

Supplementary

Unveiling the Unexpected Reactivity of Electrophilic Diazoalkanes in [3+2] Cycloaddition Reactions within Molecular Electron Density Theory

Luis R. Domingo 1,*, Mar Ríos-Gutiérrez 1 and Nivedita Acharjee 2

- ¹ Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain; rios@utopia.uv.es
- ² Department of Chemistry, Durgapur Government College, J. N. Avenue, Durgapur, West Bengal 713214, India; nivchem@gmail.com
- * Correspondence: domingo@utopia.uv.es

Index

- S2 1. BET study of the 32CA reaction of DAA 7 with NBD 11.
- S5 2. BET study of the 32CA reaction of DAA 10 with NBD 11
- S8 References.

S9 Table with the MPWB1K/6-311G(d,p) electronic chemical potential μ , chemical hardness η , electrophilicity ω and nucleophilicity N indices of DAAs 7–10 and NBD 11.

S10 Table with the MPWB1K/6-311G(d,p) calculated gas phase total energies, enthalpies, entropies and Gibbs free energies in au, computed at 298 K, of the stationary points involved in the 32CA reactions of DAAs **7–10**, with NBD **11**

S11 Table with the MPWB1K/6-311G(d,p) calculated total energies, enthalpies, entropies and Gibbs free energies, computed in au at 298 K in acetonitrile, of the stationary points involved in the 32CA reactions of DAAs **7–10**, with NBD **11**

1. BET study of the 32CA reaction of DAA 7 with NBD 11.

Krokoidis [1] proposed the bonding evolution theory (BET) to structure the molecular mechanism of a chemical reaction by the conjunction of ELF topological study [2,3] and Thom's catastrophe [4]. The energy cost (EC) for the electron density changes along the reaction path are determined by BET within the Molecular electron Density Theory (MEDT) framework [5-7]. Herein, the BET study for the 32CA reaction of DAA 7 with NBD **11** is presented. Identification of catastrophe along this reaction allowed dividing into nine topological *phases*. The ELF valence basin populations, energy cost and GEDT at the identifying IRC points of each *phase* and pyrazoline **12** are given in Table S1.

Phase I starts at **S0-I** (d_{N1-C5} = 3.02 Å, d_{C3-C4} = 3.14 Å) with GEDT = 0.03 e. The ELF of **S0-I** is similar to the reagents **7** and **11**, except that the two monosynaptic basins V(N1) and V'(N1) integrating 3.78 e in **7** have merged into single monosynaptic basin V(N1) integrating 3.77 e in **S0-I**. The low GEDT value suggests minimal electronic flux between the two reacting frameworks at this point.

Phase II starts at **S1-I** (d_{N1-C5} = 2.40 Å, d_{C3-C4} = 2.34 Å) with GEDT = 0.10 e. At this point, the monosynaptic basin V(N2) integrating 1.26 e is created which is associated with the non-bonding electron density at the N2 nitrogen. The N1–N2 and C3–N2 bonding regions of the DAA framework are depopulated to accumulate this non-bonding electron density at N2. The disynaptic basins V(N1,N2) and V'(N1,N2) undergo depopulation from 3.75 e at **S0-I** to 3.33 e at **S1-I**. The disynaptic basin V(C3,N2) is depopulated from 3.04 e at **S0-I** to 2.32 e at **S1-I**, which mainly contributes to the formation of monosynaptic basin V(N2). The N1-N2 and C3-N2 bonding regions experience depopulation along the reaction path until the geometry is finally relaxed to pyrazoline **12**, while the non-bonding electron density at N2 increases progressively reaching the ELF basin population of 2.70 e in pyrazoline **12**. Note that GEDT increases from 0.03 e at **S0-I** to 0.10 e at **S1-I**, and the global electronic flux is predicted as forward electron density transfer [8] (FEDF) from DAA **7** to NBD **11** demanding the EC of 14.9 kcal mol⁻¹.

