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Abstract: In this work, we explored how solvents can affect olefin oxidation reactions catalyzed by
MCM-bpy-Mo catalysts and whether their control can be made with those players. The results of
this study demonstrated that polar and apolar aprotic solvents modulated the reactions in different
ways. Experimental data showed that acetonitrile (aprotic polar) could largely hinder the reaction
rate, whereas toluene (aprotic apolar) did not. In both cases, product selectivity at isoconversion was
not affected. Further insights were obtained by means of neutron diffraction experiments, which
confirmed the kinetic data and allowed for the proposal of a model based on substrate–solvent
crosstalk by means of hydrogen bonding. In addition, the model was also validated in the ring-
opening reaction (overoxidation) of styrene oxide to benzaldehyde, which progressed when toluene
was the solvent (reaching 31% styrene oxide conversion) but was strongly hindered when acetonitrile
was used instead (reaching only 7% conversion) due to the establishment of H-bonds in the latter.
Although this model was confirmed and validated for olefin oxidation reactions, it can be envisaged
that it may also be applied to other catalytic reaction systems where reaction control is critical, thereby
widening its use.

Keywords: oxidation catalysis; neutron diffraction; molybdenum; mesoporous materials; hydro-
gen bonds

1. Introduction

Developing selective reactions is an everyday struggle that mankind faces in order
to replicate nature’s work, which is remarkable at all levels. Mankind is continuously
attempting to mimic something that has already had millions of years of perfection, and,
therefore, an enormous amount of effort is required to achieve this.

In the case of oxidation reactions, the quest for selective processes poses an everyday
challenge to both academia and industry [1–7]. To achieve the goal of developing such
processes, catalysts have been produced to address the need for operating chemical trans-
formations in an efficient and selective way. This has driven a considerable amount of
research to focus on the numerous different and specific oxidation reactions, provided by
the plethora of functional groups requiring oxidation, that are needed for the assessment
of added-value products [8–10]. Focusing on obtaining, ideally, a single product, control of
the chemical process is critical to achieving this goal, which implies that several parameters
need to be identified in order to determine how to control it [4]. In the simplest cases, this
can be carried out based on the kinetics of the reaction. However, this is rare, and, as such,
catalysis is detrimental to progress of such a quest, sometimes tuning selectivity at the cost
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of activity. This becomes even more pertinent given the sustainability goals that must be
met according to commitments by several stakeholders [3,5,7].

Research into catalytic process optimization covers catalyst development ranging
from a selection of several transitions metals (mostly) and their ability to work under a
selection of homogeneous or heterogeneous versions with a wide range of supporting
materials available [11–13]. Beyond that, research also devotes effort to determining the
most suitable oxygen source (ideally dioxygen, but also organic peroxides or hydrogen
peroxide), physical conditions (pressure and temperature), and the solvent [14–17]. Solvent
choice is usually screened in terms of striking a balance between activity and selectivity,
with the ultimate choice being made, eventually, from a sustainability point of view [18,19].
Across research on the development of efficient systems for the catalytic oxidation of olefins
(Scheme 1 showing possible oxidation products), several physical parameters are usually
tuned. Nevertheless, through the course of past reports, we noticed that the reaction
kinetics on substrate conversion would be drastically affected by changing the solvent.
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Despite that, little attention has been devoted to assessing what specific phenomena
rule the differences observed in a given process when the solvent is changed. For in-
stance, some reports on the catalytic oxidation of styrene showed that authors screened a
set of solvents and made their choices depending on the best one to achieve the highest
conversion, selectivity or both [20–27].

However, assessment of the effects of solvent was conducted on the basis of the nature
of the solvent, i.e., protic/aprotic or polar/apolar without further in-depth analysis [28–31].
Previous reports found in the literature have described several levels of solvent effects
depending on the systems studied. For instance, Zhenyan reported that the solvent
drastically affected the performance of a catalytic styrene oxidation system [28]. The authors
reported that the use of polar solvents with protic ones largely hindering the reaction,
mostly in terms of substrate conversion. Given that protic solvents are prone and very
likely to establish hydrogen bonds, this could be the reason for the observed hinderance
effect. Further insights of solvent effects influencing catalytic oxidation reactions in terms
of both substrate conversion and product selectivity modulation have been addressed, from
the pioneering work of Corma in 1996 [32] to more recent studies [33–35]. In all of these
studies, the authors attempted to provide evidence of solvent influence as an explanation
for the observed effects.

