exhibit
polymorphism was assessed through a hydrogen bond propensity model, which predicted a high
probability associated with the formation of other relatively stable forms. However, this model failed
to classify the stability of form I appropriately, suggesting that it might not have fully captured the
collective impacts which govern polymorphic stability.

Keywords: supramolecular structure; conformational polymorphism; intermolecular contacts

1. Introduction

In the last decades, there has been considerable investment into creating sustainable
chemical technologies and reactions, specifically within the pharmaceutical industry, in
order to maximize the efficiency of the traditionally lengthy and expensive process of drug
development [1–3]. Computational advancements have been developed in parallel to such
efforts, namely to unravel the intrinsic entanglement between the crystalline material and
its solid-state properties, both for the possibility of exploiting such knowledge to engineer
a pharmaceutical drug with the desired properties, and also to ensure its stability and relia-
bility [3,4]. Given that the orientation and interactions between molecules within a crystal
determine a material’s physiochemical characteristics such as solubility, any alterations in
this arrangement could have substantial implications, especially in a pharmaceutical con-
text in relation to bioavailability and shelf life. Numerous publications illustrate examples
of how different computational techniques are being applied to investigate and predict
such features [5–9].

This case study revolves around ganciclovir (Figure 1), which is an acyclic guanine nu-
cleoside analogue, that acts as a DNA synthesis inhibitor to various forms of herpes viruses,
thereby reducing the rate of viral growth within the host [10]. In general, ganciclovir is
formulated as a sodium salt and is administered through an intravenous route (Cytovene®)
or also as an implant (Vitrasert®) [11]. It is also used as an ophthalmic gel which con-
tains ganciclovir in its pure form, and a very small percentage of water (Virgan®) [11,12].
In spite of its importance as a BCS class III antiviral, and most especially as a treatment
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against cytomegalovirus, ganciclovir’s physicochemical properties have still not been op-
timized [13,14]. They include poor permeability and limited bioavailability, all of which
hinder the drug’s performance. Due to such properties, this antiviral is administered in
frequent and high doses, exposing the patient to higher risks of toxicity.
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veloped methodology [15,17,18], which incorporates a combination of different statistical 
and thermodynamic approaches, namely the full set of programs and interfaces available 
through the Cambridge Structural Database (Mercury, Mogul, Isostar) and CrystalExplorer. 
This approach can be applied not only to the API (Active Pharmaceutical Ingredient) dis-
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Figure 2. The molecular structure of: (a) anhydrous form I (CCDC refcode: UGIVAI01, 50% proba-
bility level); (b) anhydrous form II (CCDC refcode: UGIVAI, 50% probability level) [19]. Hydrogen 
atoms were omitted for clarity. The different temperatures at which diffraction data were collected 
(form I: 100 K, form II: 293 K) had no effect on the occurrence of the two crystalline forms them-
selves. 

2. Computational Methods 
2.1. Non-Bonding Interactions Analysis 

The intramolecular geometry analysis was conducted using V1.7.5 Mogul, as de-
scribed in a paper by Galek et al., together with some adjustments to optimize the results 
[20]. During this investigation, all organometallic entries were excluded, as their geomet-
ric parameters may have introduced a bias in the histograms provided in Mogul when 
analyzing a purely organic molecule. In cases where few fragments were available, the 
relevance threshold was reduced from 1.00 to 0.75. 

Figure 1. Chemical structure of ganciclovir.

In view of all the above, the need for a complete study arose, entailing a detailed
analysis at intramolecular, intermolecular and supramolecular levels using computational
methods. This investigation is a comparative study between two anhydrous, enantiotrop-
ically related conformational polymorphs I (USP reference standard) and II (Figure 2),
in an attempt to identify the factors which influence polymorph stability and assess the
possibility of forming other polymorphs [15,16]. Published experimental data characteriz-
ing ganciclovir polymorphs are used to complement the observations extracted from the
developed methodology [15,17,18], which incorporates a combination of different statistical
and thermodynamic approaches, namely the full set of programs and interfaces available
through the Cambridge Structural Database (Mercury, Mogul, Isostar) and CrystalExplorer.
This approach can be applied not only to the API (Active Pharmaceutical Ingredient)
discussed in this article but also to other crystalline materials.
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Figure 2. The molecular structure of: (a) anhydrous form I (CCDC refcode: UGIVAI01, 50% proba-
bility level); (b) anhydrous form II (CCDC refcode: UGIVAI, 50% probability level) [19]. Hydrogen
atoms were omitted for clarity. The different temperatures at which diffraction data were collected
(form I: 100 K, form II: 293 K) had no effect on the occurrence of the two crystalline forms themselves.

