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Abstract: Rifamycins are an extremely important class of antibacterial agents whose action results
from the inhibition of DNA-dependent RNA synthesis. A special arrangement of unsubstituted
hydroxy groups at C21 and C23, with oxygen atoms at C1 and C8 is essential for activity. Moreover,
it is known that the antibacterial action of rifamycin is lost if either of the two former hydroxy
groups undergo substitution and are no longer free to act in enzyme inhibition. In the present
work, we describe the successful use of an Alder-Ene reaction between Rifamycin O, 1 and diethyl
azodicarboxylate, yielding 2, which was a targeted introduction of a relatively bulky group close to
C21 to protect its hydroxy group. Many related azo diesters were found to react analogously, giving
one predominant product in each case. To determine unambiguously the stereochemistry of the
Alder-Ene addition process, a crystalline zwitterionic derivative 3 of the diethyl azodicarboxylate
adduct 2 was prepared by reductive amination at its spirocyclic centre C4. The adduct, as a mono
chloroform solvate, crystallized in the non-centrosymmetric Sohnke orthorhombic space group,
P212121. The unique conformation and absolute stereochemistry of 3 revealed through X-ray crystal
structure analysis is described.

Keywords: Rifamycin O; ansamysin; antibacterial; semi-synthesis; Alder-Ene; conformation; zwitte-
rionic; hydrogen bonding; absolute configuration; chirality; crystal structure; X-ray crystallography

1. Introduction

The rifamycins constitute an important class of ansamycin antibiotic active against
mycobacteria and other bacterial pathogens, also exhibiting antiviral properties. These
molecules are comprised of a substituted naphthalene or naphthoquinone core spanned
by a seventeen-membered aliphatic ansa bridge. A vast number of semi-synthetic ri-
famycins have been produced by structural modification of the aromatic region of naturally
occurring rifamycins [1]. The important bridging ansa moiety has not been so inten-
sively studied, though recent highlights are the excellent antibacterial activity found for
24-desmethylrifampicin [2]; and the synthesis of C25 carbamate derivatives which are
resistant to ADP-ribosyl transferases [3]. The present work was directed at the introduction
of a bulky group close to the hydroxy group on C21 of Rifamycin O, 1, Scheme 1, to inhibit
transferase deactivation [4,5]. Attempts to carry out a Diels–Alder reaction with dimethyl
acetylenedicarboxylate, hoping to exploit the cisoid diene arrangement of 1, torsion angle
36◦, in the crystal [6] proved unsuccessful; however, gratifyingly, we found that diethyl
azodicarboxylate and related diesters reacted readily and quantitatively giving a major
product, along with a by-product in each case. The disappearance of a methyl doublet from
the proton NMR spectrum with introduction of an allylic methyl singlet at lower field (see
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methyl assignments in Experimental) clearly pointed to an Alder-Ene reaction [7,8] rather
than a Diels–Alder reaction for which four methyl doublets would have been expected. MS
confirmed a 1:1 adduct had been formed and inspection of a tactile Dreiding model of 1
revealed that azo nitrogen attack at the C18 alkene face giving an S configuration at C18
would, to effect hydrogen abstraction from C20, lead to a trans (E) double bond between
C19 and C20. Corresponding alternative attack on the opposite alkene face would lead
to an R configuration at the C18 stereogenic centre with a predicted cis (Z) double bond
formed between C19 and C20. Although product 2 was obtained stereochemically pure
at C4 (single AB quartet for the diastereotopic methylene protons of the spirolactone at
C4), suitable single crystals for X-ray analysis could not be obtained. However, crystals
were obtained from chloroform for 3, which was derived from 2 by reductive amination as
described in the Experimental section below and this resolved the stereochemical question
and also revealed an unprecedented ansa-chain conformation.
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2. Materials and Methods