Further insights into the local structure and effects of solvents at the molecular level
remain scarce and are urgently needed for further contributions to the development of more



Chemistry 2021, 3 755

sustainable processes. Recently, a few reports addressed the influence of liquid solvents
on the activity of several catalytic systems [36–38]. For instance, Emenike described how
different solvents can modulate the existence of C–H···π interactions between solvents and
solutes with implications on the conformational behavior of the latter [36]. In another study
using total neutron scattering, the authors assessed the structure of a series of aromatic
organics with an increasing degree of unsaturation at the side chain (ethyl benzene, styrene,
and phenylacetylene) [39]. In that study, by examining the solvation shells, the authors
found that unsaturation did not have much influence on the existence of intermolecular
interactions with a preference for a chain–chain vicinity.

In this work, we describe solvent effects observed in oxidation catalysis and how they
influence both substrate conversion and, in some cases, product selectivity. Specifically,
experimental evidence on how the solvent interferes with the catalytic system is provided.
Data on the feasibility of the proposed model that are supported by experimental and
computational data are also discussed.

2. Experimental Procedures
2.1. General

All reagents were purchased from Aldrich (St. Louis, MO, USA) and used as received.
FTIR spectra were measured with a Nicolet Nexus 6700 FTIR spectrometer (Waltham,

MA, USA) using a Diffuse Reflectance accessory. All FTIR spectra were measured in the
400–4000 cm−1 range and using 4 cm−1 resolution. Powder XRD measurements were taken
on a Philips Analytical PW 3050/60 X’Pert PRO (theta/2 theta) (Almelo, The Netherlands)
equipped with an X’Celerator detector and with automatic data acquisition (X’Pert Data
Collector (v2.0b) software), using monochromatized Cu-Kα radiation as the incident beam,
40 kV–30 mA. Microanalyses were performed at the University of Vigo. The oxidation
reactions described in this study were catalyzed by an Mo organometallic complex immo-
bilized inside the pores of MCM-41 by means of a tethered bipyridine ligand. This catalyst,
referred to as MCM-bpy-Mo, was reported earlier [26,40], and its synthesis is described
in the SI material. Furthermore, for the validation of the solvent effects described here,
one batch of MCM-41 was also synthesized and then split into two sub-batches differing
in the protocol for template removal—one sub-batch was calcined, being referred to as
MCMC, while the other was subjected to a template removal procedure by refluxing it
with methanol acidified with HCl, and this one is referred to as MCMAW. This rendered a
set of MCM with regular surface silanol groups (MCMC), while the remaining (MCMAW)
had Brønsted acid silanol groups. Details regarding the synthesis procedures can also
be found in the SI material. Table S1 shows isotope substitution model in neutron ex-
periments. Characterization of MCM materials (Figure S1) was found in agreement with
published data.

All catalytic reactions were conducted in a Carousel 12 Plus Reaction Station from
Radleys (Shire Hill, Essex, UK), providing both temperature and atmosphere control. All
reactions were monitored (substrate conversion and product yield) by sampling at regular
time intervals and analyzed using a Shimadzu QP-2010 Plus GC-MS system (Kyoto, Japan).

2.2. General Procedure for Catalytic Epoxidation of Olefins

The olefin substrates (1.6 mmol)—cis-cyclooctene, styrene, trans-2-hexen-1-ol, and
R-(+)-limonene—were mixed with dibutylether (1.6 mmol, internal standard) and 582 µL
(200 mol %) of tert-butyl hydroperoxide (5.5 M solution in decane; tbhp) followed by
addition of the solvent (acetonitrile or toluene) and MCM-bpy-Mo catalyst (3 mol %) at
353 K.

2.3. General Procedure for the Metal-Free Oxidation of Styrene Oxide to Benzaldehyde

This procedure was very similar to the previous one. Styrene oxide (1.6 mmol) was
mixed with dibutylether (1.6 mmol) (internal standard) and 582 µL (200 mol %) of tert-
butyl hydroperoxide (5.5 M solution in decane; tbhp) followed by addition of the solvent
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(acetonitrile or toluene). Then, the MCM-41 catalyst (either MCMC or MCMAW, 50 mg)
was added to this mixture. The magnetically stirred mixture was heated to 353 K and
maintained for 24 h.

3. Results and Discussion
3.1. Solvent Effects on the Catalytic Oxidation of Olefins

In this study we addressed how solvents—acetonitrile (polar aprotic) and toluene
(apolar aprotic)—interfered in the catalytic oxidation of a set of olefins. This was evidenced
for the oxidation of cis-cyclooctene, styrene, R-(+)-limonene, and trans-hex-2-en-1-ol in the
presence of the MCM-bpy-Mo catalyst using tert-butylhydroperoxide (tbhp) as an oxygen
source (see Table S2 and Figure S2 in SI material for full results).