2. Computational Methods
2.1. Non-Bonding Interactions Analysis

The intramolecular geometry analysis was conducted using V1.7.5 Mogul, as described
in a paper by Galek et al., together with some adjustments to optimize the results [20].
During this investigation, all organometallic entries were excluded, as their geometric pa-
rameters may have introduced a bias in the histograms provided in Mogul when analyzing
a purely organic molecule. In cases where few fragments were available, the relevance
threshold was reduced from 1.00 to 0.75.

The electrostatic potential was calculated through Mercury by means of the MOPAC
(Molecular Orbital Package) interface, using the RM1 semi-empirical Hamiltonian method,
and was mapped onto the VdW molecular surface [21–23].

IsoStar V2.2.5 was utilized for initial examination of the interactions within ganciclovir,
with functional groups acting as the central groups [24]. The analysis of possible intermolec-
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ular interactions was taken further by means of the construction of full interaction maps in
Mercury, taking into consideration the environmental effects of collective factors and steric
exclusion to produce maps that are unique to each form and conformation [25,26].

The detection of any intramolecular and intermolecular hydrogen bonding in the
asymmetric unit was investigated using Mercury for both anhydrous forms individually.
The definition of a hydrogen bond was modified to have an angle of more than 120◦, and
the distance range was slightly extended further to be less or equal to the sum of VdW
radii + 1.00 Å, to ensure that all potential interactions were included [27].

Hirshfeld surfaces were plotted for each of the anhydrous forms using CrystalExplorer,
so as to gain a better understanding of the network of non-bonding contacts, beyond
conventional hydrogen bonds [28]. The participants of such contacts were identified
through fingerprint scatterplots, which map the distance from a point on the surface to the
closest nucleus inside the surface, di, against the distance outside the surface, de. Further
details about the calculation of each descriptive variable used can be found elsewhere [29].

Crystal packing similarity was investigated through Mercury, using both anhydrous
forms as reference, and the whole database was explored for any entry having sufficient
packing similarity. Default selection options were retained, including a molecular cluster
size of 15, 20% distance tolerance and 20◦ angle tolerance.

2.2. Energy Framework Analysis

Energy frameworks were constructed in CrystalExplorer using the CE-B3LYP model
(basis set: 6-31G(d,p)), taking into account only intermolecular interactions within the
radius of 3.8 Å from the centroid on the central molecule [30]. All frameworks were scaled
equally so as to facilitate comparisons.

2.3. Polymorph Assessment through Hydrogen Bond Propensity Models

Initially, the definition of a hydrogen bond was set as established earlier; however,
this resulted in an excessive number of contacts within each form, some of which were
chemically incorrect. Therefore, the bond angle was modified to be larger than 133◦ (the
lower limit of the hydrogen bonds detected in both forms). All hydrogen bond acceptors
and donors were selected, with the latter list including carbon. Systems with errors or
disorder were excluded from the study, together with organometallic compounds and
entries with an R-factor > 0.075.

A set of data containing entries whose chemistry was relevant to ganciclovir was
generated so as to build the statistical model for prediction. Potential bias or error was
decreased by ensuring that each functional group (5 substructures; Please refer to Sup-
plementary Materials) was represented by an adequate number of hits. After analysis,
donor or acceptor candidates with a low number of relevant hits were omitted to avoid
regression failures. A logistic regression model was fitted on the data, producing its corre-
sponding area under the receiver operating characteristic (ROC) curve value as a measure
of the extent of correct predictions. This procedure was performed separately for both
polymorphs.