Typical reaction conditions for 2: compound 1 (1g, 0.00132 mmol) and diethyl azodi-
carboxylate (0.69 g, 0.00396 mmol) were refluxed in toluene (40 mL) under argon for 5 h and
then left at 50 ◦C for one week. The toluene was removed, and the reaction product boiled
in iso-propanol and then cooled and filtered, yielding 2 as a yellow powder. Assignments
for the methyl resonances of 2: 1HNMR (400 MHz, CDCl3), δH, C34, 0.16, 3H, d, J = 7 Hz;
C33, 0.60, 3H, d, J = 7 Hz; C32, 1.02, 3H, d, J =7 Hz; C40 or C43, 1.22, 3H, t, J = 7 Hz; C40
or C43, 1.28, 3H, t, J = 7 Hz; C13, 1.68, 3H, s; C31, 1.77, 3H, s; C30,1.96, 3H, s; C36, 2.06,
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3H, s; C14, 2.20, 3H, s; C37, 3.06, 3H, s. It may be noted that the spectrum, relevant to a
future analysis of the conformational situation in solution, not considered here, shows
retention of all functional groups including the unaltered (E) vinyl ether bridge component.
Dimethyl azodicarboxylate and related, diisopropyl and dibenzyl esters, for example, all
exhibited similar reactivity with respect to the Alder-Ene reaction with Rifamycin O 1. The
Alder-Ene reactions were quantitative, a single minor by-product being formed in each
case; typical ratios being approximately 5:1. 1HNMR data were collected on a Bruker AV
III 400 MHz spectrometer.

Compound 2 was converted with modest yield into 3 by employing the general
reductive amination procedure of Cricchio and Tamborini as described in [9], in which,
interestingly, the amine acts a reducing agent. An excess of dimethylamine methanol
solution was added by syringe to compound 2 in dry degassed THF and this was then
left in the dark at 50 ◦C for a week. The THF was removed and the reaction product was
dissolved in ethyl acetate and shaken with 7.4 pH phosphate buffer. The acetate layer was
washed with water, dried, and the solvent evaporated to give 3. Crystallisation of 3 proved
challenging. However, small colourless single crystals of a plate morphology suitable for
X-ray analysis were obtained from a CHCl3 solution.

X-ray intensity data for 3 were collected at 100(1)K on a Rigaku Oxford Diffraction
SuperNova Dual-flex AtlasS2 diffractometer equipped with an Oxford Cryosystems Cobra
cooler using Cu Kα radiation (λ = 1.54178 Å). The crystal structure was solved with SHELXT-
2018/2 [10] and refined with SHELXL-2018/3 [11]. Hydrogen atoms bound to carbon were
placed at geometrically calculated positions with Cmethine-H = 1.00 Å, Cmethylene-H = 0.99 Å,
Cmethyl-H = 0.98 Å, Caromatic-H = 0.95 Å. These hydrogen atom positions were refined using
a riding model with Uiso(H) = 1.2 Ueq (C) (1.5 Ueq (C) for methyl groups). Methyl group
torsion angles were allowed to refine whilst maintaining an idealized tetrahedral geometry.
Heteroatom (N-H, O-H) hydrogen atoms were located via a difference Fourier synthesis
and their positions and isotropic temperature factors were allowed to refine freely. Values
of the Flack x parameter [12] were obtained from the final refinement cycle of SHELXL.
Two values were calculated, the first using the TWIN and BASF instructions and the second
using the Parsons method of Intensity Quotients [13]. The Hooft y parameter [14–16] was
calculated through the implementation in the program PLATON [17]. Details of the sample,
data collection and structure refinement are given in Table 1. Crystal packing and structural
overlay figures were produced using the CCDC program Mercury [18].

Table 1. Sample, data collection and structure refinement for compound 3.

Compound 3

Empirical formula C45H62N4O15, CHCl3
Mr 1018.35

T (K) 100(1)
Wavelength CuKα (1.54178 Å)

Crystal system Orthorhombic
Space group P212121

a (Å) 14.4057(4)
b (Å) 14.9409(3)
c (Å) 22.8735(7)
α (◦) 90
β (◦) 90
γ (◦) 90

V, (Å3) 4923.2(2)
Z′, Z 1, 4

ρcalc (Mg m−3) 1.374
µ (mm−1) 2.287
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Table 1. Conts.

Compound 3

F(000) 2152
Crystal colour, shape

Size (mm)
Colourless, plate

0.251 × 0.250 × 0.071
Diffraction limit 0.80 Å

Coverage, % 99.9
Friedel coverage, % 81.0

Friedel fraction max % 99.8
Reflections collected/unique 26,683/10,050

Rint 0.0406
Observed reflections, I > 2σ(I) 9228

Tmin, Tmax 0.748, 1.000
Data/restraints/parameters 10,050/0/650

GOF, (S) on F2 1.035
R1 [I > 2σ(I)] 0.0422
wR2 (all data) 0.1140

Flack x parameter (refined) −0.003(18)
Flack x parameter (from 3814 quotients) −0.009(9)

Hooft y parameter −0.008(6)
Min/max residual density (e Å−3) 0.658/−0.481

CCDC deposition number 2,045,594

CCDC 2049954 contains the supplementary crystallographic data for compound 3,
which can be obtained free of charge from The Cambridge Crystallographic Data Centre,
see www.ccdc.cam.ac.uk/structures.