As can be seen from Figure 1, data from conversion of the different substrates cat-
alyzed by the above-mentioned system showed that the reaction rates were found to be
dramatically dependent on the solvent under strictly similar conditions.
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ratio of 100:200:3 using acetonitrile or toluene as solvent and at 353 K.

Still, another feature arises from the data in Figure 1. Not only were the reaction rates
affected by the solvent change, but the final conversion after 24 h was also found to follow
the same dependence. As such, for most of the substrates, when acetonitrile was used as
solvent, with the exception of the trans-hex-2-en-1-ol substrate, we found that the final
conversions were lower, in some cases drastically, as in the case of R-(+)-limonene.

In the case of styrene (Figure 1b), the main desired product is styrene oxide. However,
formation of benzaldehyde is commonly observed and often as major product. This has
already been addressed by us when using MCM-based catalysts, which, due to specific
surface species, are responsible for conversion of styrene into benzaldehyde [26,40]. In
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the results obtained in this study using the MCM-bpy-Mo catalyst, the product yield was
found to be dependent on the solvent used. In fact, when the solvent was toluene, styrene
oxidation yielded benzaldehyde with 75% yield (styrene oxide with 25% yield) at 100%
substrate conversion after a 24 h reaction time. On the other hand, when the reaction was
conducted in acetonitrile, the product yield considerably changed: 48% for benzaldehyde
and 46% for styrene oxide were obtained at 94% substrate conversion after a 24 h reaction
time. This is further addressed later in this study to demonstrate that the right choice of
solvent could protect styrene oxide from overoxidation.

Concerning product yield (and inherently their selectivity) in the oxidation of R-(+)-
limonene, we also found that virtually no changes were observed at isoconversion (i.e.,
conversion at similar values but obtained at different reaction times) when the solvent
changed. This is most evident in Figure 2, showing the reaction profile (substrate conversion
and product yield) for R-(+)-limonene oxidation. As can be seen, at the same conversion
level (ca. 34%), the product yield distribution is identical for both solvents. The striking
difference, as previously mentioned, is that the 34% conversion was obtained after 24 h in
acetonitrile but after only 2 h in toluene.
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As shown in Figure 2, these results showed that changing the solvent did not affect
both product yield and the product diastereoselectivity ratio at isoconversion. In addition,
these data also reveal that the solvent seems to solely influence the reaction kinetics without
promoting any apparent deeper interference in the mechanism of the catalytic reaction.
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Based on these results, it could be assumed that the possibility for the existence of
specific solvent–substrate (or reactant) interactions, such as hydrogen bonding, could be
rationalized with acetonitrile but less so with toluene [41–43].

Based on recent reports assessing the structure of liquids by means of neutron scat-
tering techniques [39,44], in this work, we conducted an experiment to assess the local
structure of styrene and the solvents mentioned above (acetonitrile and toluene) under the
same in operando catalysis conditions. Styrene was chosen given that it is readily available
as a deuterated isotopomer, which is a requirement for such experiments.

According to Figure 3, the neutron diffraction experiment demonstrated that there
are differences correlated with the intermolecular interactions between styrene and the
solvents (acetonitrile and toluene). In particular, the EPSR model revealed the existence
of H-bonds when acetonitrile was present, whereas these were absent when toluene was
used instead. This is evidenced in Figure 3a by the HCH2···N≡C and Hring···N≡C curves,
which show a more defined peak than those in Figure 3b for the curves representing the
HCH2···Cring and Hring···Cring interactions. The reason supporting the fainter peak profile
in the latter is indicative of the existence of weaker intermolecular interactions. In fact, this
is expected since in the styrene–toluene system (Figure 3b), intermolecular interactions are
mostly C–H···π, whereas in the styrene–acetonitrile system (Figure 3a), the interactions are
mostly C–H···N, which are stronger yielding; therefore, a higher degree of organization
of the mixture as observed. This is verified in Figure 3a, where the HCH2···N≡C curve
clearly shows the existence of H-bonding between the acetonitrile N-atom and H-atoms in
the vinyl group of styrene at lower interaction distances than those found for the H-atoms
from the vinyl group and toluene. In addition, the CCH2···N≡C curve also displays a very
defined peak at 3.6–3.8 Å, confirming the existence of specific geometries most probably
interacting by means of hydrogen bonds. These results provide clear and strong evidence
that the existence of specific interactions between solvent and substrate is likely to be
responsible for the observed kinetic effects and substrate conversion levels.