3. Results and Discussion
3.1. Intramolecular Level

In order to initiate the study, Mogul was used to predict the geometric preferences
of every bond length, angle, torsion angle and ring within the molecules present in both
forms, by accessing a depository of CSD-based libraries [31]. The results for geometric
characteristics of form I showed that there were no unusual parameters, as opposed to some
properties of form II that were not within the normal CSD distributions. Although these
outlying parameters might be a product of poor data quality, which could be inferred from
the atomic displacement parameters of form II (Figure 2), some of these unusual geometric
characteristics (Please refer to Supplementary Materials) were also observed in other
systems involving the ganciclovir molecule, such as the HCl salt and the monohydrate [32].
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The electrostatic map of form I (Figure 3) clearly displays the large variety of hydrogen
bond participants, with maxima (dark blue) around the hydrogen atoms of the amine group,
and minima (dark red) around the oxygen of the carbonyl group and N3 of the imidazole
ring, due to the presence of lone pairs of electrons. In addition, the electrostatic map also
proves the presence of other potential hydrogen bond contributors, such as the hydroxyl
groups, the ether oxygen atom and also carbon atoms. The electrostatic map of form II was
very similar to that of form I (Please refer to Supplementary Materials).
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Figure 3. Electrostatic map of form I, mapped on the molecular vdW surface. Double bonds are
omitted only for visualization purposes.

3.2. Intermolecular Level

The guanine ring system was one of the substructures identified via IsoStar, illustrated
in Figure 4a, with nitrogen and oxygen atoms acting as probes. The distribution of the
data points is very close to what was expected, with the majority concentrated around
polar contributors. Most of the structures have bifurcated hydrogen bonds, each forming a
contact with both O1 and N3. However, the presence of very few turquoise data points
indicates that only a minority of hits seems to be at a close distance to the guanine rings (see
frequency distribution plot in Supplementary Materials). This observation was unexpected
due to the high electronegative character of both nitrogen and oxygen atoms, which in
general enables their involvement in relatively strong contacts.
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Figure 4. IsoStar contour plot with guanine as the central group having (a) nitrogen and oxygen as
the contact groups (internal scaling: level 25—dark blue, level 50—lighter blue, level 75—turquoise)
and (b) only carbon as the contact group (internal scaling: Level 10—Yellow, Level 25—Blue, Level
50—Green, Level 75—Red).

The contour plot in Figure 4b highlights the ability of carbon to act as a hydrogen
bond donor, as well as the dominant presence of possible C–H . . . π interactions or π . . .
π stacking, created due to the delocalized electron density in the aromatic guanine ring
system. Other contour plots were constructed using an aliphatic ether as hydrogen bond
acceptor and hydroxyl group as the central group. The distributions of the resultant hits of
both plots were as expected (Please refer to Supplementary Materials).

Full interaction maps are sensitive to the specific conformation, meaning that each of
the forms will have a different map [25]. Comparison of the maps (Figure 5) reveals that the
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maps associated with form I have a larger area and higher intensity than those pertaining
to form II, indicating that the conformation of form I is more accessible for hydrogen
bonding. The fully extended conformation of form I enables it to form more hydrogen
bonds, which ultimately might be a major contributor to its thermodynamic stability at
ambient conditions. Such stability is also evidenced through the fact that form III (hydrate
form) converts to form I at temperatures above 180 ◦C, an exothermal transition which
proves the monotropic relationship between the two forms [18]. The lack of accessibility in
relation to the ether oxygen in form II, due to the proximity of the hydroxyl group, was
earlier highlighted by the orientation of the torsion angle in Mogul results, which clearly
demonstrated a degree of folding.
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Figure 5. Full interaction map of (a) form I and (b) form II, with uncharged NH nitrogen (blue),
RNH3 nitrogen (light blue), alcohol oxygen (light red) and carbonyl oxygen (red), at level 6.0. The
hydrogen bonds predicted by Mercury are also shown (intermolecular, red, intramolecular, turquoise).

The geometric features of the hydrogen bonds of both forms were compared with
those in the literature, and all results were compatible except those involving a C–H donor,
which to the best of our knowledge were not included in any published list (Please refer to
Supplementary Materials) [17]. The full interaction maps could not predict the involvement
of the carbon donors for form I unless the distance levels were significantly increased. Even
though the geometric parameters of the contacts with C–H donors are associated with
characteristics of weaker interactions, they have a collective effect on the crystal packing
and physicochemical properties of form I [33,34]. The addition of methyl carbon and
aromatic carbon as separate probes did not alter maps significantly, suggesting that the
C–H . . . π contacts and π . . . π stacking are less influential in form I, as opposed to in form
II (Please refer to Supplementary Materials).

