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The description of supramolecular chemistry as “chemistry beyond the molecule”
(Jean-Marie Lehn, 1987 Nobel Lecture and Gautam R. Desiraju, Nature, 2001, 412, 397)
encompasses the wide variety of weak, non-covalent interactions that are the basis for the
assembly of supramolecular architectures, molecular receptors and molecular recognition,
programed molecular systems, dynamic combinatorial libraries, coordination networks and
functional supramolecular materials. For this issue of Chemistry, the theme of “Supramolec-
ular Chemistry in the 3rd Millennium” attracted eighteen contributions that cover a broad
spectrum of supramolecular assemblies and exemplify the unity of contemporary multi-
disciplinary science, in which organic, inorganic, physical and theoretical chemists work
together with molecular biologists and physicists to develop a systems-level understanding
of molecular interactions.

The issue features two reviews which focus, respectively, on supramolecular metalla-
assemblies combining coordination and hydrogen bonds (Therrien) [1] and uranyl ion
coordination compounds of polycarboxylates (Harrowfield and Thuéry) [2].

Supramolecular interactions are critical to selective binding within receptor molecules
and host–guest chemistry, and several papers illustrate these principles using hydroquinone-
based anion receptors (Gale and coworkers) [3], cucurbit[7]uril (Redshaw and cowork-
ers) [4] and self-assembled n-alkyl-benzoureido-15-crown-5-ethers as selective ion-channels
for K+ cations (Barboiu and coworkers) [5]. Dalgarno and coworkers contribute with a
fascinating investigation of cage assembly using p-tBu-calix[4]arene building blocks [6].
Catalysis carried out within the confines of molecular or supramolecular cages is a topical
area, and Ward and his coauthors describe a beautiful example exploiting a cubic M8L12
coordination cage [7]. The assembly of highly symmetric metal–cyclo-tricatechylene cages
supported within a three-dimensional cubic hydrogen-bonded network is described by
Abrahams and coworkers [8].

The introduction of sulfur atoms into ligands often leads to interesting supramolecular
interactions. For example, close S...S contacts. Carballo, Belén Lago and coworkers illustrate
the different supramolecular interactions that predominate in the structures of the copper(II)
coordination compounds of two flexible bis-tetrazole organosulfur ligands [9]. Copper(II)
coordination compounds containing Schiff base ligands have been designed by Marques
Netto and coworkers as model systems to realize allosteric behavior by regulating the
equilibrium between monomeric and dimeric species [10].

Supramolecular interactions play a vital role in the assembly of molecular helicates,
and it is therefore fitting that this area of chemistry is represented in this themed issue
– the assembly of enantiopure M4L4 helicates is described in a study from Turner and
coworkers [11]. Moving from multinuclear helicates to coordination polymers takes us on
to contributions that describe supramolecular assemblies containing trinuclear copper(II)–
pyrazolato units (Raptis, Boudalis, Herchel and coworkers) [12] and chloro-substituted
pyrazin-2-aminocopper(I) assemblies featuring hydrogen bond and halogen bond inter-
actions (Mailman, Rissanen and coworkers) [13]. Halogen bonds are a relatively new
addition to the array of supramolecular interactions and also feature in the assembly of
architectures comprising tetrakis(4-(iodoethynyl)phenyl)methane and 1,3,5,7-tetrakis(4-
(iodoethynyl)phenyl)adamantane building blocks (Aakeröy and coworkers) [14]. This
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work nicely illustrates the potential for halogen bonding in the assembly of porous molec-
ular solids. Bourne and coworkers report a series of cobalt- or zinc-based metal organic
frameworks (MOFs) containing pyridylbenzoate linkers [15]. The three-dimensional assem-
blies comprise non-interpenetrated frameworks that retain their structure upon activation
under vacuum, and the study extends to the sorption capacity of the assemblies and their
selectivity for volatile organic compounds (VOCs).

Cocrystallization and polymorphism, respectively, are the topics of articles from Merz
and coworkers [16] and from Baisch, Vella-Zarb and coworker [17]. This latter article
presents an interesting holistic crystallographic study of the antiviral ganciclovir. Baisch
and Vella-Zarb also present the crystal structure of N,N′,N”,N′ ′ ′-tetraisopropylpyrophos
phoramide and compare the supramolecular interactions with those found in the solid-state
structures of other pyrophosphoramides [18].

The range of topics in this themed issue of Chemistry illustrates the diverse nature of
the research areas which depend upon supramolecular interactions, and I am grateful to
all the authors who contributed to this issue.
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