3.2. Solvent Effects on Conversion of Styrene Oxide—Model Validation

As previously mentioned earlier in this study, styrene oxidation represents somewhat
of an issue in regard to product yield (and subsequently selectivity) in the presence of
MCM-41-based catalysts [26,40,45]. In those works, the products were always styrene
epoxide and benzaldehyde, the latter being formed either directly or by overoxidation of
the former [46], with their relative selectivity presenting different results depending on
the used catalyst. We recently postulated a mechanism that would be responsible for the
conversion of styrene oxide into benzaldehyde and formaldehyde [26,40]. This mechanism
relies on a side reaction at the MCM surface, which is rich in silanol groups, without
the need for a metal catalyst; therefore, it carries out a metal-free process, as shown in
Scheme 2.
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Figure 3. Partial radial distribution functions from EPSR simulation of experimental data obtained
with SANDALS data from experiment RB1600022 on the styrene–acetonitrile (a) and styrene–toluene
(b) systems replicating the ratios used in a catalytic experiment.

According to Scheme 2, styrene oxide binds to a Brønsted acid-site in the first step.
Afterwards, the Cl– abstracts an H-atom from tbhp, which will then attack the activated
epoxide leading to the opening of the oxirane ring. Concomitantly, this also releases the
HCl molecule. The intermediary formed will then decompose yielding benzaldehyde,
formaldehyde and t-butanol. The previously released HCl molecule binds to the surface
silanol regenerating the Brønsted acid-site and closing the cycle.

This proposal lacked confirmation so far. In this way, we used the specific solvent
effects concept to test and validate this mechanistic proposal on the conversion of styrene
epoxide into benzaldehyde [26,40], while at the same time provided insight about the
active role of solvents.
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silanol groups, without the need for a metal catalyst; therefore, it carries out a metal-free 
process, as shown in Scheme 2. 
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Scheme 2. Mechanistic proposal for the catalytic benzaldehyde formation from styrene oxide cat-
alyzed by acid sites at the surface of MCM-41.

The mechanism also provided insight into the active role of solvents. We used the set
of two MCM-41-related materials, MCMC and MCMAW, differing in template extraction
method (see Experimental Section for details). These MCM materials, as pictured in
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Scheme 3, had their surface with regular silanol groups (MCMC) and with Brønsted acid
silanol groups (MCMAW) required for assistance in the postulated ring-opening process
(Scheme 2) [23,39].
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MCM-41 material.

As such, starting from styrene epoxide we tested both MCM materials the reaction
in toluene at 353 K was examined for 24 h (with tbhp) to confirm whether benzaldehyde
could be obtained in the presence of any of the solids (MCMC and MCMAW). The results
showed that benzaldehyde could not be obtained in the presence of MCMC, but when
using MCMAW, the reaction proceeded normally with benzaldehyde being detected, as
shown in Figure 4.
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Figure 4. Reaction kinetics for the oxidation of styrene oxide to benzaldehyde in the presence of
MCMAW. Reactions were carried out using substrate:oxidant mol % ratio of 100:200 with 50 mg of
catalyst using acetonitrile or toluene as solvent and at 3535 K.

In the case of the reaction carried out in the presence of MCMC, styrene oxide con-
version was found to be 2% when the solvent was toluene, but when the reaction was
conducted in acetonitrile, no reaction was observed (0% styrene oxide conversion).

On the other hand, when the catalyst was MCMAW, strikingly different results were
obtained. As shown in Figure 4, styrene oxide conversion into benzaldehyde was observed
to reach 31% after 24 h reaction when using toluene as solvent. Changing the solvent to ace-
tonitrile implied a drastic change, as only 7% of styrene oxide conversion to benzaldehyde
as compared to the same reaction in toluene.

The first outcome was that this showed that the presence of surface silanol groups
with the acid moieties, as postulated in Scheme 2, was needed for the reaction to take place.
The second outcome was that we could also demonstrate that the solvent could actively
influence the reaction kinetics by establishment of specific intermolecular interactions
(e.g., H-bonds), as discussed earlier in this study and confirmed by neutron diffraction
experiments. In fact, the presence of acetonitrile seems to compete with the activated
surface silanol groups and, thus, hinders the reaction. On the other hand, in the case of
toluene, this effect did not occur to the same extent, and competition with silanol groups
was not strong enough to hinder the reaction. This concept must be postulated within the
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framework of the existence of specific intermolecular interactions—C–H···N and C–H···π—
as discussed earlier in this study, where their existence interferes in the reaction rate by
interaction with the substrate.