3.3. Hirshfeld Surface Analysis

Hirshfeld surface analysis was performed [9,35,36] in order to gain a better under-
standing of the differences in hydrogen bond networks and the contribution of weaker
contacts within these conformational polymorphs. Since the Hirshfeld surface depends on
the spherical atomic electron densities of a particular molecule within its crystal structure,
surface differ even between polymorphs [29]. Examination of the Hirshfeld surfaces in
Figure 6 shows the distinguishable features of each form, particularly the position and
intensity of some of the red areas, which represent close contacts. The Hirshfeld surface
of form I is characterized by more red spots relative to that of form II, which as remarked
earlier through the full interaction maps, has a folding feature that hinders its accessibility
to hydrogen bonds.
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molecules to illustrate the network of non-bonding contacts, represented by dotted lines (not only hydrogen bonds). 

The nature of all non-bonding contacts in both polymorphs is presented through the 
fingerprint plots in Figure 7, by plotting di against de and hence translating the information 
provided by the Hirshfeld surface into a 2D format. The plots are overall strongly related, 
probably due to the similarities between these conformational polymorphs. The greatest 
proportion of interactions H‧‧‧H are with a higher percentage contribution (Figure 8) and 
smaller minimum distance di ≈ de ≈ 1.1 Å associated with form II. Although such contacts 
are believed to be repulsive in nature, Matta et al. demonstrated how the net result of their 
presence has a stabilizing effect of up to a 10 kcal/mol decrease in the total energy of that 
particular structure [37]. 

Figure 6. Hirshfeld surfaces with dnorm as mapped function, constructed for (a) form I and (b) form II, with neighboring
molecules to illustrate the network of non-bonding contacts, represented by dotted lines (not only hydrogen bonds).

The nature of all non-bonding contacts in both polymorphs is presented through the
fingerprint plots in Figure 7, by plotting di against de and hence translating the information
provided by the Hirshfeld surface into a 2D format. The plots are overall strongly related,
probably due to the similarities between these conformational polymorphs. The greatest
proportion of interactions H . . . H are with a higher percentage contribution (Figure 8) and
smaller minimum distance di ≈ de ≈ 1.1 Å associated with form II. Although such contacts
are believed to be repulsive in nature, Matta et al. demonstrated how the net result of their
presence has a stabilizing effect of up to a 10 kcal/mol decrease in the total energy of that
particular structure [37].
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Figure 7. Fingerprint plots of (a) form I and (b) form II. The arrows represent interactions between
different atoms, as indicated in the legend below. Given that the plots are approximately symmetrical,
the arrows can be mirrored through the x–y diagonal.
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surfaces of forms I and II. The category of “other” includes C . . . N and C . . . O interactions.

The spikes at the bottom left of both plots are very prominent, exhibiting the dom-
inance of N . . . H and O . . . H contacts, due to the highly polar functional groups in
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ganciclovir. The presence of these contacts is in agreement with the full interaction maps
and the hydrogen bonds predicted by Mercury. The greener shades on the spikes of the
form I surface plot indicate a higher frequency of contacts having relatively shorter dis-
tances. The percentage contribution of O . . . H interactions is equivalent for both forms,
but the global minimum distance di + de of around 1.7 Å pertains to form I.

The C–H . . . π contribution is evident in both polymorphs, as shown in the Hirshfeld
surface maps; however, it is more significant in form II (Figure 8). Although these inter-
actions are weaker and less directional than the conventional hydrogen bonds, they still
contribute to self-assembly and molecular recognition processes, as they reinforce the
stability within the supramolecular structure [38]. On the other hand, the absence of large
maxima around the area at di + de ≈ 3.8 Å and of the typical bold red and blue pairs of
triangles on the shape index surfaces, indicate the less prominent π . . . π contacts [39].
Examination of the network of interactions in the two forms, reveals how the side chain
prevents close direct stacking of the aromatic systems, hence minimizing the effect of π . . .
π contacts. Any C . . . C contact seems to be distant and concentrated on the periphery of
the guanine ring system, which hints that the aromatic systems are either far apart and/or
shifted relative to one another.

3.4. Supramolecular Analysis

Form I is centrosymmetric (P21/c) with a unit cell containing two pairs of molecules
that are identical within the pair and inversely-related between pairs. Form II is non-
centrosymmetric (P21), thus lacking an inversion center.