Phase III starts at **S2-I** ($d_{N1-C5}=2.38$ Å, $d_{C3-C4}=2.31$ Å) with GEDT = 0.10 e. At this point, the two disynaptic basins V(C4,C5) and V'(C4,C5) are merged into one V(C4,C5) basin indicating the rupture of C4–C5 double bond demanding energy cost of 15.4 kcal mol⁻¹, with the FEDF process of GEDT 0.10 e. **TS1** belongs to this phase, suggesting that the activation energy of this 32CA reaction is associated with the formation of lone pair electron density at N2 nitrogen and the rupture of C4–C5 double bond.

Phase IV starts at **S3-I** ($d_{N1-C5} = 2.27$ Å, $d_{C3-C4} = 2.16$ Å) and is associated with the formation of monosynaptic basin V(C4) integrating 0.24 e, associated with the formation of *pseudoradical* centre at C4, required for the formation of C3–C4 single bond. Note that the disynaptic basin V(C4,C5) is depopulated from 3.34 at **S2-I** to 3.08 e at **S3-I**, to create the *pseudoradical* centre at C4.

Phase V starts at **S4-I** ($d_{N1-C5} = 2.23$ Å, $d_{C3-C4} = 2.10$ Å) and is associated with the formation of monosynaptic basin V(C5) integrating 0.30 e, associated with the formation of *pseudoradical* centre at C5, which is required for the formation of N1–C5 single bond. Note that the disynaptic basin V(C4,C5) is depopulated from 3.08 at **S3-I** to 2.68 e at **S4-I**.

Phase VI starts at **S5-I** ($d_{N1-C5} = 2.20$ Å, $d_{C3-C4} = 2.05$ Å), identified by the formation of disynaptic basin V(C3,C4) integrating 1.36 e. At this point, the first C3–C4 bond formation begins which finally reaches the ELF basin population of 1.94 e in the cycloadduct **6**. Note that the C3–C4 bond is formed by the coupling of C3 and C4 *pseudoradical* centres, indicated by the disappearance of monosynaptic basins V(C3) and V(C4) at **S5-I**.

Phase VII starts at **S6-I** ($d_{N1-C5}=2.14$ Å, $d_{C3-C4}=1.96$ Å). At this point, the two disynaptic basins V(N1,N2) and V'(N1,N2) integrating 1.46 e and 1.45 e at **S5-I** are merged into one V(N1,N2) basin integrating 2.82 e at **S6-I**.

Phase VIII starts at **S7-I** ($d_{N1-C5} = 2.06$ Å, $d_{C3-C4} = 1.85$ Å), characterised by the splitting of the monosynaptic basin V(N1) into two monosynaptic basins V(N1) and V'(N1). Finally, *Phase XI* starts at **S8-I** ($d_{N1-C5} = 1.84$ Å, $d_{C3-C4} = 1.63$ Å), identified by the formation of

V(N1,C5) disynaptic basin integrating 1.51 e associated with the formation of the second N1–C5 bond at the distance of 1.84 Å by coupling of the *pseudoradical* centre at C5 and a part of non-bonding electron density at N1 nitrogen [6]. The molecular geometry is finally relaxed at d_{N1-C5} = 1.46 Å, d_{C3-C4} = 1.52 Å in pyrazoline **12**. The formation of the second N1–C5 bond begins when the first C3–C5 bond has been 93 % completed, suggesting a highly asynchronous process of bond formation.

Table 1. ELF valence basin populations, distances of the forming bonds, and relative^a electronic energies of the IRC structures **S0-I–S8-I** defining the nine phases characterizing the molecular mechanism of the 32CA reaction of simplest DAA **7** and NBD **11**. Distances are given in angstroms, Å, and relative energies in kcal·mol⁻¹.

