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Abstract: As the most studied two-dimensional material, graphene is still attracting a lot of attention
from both academia and industry due to its fantastic properties such as lightness, excellent mechan-
ical strength, and high conductivity of heat and electricity. As an important branch of graphene
materials, graphene nanoplatelets show numerous applications such as in coating, fillers of polymer
composites, energy conversion and storage devices, sensing, etc. Chemical functionalization can
introduce different functional groups to graphene nanoplatelets and can potentially endow them
with different properties and functions to meet the increasing demand in the fields mentioned above.
In this minireview, we present an overview of the research progress of functionalized graphene
nanoplatelets bearing hydroxyl, amino, and carboxylic terminal groups, including both covalent
and noncovalent approaches. These terminal groups allow subsequent functionalization reactions to
attach additional moieties. Relevant characterization techniques, different applications, challenges,
and future directions of functionalized graphene nanoplatelets are also critically summarized.

Keywords: graphene nanoplatelets; hydroxyl group; amino group; carboxylic acid group; covalent
and noncovalent functionalization

1. Introduction

Since the discovery and the groundbreaking research of its electronic properties in
2004 [1], graphene, a one-atom thick layer of sp2 carbon atoms with a two-dimensional
honeycomb lattice, has become one of the most intensively studied materials in chemistry,
physics, materials science, and nanotechnology. Graphene is the thinnest and strongest ma-
terial in the world, and shows an excellent conductivity of heat and electricity. Due to its ex-
traordinary properties, graphene is widely used for electronic devices [2,3], biological appli-
cations [4], energy conversion and storage, and nanocomposites [5–7]. To obtain graphene,
several common methods, such as scotch-tape cleavage [1], liquid phase/mechanical exfo-
liation of graphite [8], chemical vapor deposition (CVD) [9,10] and reduction of graphene
oxide [11,12], have been developed. Graphene nanoplatelets (GNPs), with a thicknesses of
no more than 10 layers and a low content of defects, are an important branch of graphene
family. Herein, we mainly discuss the chemical functionalization strategies of GNPs
obtained from liquid phase/mechanical exfoliation simply due to their wide usage in
industrial production processes.

Due to the strong π–π stacking, GNPs are easy to aggregate in solvents, which leads
to great challenges during preparation and manufacturing processes. Covalent and nonco-
valent functionalization of graphene provide a versatile approach to increase the stability
of GNPs in solvents, and also can bring new properties by introducing functional groups
to GNPs. In this minireview, we aim to summarize the latest development of covalent and
noncovalent approaches to introduce amino, hydroxyl, and carboxylic terminal groups onto
GNPs, which can increase the dispersibility of GNPs in solvents. Moreover, these terminal
groups can also be further functionalized to introduce other interesting functional moieties,
which can open a new gate for the further applications of GNPs. Different approaches of the
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functionalization of GNPs including 1,3-dipolar cycloaddition, the Friedel–Crafts reaction,
nitrene addition, click chemistry, some noncovalent methods, and also the characterization
techniques of the functionalized GNPs including X-ray photoelectron spectroscopy (XPS),
thermal gravimetric analysis (TGA), infrared spectroscopy (IR), ultraviolet–visible spec-
troscopy (UV), Raman spectroscopy, transmission electron microscopy (TEM), scanning
electron microscope (SEM), atomic force microscopy (AFM), and differential scanning
calorimetry (DSC), will be discussed. To the best of our knowledge, there is no such a
review summarizing and discussing this specific topic before.

2. Covalent and Noncovalent Functionalization of GNPs

Chemical functionalization of GNPs can be classified into two approaches: covalent
and noncovalent. The main purpose of functionalization is to increase the dispersibility
in different solvents, which is an important step in making GNPs-based nanocomposites
and for coating applications. Covalent functionalization can provide a stable connection
between the functional group and GNPs. In the meanwhile, introducing functional groups
via a covalent approach can also tune the aromatic character of graphene, which can lead to
a change in the electronic properties [13]. Different covalent functionalization methods have
been developed, generally including the formation of covalent bonds between functional
groups and GNPs via reactions such as 1,3-dipolar cycloaddition, azide reaction, the
Friedel–Crafts reaction, or click chemistry (Scheme 1).
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Scheme 1. Functionalization of GNPs using covalent and noncovalent approaches.