The extensive hydrogen bonding network in form I is highly visible along its packing
pattern, which seems to follow zigzag lines when viewed along c (Figure 9a). This type of
pattern allows the layers of molecules to be very close to one another, hence enabling the
optimal use of space available [40]. While the molecular volume of form I is greater than
that of form II, packing in the former is more compact as evidenced by the volume of its
Hirshfeld surface, packing coefficient and density value (Table 1). Figure 9b shows where
the purine backbones seem to be parallel to one another, while the side chains are “out of
plane”. Layering of the guanine rings creates an off-center parallel stacking, but distance
and angular parameters of the guanine ring centroids are at the upper limits for effective π

. . . π interactions, suggested by the literature [41,42]. This property was also highlighted
by a low percentage contribution of C . . . C contacts in the fingerprint plots.
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Volume (Å3) 250.18 268.07
Packing coefficient 0.770978 0.725452

Density (g/cm3) 1.653 1.549
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The packing arrangements in both forms were compared to other crystal structures
with similar molecular arrangements. However, even though there were five more entries
in the CSD which involved ganciclovir as a component, only the two hydrates (mono- and
tri-), resulted in having one out of a cluster of 15 molecules, with a degree of similarity
when compared to both anhydrates [32] demonstrating the uniqueness of the packing
patterns of form I and II. This test also verified the significant differences between the way
in which both anhydrous forms were arranged three-dimensionally resulting in an RMS of
1.017 (see Figure 8).

3.5. Energy Frameworks

The thermodynamic stability profile of each of the polymorphs is a direct implication
of the nature and strength of their non-bonding interactions. Energy frameworks were
calculated in an attempt to understand the topological dissimilarities of the energy com-
ponents of the two polymorphs, and subsequently potentially link these characteristics
to their respective packing and thermal behavior [35]. The total energy is divided into
Coulomb forces/electrostatic potential forces and dispersion energy.

The negative energy components in form I are distributed along both parallel and non-
parallel molecules (Figure 10, top row), hence stabilizing the energy architecture throughout
the supramolecular structure in multiple directions. The dispersion forces can mainly
be traced along the off-centered parallel stacking (along the axis a), as well as between
adjacent molecules whose aromatic systems lie along the same plane. The strongest energy
contribution (−164 kJ/mol) is attributed to N1–H . . . O2 and N2–H . . . O4 interactions,
located between parallel molecules. The strength of these stabilizing interactions is due
to both electrostatic and dispersion forces, the former being the dominant one. The O4–
H . . . O3 contact contributes towards a lowering of energy (−56.4 kJ/mol), while the
combination of O3–H . . . N3 and C6–H . . . O1 interactions induces a further stabilizing
effect of −63.7 kJ/mol.
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Figure 10. Energy framework diagrams, using the CE-B3LYP model, a scale tube size of 20 and
cut-off value of 0 kJ/mol. The top row represents form I (viewed down the c axis), and the bottom
row is associated with form II (viewed down the b axis). Molecules are clustered around the central
molecule (pink) with a 3.8 Å radius.

In form II, N1–H . . . O1 and N2–H . . . N3 are the strongest interactions both of which
contribute towards the dominant electrostatic energy (−73.6 kJ/mol) along the planes of
aromatic rings. A secondary energy contribution (−45.2 kJ/mol) in the same direction is
attributable to the N1–H . . . O4 contact. The out-of-plane interactions are mainly a result
of dispersion contacts and the O4–H . . . O1 electrostatic interaction. However, such a
contribution is considerably low (−18.3 kJ/mol) relative to the other energy components
along the aromatic systems plane.
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The less exhaustive network of intermolecular bonding in form II, in conjunction with
the presence of an intramolecular bond, seems to enhance stability within the molecule.
In contrast, form I entails a very complex extensive framework of intermolecular contacts,
with 16 hydrogen bonds per molecule (and eight different neighboring molecules). Such
a multidirectional framework creates a greater stabilizing effect in form I, as illustrated
by the relatively thicker cylindrical radius of the total energy tubes (Figure 10). Such an
influence, coupled with a more compact packing arrangement, might contribute towards
a lower enthalpy in form I relative to form II, which according to L. Yu must be accom-
panied by a lower entropy in order to conserve the enantiotropic relationship between
the two polymorphs [18,43]. With an increase in temperature, in the range of 222 ◦C to
228 ◦C, enough energy is absorbed to break the intermolecular framework in form I, which
then transitions to form II (as confirmed by variable temperature X-ray diffraction and
differential scanning calorimetry) [15,17,18].