	H,	N ₂	+	11		→ (12		Ň	
Phases	Ι	II	III	IV	V	VI	VII	VIII	L	X
Structures	S0-I	S1-I	S2-I	S3-I	S4-I	S5-I	S6-I	S7-I	S8-I	12
d(N1–C5)	3.02	2.40	2.38	2.27	2.23	2.20	2.14	2.06	1.84	1.46
d(C3–C4)	3.14	2.34	2.31	2.16	2.10	2.05	1.96	1.85	1.63	1.52
ΔE	0.0	14.9	15.4	15.0	13.0	10.6	5.2	-4.7	-29.0	-53.5
GEDT	0.03	0.10	0.10	0.09	0.08	0.07	0.04	0.01	0.06	0.13
V(N1)	3.77	3.66	3.66	3.64	3.64	3.65	3.66	2.99	2.82	2.70
V'(N1)								0.70		
V(N1,N2)	1.88	1.66	1.63	1.51	1.49	1.46	2.82	2.76	2.65	2.52
V'(N1,N2)	1.87	1.67	1.64	1.53	1.46	1.45				
V(C3,N2)	3.04	2.32	2.17	1.96	1.93	1.91	1.87	1.84	1.80	1.80
V(C3)	0.41	0.81	0.83	0.90	0.93					
V'(C3)	0.42									
V(N2)		1.26	1.47	1.97	2.11	2.20	2.34	2.46	2.62	2.70
V(C4,C5)	1.73	1.66	3.34	3.08	2.68	2.54	2.36	2.23	2.03	1.91
V'(C4,C5)	1.73	1.69								
V(C4)				0.24	0.35					
V(C5)					0.30	0.37	0.47	0.52		
V(C3,C4)						1.36	1.48	1.59	1.81	1.94
V(N1,C5)									1.51	1.84

2. BET study of the 32CA reaction of DAA 10 with NBD 11

Identification of catastrophe along the 32CA reaction of DAA **10** with NBD **11** allows dividing the reaction into seven ELF topological *phases*. The ELF valence basin populations, energy cost and GEDT at the identifying IRC points of each *phase* and pyrazoline **22** are given in Table S2.

Phase I starts at **S0-II** (d_{N1-C5} = 3.07 Å, d_{C3-C4} = 3.02 Å) with GEDT = 0.02 e. The ELF of **S0-II** is similar to DAA **10** with NBD **11**. The low GEDT value suggests minimal electronic flux between the two reacting frameworks at this point.

Phase II starts at **S1-II** ($d_{N1-C5} = 2.29$ Å, $d_{C3-C4} = 2.48$ Å) with GEDT = 0.03 e and EC is 18.6 kcal mol⁻¹. At this point, the monosynaptic basin V(N2) integrating 1.03 e is created which is associated with the non-bonding electron density at the N2 nitrogen. The N1-N2 and C3–N2 bonding regions of the diazoalkane framework are depopulated to accumulate this non-bonding electron density at N2. The disynaptic basins V(N1,N2) and V'(N1,N2) undergo depopulation from 4.02 e at **S0-II** to 3.46 e at **S1-II**. The disynaptic basin V(C3,N2) is depopulated from 2.82 e at **S0-II** to 2.47 e at **S1-II**. The N1-N2 and C3-N2 bonding regions experience depopulation along the reaction path until the geometry is finally relaxed to pyrazoline **22**, while the non-bonding electron density at N2 increases progressively reaching the basin population of 2.69 e in pyrazoline **22**. Note that GEDT at **S1-II** is 0.03 e suggests minimal electronic flux between the two reacting frameworks.