The above assumptions were evaluated for feasibility under the framework of DFT
calculations to assess possible structures of styrene oxide with solvent molecules. As can
be seen in Figure 5, the optimized structures of styrene oxide with solvent molecules
(acetonitrile or toluene) display the presence of specific interactions through H-bonds. In
the case of toluene, the CH2 group in styrene oxide can interact with toluene through
C–H···π bonds, whereas in the case of acetonitrile, the interaction takes place by means of
C–H···N bonds.
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Figure 5. Optimized geometries using a DFT method showing H-bonding interactions between
styrene oxide and toluene (C–H···π, (a)) or acetonitrile (C–H···N, (b)).

DFT results showed that the interaction distance is shorter for the latter—270 pm on
average—compared to that in the former—298 pm, rendering a stronger bonding energy for
the C–H···N interactions. These findings were corroborated by NBO topological analyses,
where the Wiberg bond orders were 0.009 and 0.002 for the C–H···N and C–H···π bonds,
respectively. In addition, according to Figure 5a, the represented optimized geometry
shows a free unbonded H-atom in the oxirane ring, which may also be responsible for
the reactivity demonstrated by this system compared with the geometry found for the
acetonitrile version (Figure 5b) where both H-atoms are bonded and unavailable for reaction
to benzaldehyde (Scheme 2).

Although the neutron experiments were focused on styrene, these experimental
results were obtained for styrene oxide, which is a related substrate. The fact that these
data agree with the results from the neutron diffraction discussed earlier in this work for
the interactions between styrene and the same solvents thus validates the model in which
those solvents play a direct role in the catalytic reaction.

Moreover, the findings from the DFT calculations and those obtained experimentally
from the neutron diffraction experiment are coherent and support previously postulated
mechanistic proposals [26,40]. In our previous mechanistic proposal for the conversion of
styrene epoxide to benzaldehyde, it was proposed that the route would occur through an
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H-bond assisted path. The neutron diffraction data now show that in the case of acetonitrile,
where much less conversion of styrene epoxide (less benzaldehyde yield) was observed,
there are explicit H-bonds. In this way, such a structure will compete with the H-bond-
assisted mechanism (Scheme 2), resulting in lower performance of the catalytic system.
These data agree with experimental kinetic data, as shown above in Figure 4. Furthermore,
these findings are in agreement with literature data, where intermolecular interactions
were described to play a non-innocent role in the structure of liquids and in styrene in
particular [39].

The above results presented and discussed herein demonstrate that for the case of
styrene oxidation (and styrene oxide overoxidation), reaction control can be achieved by
the choice of a suitable solvent.

Styrene oxidation leading to the corresponding epoxide or to benzaldehyde (aris-
ing from further oxidation of the former) is difficult to control in terms of product yield
[26–31,40,45]. This can be challenging when aiming at a specific product, resulting in
increased costs and waste due to both the inefficiency of the process and product sepa-
ration procedures. Recently, there has been evidence for the addition of additives that
could prevent further oxidation of reaction products and control selectivity [47]. This
demonstrates how an adequate choice of solvent could modulate product yield, especially
in the case were sensitive reaction products are obtained, such as styrene oxide.

4. Conclusions

In this work, we described the differences observed when a given epoxidation reaction
is conducted in different solvents. The most striking effect concerns the reaction kinetics,
which is largely sensitive to the solvent change. From our research, it can be assumed
that the hydrogen bond capabilities of a given solvent are relevant enough to support the
observed phenomena. This is true when the solvent is acetonitrile—H-bonding yielding
slower kinetics, or toluene—non-H-bonding yielding faster kinetics without major effects
on product selectivity at isoconversion for most cases. There was an exception—styrene
oxidation, whose kinetics and product selectivity were both found to be affected by the
solvent. In this case, it is known that styrene oxide can yield benzaldehyde by over-
oxidation. In the present case, we observed that when the H-bonding solvent was used, a
much lower amount of benzaldehyde was obtained when compared with when the non-H-
bonding solvent was used instead. We also extended the concept to confirm a mechanistic
proposal on the acid-catalyzed transformation of styrene epoxide into benzaldehyde, which
was successfully demonstrated and confirmed via the stabilizing effect of an H-bonding
solvent in controlling product selectivity.

In summary, this work provides evidence on the specific role of solvents in contribut-
ing to the control of reactions (kinetics and product selectivity) while agreeing with other
literature reports under the same scope. Moreover, we also envisage that using protic
solvents will results in stronger hindrance or modulation effects due to the fact that such
class of solvents can establish strong hydrogen bonds. We are currently addressing this
issue in our lab and hope to confirm this theory in the medium term.
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products detected for the reactions carried out in this study. Coordinates of the optimized geometries
for the calculated species represented in Figure 5 and the isolated monomers (styrene oxide, toluene,
and acetonitrile).
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