3. Results

Small colourless crystals of 3 exhibiting a plate morphology were obtained from
slow evaporation of a chloroform solution. The asymmetric unit of the structure consists
of a single fully ordered molecule of compound 3 and a single fully ordered molecule
of chloroform as a solvate. The structure refined very well in the non-centrosymmetric
Sohnke orthorhombic space group, P212121 and gave a final residual R-factor based on
the observed data of R1 [I > 2σ(I)] = 4.22 %. Figure 1 shows the asymmetric unit viewed
obliquely from below the plane of the basal naphthenic moiety. Figure 2 shows a view of
molecule of compound 3 with -CH hydrogen atoms removed for clarity and intramolecular
contacts as green dashed lines; this view is obliquely down onto the plane of the basal
naphthenic moiety. Selected torsion angle and intermolecular contact distances are listed
in Table 2 along with comparative data for Rifamycin O, 1 and Rifamycin S, 4 (CSD codes
PUTDUD [1] and PAFRAP [19]). Geometric hydrogen bond data are given in Table 3.
The structure is zwitterionic, reflecting the high acidity of the OH group on C8, see for
example [20–22]. The substituted 1,2-Dihydro-naphtho[2,1-b]furan moiety defined by
atoms C1 to C12, O3 is planar with an r.m.s. deviation of the fitted atoms of 0.0586 Å, with
atom C2 showing the greatest deviation from planarity, −0.124(3) Å. The single chloroform
solvate molecule in the symmetric unit forms two short C-H···O interactions of [H46···O1,
2.395 Å] and [H46···O14, 2.255 Å]. There is possibly a small rotational disorder component
to the solvent molecule, as evidenced by the small difference density maxima located near
the chlorine atoms.

www.ccdc.cam.ac.uk/structures
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Table 2. Selected torsion angles (◦) and intramolecular contact distances (Å) for compound 3 and
related structures *.

Torsion Angle Compound
3

Rifamycin O
PUTDUD, 1

Rifamycin S
PAFRAP, 4

C2-N1-C15-C16 −173.29(3) −176.4 −177.3
N1-C15-C16-C17 59.8(4) 63.6 92.8
O3-C12-O5-C29 −85.2(3) −81.7 −61.6
C12-O5-C29-C28 66.0(4) 65.9 −117.2
C21-C22-C23-C24 55.0(4) 63.2 60.4
C20-C21-C22-C23 176.0(3) −172.1 −174.8
C25-C26-C27-C28 −171.6(3) 56.0 −172.3
C16-C17-C18-C19 146.4(3) 36.5 178.8
C17-C18-C19-C20 −136.4(3) −178.6 −175.3
C18-C19-C20-C21 −1.2(5) 117.4 −45.6
C19-C20-C21-C22 92.8(4) 172.5 −175.6

Intramolecular
Contact Distance

Compound
3

Rifamycin O
PUTDUD, 1

Rifamycin S
PAFRAP, 4

O1······O2 2.436(4) 2.538 2.566
O1······O9 7.622(4) 4.300 7.245

O1······O10 6.906(4) 2.912 6.205
O2······O9 8.276(4) 3.613 6.166

O2······O10 7.811(4) 3.980 7.836
O9······O10 2.711(4) 2.702 2.689
C2······C33 3.474(5) 6.601 6.314
C3······C33 3.383(5) 6.442 5.858

* Structural data for Rifamycin O and Rifamycin S, CSD codes PUTDUD and PAFRAP are taken from [1] and [19],
respectively.

Table 3. Intra and intermolecular hydrogen bond data (Å,◦) *.

D-H······A d(D······H) d(H······A) d(D······A) <(DHA)

O1-H1A······O2 0.96(8) 1.54(8) 2.436(3) 154(7)
O9-H9······O4′ 0.73(6) 2.10(6) 2.750(4) 149(6)

O10-H10······O9 0.75(6) 2.04(6) 2.711(4) 148(6)
N1-H1B······O1 0.89(5) 2.22(5) 2.666(4) 111(4)
N1-H1B······O14 0.89(5) 2.54(5) 3.390(4) 159(4)
N1-H1A······N2 0.89(5) 2.68(5) 3.279(4) 126(4)
N3-H3······O11′′ 0.86(5) 1.94(5) 2.771(4) 163(4)

N4-H4······O4 1.00(5) 1.60(5) 2.595(4) 171(4)
* Symmetry operations; ′−x, y−1/2, −z + 1/2, ′′−x + 1, y−1/2, −z + 1/2.