Phase III starts at **S2-II** ($d_{N1-C5} = 2.22$ Å, $d_{C3-C4} = 2.42$ Å) with GEDT = 0.01 e. At this point, the two disynaptic basins V(C4,C5) and V'(C4,C5) are merged into one V(C4,C5) basin indicating the rupture of C4–C5 double bond demanding energy cost of 20.9 kcal mol⁻¹, with GEDT 0.01 e. **TS6** belongs to this phase, suggesting that the activation energy of this 32CA reaction is associated with the formation of lone pair electron density at N2 nitrogen and the rupture of C4–C5 double bond. It is worth mentioning that this phase begins with a GEDT value of 0.01 e at **S2-II**, reaching 0.04 e at **TS11**, classifying this 32CA reaction of NEDF. The EC demanded for reach **S2-II**, 20.9 kcal mol⁻¹, accounts for the high activation energy associated to this 32CA reaction, 23.3 kcal mol⁻¹.

Phase IV starts at **S3-II** ($d_{N1-C5} = 2.02$ Å, $d_{C3-C4} = 2.23$ Å) and is associated with the formation of monosynaptic basin V(C4) and V(C5) basins integrating 0.18 e and 0.27 e respectively, associated with the formation of *pseudoradical* centres at C4 and C5, required for the formation of C3–C4 and N1–C5 single bonds. Note that the disynaptic basin V(C4,C5) is depopulated from 3.26 at **S2-II** to 2.72 e at **S3-II**, to create the *pseudoradical* centres at C4 and C5.

Phase V starts at **S4-II** (d_{N1-C5} = 1.93 Å, d_{C3-C4} = 2.15 Å), characterised by the splitting of the monosynaptic basin V(N1) integrating 3.51 e into two monosynaptic basins V(N1) and V'(N1) integrating 2.98 e and 0.60 e respectively.

Phase VI starts at **S5-II** ($d_{N1-C5} = 1.89$ Å, $d_{C3-C4} = 2.11$ Å), identified by the formation of disynaptic basin V(C3,C4) integrating 1.25 e. At this point, the first C3–C4 bond formation begins which finally reaches the ELF basin population of 1.95 e in pyrazoline **22**. Note that the C3–C4 bond formed by the coupling of C3 and C4 *pseudoradical* centres, indicated by the disappearance of monosynaptic basins V(C3) and V(C4) at **S5-II**.

Finally, *Phase VII* starts at **S6-II** ($d_{N1-C5} = 1.82$ Å, $d_{C3-C4} = 2.03$ Å), identified by the formation of V(N1,C5) disynaptic basin integrating 1.38 e associated with the formation of the second N1–C5 bond at the distance of 1.82 Å by coupling of the *pseudoradical* centre at C5 and a part of non-bonding electron density at N1 nitrogen [6]. The molecular geometry is finally relaxed at $d_{N1-C5} = 1.46$ Å, $d_{C3-C4} = 1.53$ Å in pyrazoline **22**. The formation of the second N1–C5 bond begins when the first C3–C5 bond has been 70 % completed, suggesting a less asynchronous process relative to that observed in the 32CA reaction of DAA **10** with NBD **11**.

Table 2. ELF valence basin populations, distances of the forming bonds, and relative^a electronic energies of the IRC structures **S0-II–S6-II** defining the seven phases characterizing the molecular mechanism of the 32CA reaction of DAA **10** and NBD **11.** Distances are given in angstroms, Å, and relative energies in kcal·mol⁻¹.