The relatively loose packing and the intermolecular framework in form II seems to be
constructed in such a way as to cater for higher energy environments. The energy framework
of this polymorph reveals how the stabilizing effect is expanded along planes, whereas much
fewer interactions are observed between layers. This lower extent of intermolecular forces
between parallel planes in form II might create an environment that can accommodate
higher entropy within the crystal structure, thereby allowing it to be thermodynamically
stable at higher temperatures.

3.6. Polymorph Assessment

The objective of this analysis revolved around stability assessment of the hydrogen
bond network present in both forms, given the complexity of the chemical environment
of ganciclovir. The reliability and predictive ability of the fitted logistic regression model
were mirrored by the value of the area under the ROC curve, which was equal to 0.878,
and by the reduction from the null to the residual deviance [44,45]. The same procedure
was performed for each form individually, and since they are polymorphs of the anhydrous
form of ganciclovir, very similar coefficients were obtained (Please refer to Supplementary
Materials). Minor differences can be attributed to the non-deterministic nature of the
process involving the fitting of the model. This outcome confirms the robustness of this
method, which is capable of assessing the stability of various polymorphs having different
hydrogen bonds simultaneously.

The final model was used to calculate the propensities of all possible intermolecular
hydrogen bonds, with those in form II having the highest probabilities (more conventional
contacts) (Please refer to Supplementary Materials). The overall low likelihood of the
intermolecular bonds in form I was illustrated in the putative structure landscape, which
categorized this polymorph as having the least stable hypothetical forms (Please refer to
Supplementary Materials). The utilization of every functional group in form I, for inter-
molecular bonding, might have been prioritized over the formation of the fewer and more
probable contacts.

It is understandable that due to low frequencies, the contacts in form I were ranked as
having lower probability, and hence low stability was predicted. However, this outcome
was not in agreement with the fact that form I is the thermodynamically stable polymorph,
under ambient conditions. At this point, it is essential to recall the statistical mechanism
behind the construction of the Hydrogen Bond Propensity (HBP) model, which is based on
the occurrence of hydrogen bonds in similar chemical environments. Therefore, in some
examples, the resultant model might not be sufficient to explain the complexity of hydro-
gen bonding and to capture the collective effects of multiple factors that determine the
polymorph stability [6]. In his research paper, Abramov commented how in general, a HBP
model cannot account for enantiotropic relationships between polymorphs, such as the
one between form I and II [6]. Moreover, one has to take into account that the directional
features and geometric parameters of the contacts are not being considered in the model,
and these characteristics have a significant effect on stability.
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In an attempt to overcome these limitations, the HBP model was constructed using a
much larger training set, but similar results were obtained. Despite such limitations, there
was still valuable information that could be extracted from these results. The putative struc-
ture landscape in Figure 11 portrays the presence of data points located very close to form
II, representing reasonable hypothetical structures having very strong hydrogen bond
interactions. The viability of the formation of such forms is highly encouraging in view of
further research dedicated to the exploration of other possible ganciclovir polymorphs.
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4. Conclusions

This investigation presents an extensive study of ganciclovir from a crystallographic
point of view, ranging from a structural to energy framework analysis. The methodology
developed has proven how the use of multiple computational tools which target the
examination of different characteristics, can be successful in providing a reasonable insight
into the mechanism of polymorphism. Furthermore, it can be implemented to extract
information about the influence of specific bonds and substituents on the formation of a
particular form, regardless of the complexity or nature of the molecule.

Such a dominant impact was observed through the folding of the chain moiety in
form II, which intrinsically affects its intramolecular and intermolecular characteristics.
On the other hand, full interaction maps and Hirshfeld surfaces demonstrated how the
extended chain moiety in form I enables the molecule to have an extensive network of
non-covalent contacts, with a significant degree of directionality. These properties were
identified as significant factors responsible for the known thermodynamic behavior of both
forms, ultimately resulting in the conformational polymorphism present between them.
The collective analysis of results from all molecular levels and energy frameworks provides
a plausible explanation for the stability of both polymorphs at different temperature ranges.

The nature of this methodology makes it applicable to a wide range of crystal forms,
even beyond active pharmaceutical ingredients. Such knowledge would facilitate the
selection of co-formers or environmental conditions to selectively target the formation of
a particular co-crystal. It would also aid navigation through the possibility of forming
other relatively stable polymorphs, as suggested by the putative landscape in the case of
ganciclovir. Therefore, the utilization of such data could lead to a more sustainable process
of drug development, as well as possibly improving the pharmacokinetic properties of this
active pharmaceutical ingredient.
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