The packing of molecules in the crystal is governed by the formation of two inter-
molecular hydrogen bond interactions. The first interaction is a hydroxy hydrogen, -OH,
acting as a donor to a furanone carbonyl oxygen atom acting as an acceptor [O9-H9···O4,
2.750(4) Å]. The second interaction is an amide hydrogen, -NH, acting as a donor to a
carbonyl oxygen atom acting as an acceptor [N3-H3···O11, 2.771(4) Å]. Both interactions
use the same 21 screw axis symmetry operation along the b-axis, the second interaction is
translated by one-unit cell along the a-axis, thus linking the molecules into a crosslinked
infinite chain parallel to the b-axis of the unit cell, as shown in Figure 3. Details of the
hydrogen bond interactions are given in Table 3.
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4. Discussion

The absolute stereochemistry of a single crystal of 3 has been determined through
the anomalous dispersion effect on the diffracted beam intensities. This result was greatly
enhanced by the fact that the crystal was a mono chloroform solvate since the anomalous
scatting coefficients for the chlorine atoms are much larger than those for C, N and O for
Cu Kα radiation. For the structure as presented with the chiral centres C12, C18, C21,
C22, C23, C24, C25, C26, C27 in the S, R, R, S, R, R, S, R, S configuration, respectively, the
Flack parameter = −0.003(18). Determination of the absolute structure using Bayesian
statistics on Bijvoet differences (Hooft method), reveals that the probability of the absolute
structure as presented being correct is 1.000, while the probabilities of the structure being a
racemic twin or false are both 0.000. The Flack equivalent and its uncertainty calculated
through this program was y = −0.008(6). This calculation was based on the values of 4497
Bijvoet differences. The post refinement method based on 3814 intensity quotients (Parsons
method) gave a value of x= −0.009(9). It can be seen that all three methods are in good
agreement (with the exception of the standard uncertainty value which is approximately a
factor of two greater for the refined parameter) and that the absolute stereochemistry of
compound 3 is well defined. As can be seen, the molecule has an R configuration at C18
and the introduced double bond between C19 and C20 has a cis (Z) configuration. Since 3
came directly from the pure major product of the Alder-Ene reaction, this establishes that
the major product has the structure 2 as formulated. A salient feature is the wide separation
of O1-O10 and of O2-O9, these distances having increased by 3.994 and 4.663 Å from
those of Rifamycin O, 1, in the crystal. Also striking is the location of the methyl group,
(C33), attached to C24; the shortest contacts to naphthalene ring atoms are 3.474(5) Å to C2
and 3.383(5) Å to C3. A comparison of the seventeen ring torsion angles for 3 [23], with
those of its ultimate precursor 1 shows that the ring torsion angles close to the aromatic
ring are only modestly changed; and values (those for 1 given first) for C2-N1-C15-C16,
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N1-C15-C16-C17, O3-C12-O5-C29, C12-O5-C29 C28 are −176.4◦, −173.3(3)◦; 63.6◦, 59.8(4)◦;
−81.7◦, −85.2(3)◦; 65.9◦, 66.0(4)◦, respectively. The key 1,3-diol component of the ansa
chain maintains its stereochemical integrity with values for C21-C22-C23-C24 of 63.2◦ and
55.0(4)◦, along with accompanying values for C20-C21-C22-C23 of -172.1◦ and -176.0(3)◦.
For the structurally unaltered part of the ansa chain running from C21 to O5, the most
dramatic change is found for torsion C25-C26-C27-C28, 56.0◦ and −171.6(3)◦, respectively.
Close to C18, massive changes are consequent upon double-bond migration, and for C16-
C17-C18-C19, C17-C18-C19-C20, C18-C19-C20-C21, C19-C20-C21-C22 the corresponding
values are: 36.5◦, 146.4(3)◦; −178.6◦, −136.4(3)◦; 117.4◦, −1.2(5)◦; −172.5◦, 92.8(4)◦.

A calculated overlay of compound 3, Rifamycin O, 1 and Rifamycin S, 4 (CSD codes
PUTDUD and PAFRAP, respectively) is shown in Figure 4. The overlay was computed
based on all ten of the naphthalene core carbon atoms and yielded a r.m.s deviation of
0.0642Å for compound 3 and Rifamycin O, 1 and 0.0630Å for compound 3 and Rifamycin S,
4 [18]. Overlay figures for compound 3 and Rifamycin O, 1 and compound 3 and Rifamycin
S, 4 [active conformation] can be found in the supplementary data. See below for details.
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