EtC		² +		-		→ 〔	\bigcirc	
	10)		11			22 EI	:O ₃ C
Phases	Ι	II	III	IV	V	VI	V	II
Structures	S0-II	S1-II	S2-II	S3-II	S4-II	S5-II	S6-II	22
d(N1-C5)	3.07	2.29	2.22	2.02	1.93	1.89	1.82	1.46
d(C3–C4)	3.02	2.48	2.42	2.23	2.15	2.11	2.03	1.53
ΔE	0.0	18.6	20.9	22.4	19.4	16.9	11.4	-30.0
GEDT	0.02	0.03	0.01	0.08	0.11	0.13	0.15	0.19
V(N1)	3.43	3.40	3.41	3.51	2.98	2.85	2.78	2.65
V'(N1)					0.60	0.77		
V(N1,N2)	2.14	2.01	1.93	1.71	2.85	2.80	2.74	2.56
V'(N1,N2)	1.88	1.45	1.37	1.25				
V(C3,N2)	2.82	2.47	2.22	1.97	1.95	1.94	1.94	1.81
V(C3)	0.29	0.55	0.62	0.79	0.85			
V'(C3)	0.59							
V(N2)		1.03	1.45	2.12	2.28	2.36	2.44	2.69
V(C4,C5)	1.74	1.64	3.26	2.72	2.47	2.38	2.26	1.91
V'(C4,C5)	1.72	1.68						
V(C4)				0.18	0.32			
V(C5)				0.27	0.41	0.45		
V(C3,C4)						1.25	1.36	1.95
V(N1,C5)							1.38	1.85

References.

- 1. Krokidis, X.; Noury, S.; Silvi, B. Characterization of Elementary Chemical Processes by Catastrophe Theory. *J. Phys. Chem. A.*, **1997**, *101*, 7277. https://doi.org/10.1021/jp9711508
- 2. Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems, *J. Chem. Phys.* **1990**, *92*, 5397–5403. https://doi.org/10.1063/1.458517
- 3. Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions, *Nature* 1994, *371*, 683–686. https://www.nature.com/articles/371683a0
- 4. Thom, R. Stabilité Structurelle et Morphogénèse; Intereditions, Paris, 1972
- 5. Domingo, L.R. Molecular electron density theory. *Molecules.* 2016, 21, 1319. https://doi.org/10.3390/mole-cules21101319
- Ríos-Gutiérrez, M.; Domingo, L.R. Unravelling the mysteries of the [3+2] cycloaddition reactions. *Eur. J. Org. Chem.* 2019, 267–282. https://doi.org/10.1002/ejoc.201800916
- Domingo, L.R.; Acharjee, N. Molecular Electron Density Theory: A New Theoretical Outlook on Organic Chemistry. in *Frontiers in Computational Chemistry*, Bentham and Science (Ed. Z. Ul-Haq, A. K. Wilson), Singapore, 2020, 5, 174-227. https://doi.org/10.2174/9789811457791120050007
- 8. Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez. P. A molecular electron density theory study of the participation of tetrazines in aza-Diels–Alder reactions. *RSC Adv*. 2020, *10*, 15394-15405. https://doi.org/10.1039/D0RA01548B

	μ	η	ω	Ν
DAA10	-4.52	7.23	1.41	2.26
DAA 8	-4.33	6.73	1.39	2.71
DAA 9	-4.18	7.15	1.22	2.64
DAA 7	-3.55	7.10	0.89	3.30
NBD 11	-3.23	7.83	0.66	3.26

Table 3. MPWB1K/6-311G(d,p) electronic chemical potential μ , chemical hardness η , electrophilicity ω and nucleophilicity *N* indices, in eV, of DAAs **7-10** and NBD **11**.

Table 4. MPWB1K/6-311G(d,p) calculated gas phase total energies (au), enthalpies (au), entropies (cal mol⁻¹ K⁻¹) and Gibbs free energies (au), computed at 298 K, of the stationary points involved in the 32CA reactions of DAAs **7–10**, with NBD **11**.

	E	Н	S	G
7	-148.69435	-148.657068	58.873	-148.68504
8	-415.844663	-415.72723	89.001	-415.769517
9	-493.007389	-492.869224	95.64	-492.914666
10	-568.466717	-568.30722	107.406	-568.358252
11	-271.404078	-271.266391	69.543	-271.299433
TS1	-420.073079	-419.896687	86.141	-419.937615
12	-420.183805	-420.001483	81.086	-420.040009
TS2	-420.072024	-419.895795	85.499	-419.936418
13	-420.182658	-420.000379	80.875	-420.038806
TS3	-687.218670	-686.962688	116.244	-687.017919
14	-687.318889	-687.057769	112.029	-687.110998
TS4	-687.213751	-686.95766	114.422	-687.012026
15	-687.315871	-687.054554	109.346	-687.106508
TS5	-687.217623	-686.961532	115.995	-687.016645
16	-687.321001	-687.059564	111.168	-687.112384
TS6	-687.216211	-686.960401	117.184	-687.016079
17	-687.318993	-687.057956	115.091	-687.112639
TS7	-764.377342	-764.100582	119.285	-764.157258
18	-764.475762	-764.194883	110.135	-764.247211
TS8	-764.375875	-764.098805	116.898	-764.154346
19	-764.474433	-764.19222	113.000	-764.24591
TS9	-764.376856	-764.099803	118.229	-764.155977
20	-764.47724	-764.195036	114.649	-764.249509
TS10	-764.378599	-764.102027	119.173	-764.15865
21	-764.482603	-764.200579	114.079	-764.254782
TS11	-839.833689	-839.535002	129.212	-839.596395
22	-839.918716	-839.616332	128.989	-839.677619
TS12	-839.829094	-839.530588	128.497	-839.591641
23	-839.926699	-839.624244	127.09	-839.684629
TS13	-839.832754	-839.535015	130.981	-839.597249
24	-839.924998	-839.622756	133.848	-839.686352
TS14	-839.828571	-839.530332	127.416	-839.590872
25	-839.921068	-839.618605	126.33	-839.678629

	Е	Н	S	G
7	-148.697971	-148.660962	57.47	-148.688268
8	-415.853846	-415.737226	89.747	-415.779867
9	-493.021776	-492.884693	95.538	-492.930087
10	-568.476852	-568.317887	107.191	-568.368817
11	-271.409144	-271.27258	69.619	-271.305658
TS1	-420.080447	-419.90526	86.266	-419.946248
12	-420.195714	-420.014475	81.136	-420.053025
TS2	-420.079059	-419.903991	85.492	-419.944611
13	-420.195114	-420.013908	80.956	-420.052373
TS3	-687.231098	-686.976676	116.894	-687.032217
14	-687.336732	-687.076882	111.144	-687.12969
TS4	-687.225838	-686.971464	115.409	-687.026298
15	-687.335209	-687.075452	110.167	-687.127795
TS5	-687.229657	-686.974992	115.26	-687.029756
16	-687.336792	-687.076919	112.92	-687.130571
TS6	-687.228138	-686.973966	116.932	-687.029524
17	-687.336102	-687.076454	113.571	-687.130415
TS7	-764.393769	-764.118933	118.12	-764.175056
18	-764.493208	-764.213033	122.807	-764.271382
TS8	-764.392628	-764.117971	118.865	-764.174447
19	-764.498509	-764.217877	112.944	-764.27154
TS9	-764.392619	-764.117578	118.400	-764.173834
20	-764.496626	-764.216391	115.619	-764.271326
TS10	-764.394578	-764.119827	119.264	-764.176493
21	-764.500661	-764.220645	115.062	-764.275315
TS11	-839.848424	-839.551108	129.03	-839.612414
22	-839.940461	-839.63928	128.472	-839.700321
TS12	-839.843494	-839.546462	128.895	-839.607704
23	-839.943924	-839.642831	125.585	-839.702501
TS13	-839.847954	-839.550908	130.712	-839.613013
24	-839.943531	-839.642447	128.169	-839.703345
TS14	-839.843147	-839.545945	126.185	-839.605899
25	-839.940838	-839.639635	127.604	-839.700263

Table 5. MPWB1K/6-311G(d,p) calculated total energies (au), enthalpies (au), entropies (cal mol⁻¹ K⁻¹) and Gibbs free energies (au) at 298 K in acetonitrile, of the stationary points involved in the 32CA reactions of DAAs **7–10**, with NBD **11**.