Noncovalent functionalization of GNPs can be achieved by π–π stacking as well as
hydrophobic or electrostatic interactions [14,15]. For example, the large π system of GNPs
can be used as an ideal scaffold for noncovalent functionalization with aromatic molecules
via π–π interaction. Noncovalent functionalization can be used to tune the electronic
properties of graphene without changing its aromatic character.

3. Covalent Functionalization Approaches
3.1. Amino Group

Prato et al. constructed the pyrrolidine ring via a 1,3-dipolar cycloaddition reaction
between azomethine ylides and liquid-phase exfoliated graphene to introduce the amino
groups (Scheme 2) [16]. The covalent functionalization was confirmed by the increase in
ID/IG in the Raman spectra. The presence of carbon atoms with various binding energy in
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the XPS clearly shows that the organic molecule was successfully combined with graphene.
TGA analysis indicates the functionalization degree is one functional group in each of the
128 carbon atoms. Gold nanorods were used as an indicator to locate the sites of amino
functionalization. TEM measurement demonstrated that the functionalization happened
both on the edges and the basal plane of graphene.
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Scheme 2. 1,3-Dipolar cycloaddition functionalized graphene derivatives. Reproduced with permis-
sion from [16], copyright 2010 American Chemical Society.

Another study was also deployed by Prato and coworkers (Scheme 3) [17]. They
compared the functionalization between 1,3-dipolar cycloaddition and an amide conden-
sation reaction. XPS and Kaiser’s test shows a higher extent of functionalization with a
1,3-dipolar cycloaddition reaction. After adding Au nanoparticles (NPs), TEM images
show amide condensation mainly occurs at the edges of the pristine graphene while the
former approach can happen both on the edge and the basal plane of GNPs.
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Scheme 3. Functionalization of graphene via 1,3-dipolar cycloaddition and amide condensation
reaction. Reproduced with permission from [17], copyright 2011 The Royal Society of Chemistry.

Pumera et al. reported the covalent functionalization of GNPs via the Friedel–Crafts
reaction under mild conditions of polyphosphoric acid/phosphorus pentoxide and 4-
aminobenzoic acid (Scheme 4) [18]. The increase in the ID/IG ratio in the Raman spectra
confirmed the covalent combination. The increase in intensity of the oxygen peak at 531.8 eV
corresponds to the result of the acylation reaction. A shoulder peak at 288.9 eV and a
new peak at 399.3 eV in the XPS correspond to the C=O bond and the nitrogen elements,
respectively, indicating the success of the Friedel–Crafts acylation reaction. The overlap of
the N-H stretching bands at 3460 and 3360 cm−1 and the C=O stretching band at 1658 cm−1

in the IR suggest the successful functionalization of graphene with 4-aminobenzoic acid.
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A thiol–ene click reaction between L-cysteine ethyl ester and graphene was deployed
by Dusan’s group to introduce amino groups to pristine graphene (Scheme 5) [19]. The
functionalized graphene shows a significant increase in the S2p, N1s, and O1s peaks at
164.0 eV, 401.5 eV, and 531.0 eV in the XPS spectra, indicating the presence of L-cysteine
ethyl ester. A new vibration band between 600–800 cm−1 in the IR spectrum for the
functionalized graphene confirmed the formation of the C-S bond. The covalent interaction
was corroborated with the increase in the ID/IG ratio from 0.3 to 0.7 in the Raman spectra.
The density of the functional groups was estimated to be 1 cysteine molecule per 113 carbon
atoms via the weight loss in the TGA. Remarkably, the amino functionalized graphene can
be stably dispersed in water for one week due to the hydrogen bonding between the thiol
precursor and water, in contrast the pristine graphene sedimented within two hours.
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3.2. Carboxylic Acid Group

The functionalized GNPs can also be further modified via click chemistry. Strano et al.
successfully functionalized solution-dispersed GNPs and CVD monolayer graphene using
4-propargyloxybenzenediazonium tetrafluoroborate and azido-dPEG4-acid, which pro-
vided a short-chain polyethylene glycol with a terminal carboxylic group (Scheme 6) [20].
The increase in saturated concentration of graphene in water was observed in the UV-Vis
absorption spectrum. Surface tension and zeta-potential measurement indicate that the
high degree of grafting density is an important factor in stabilizing the functionalized
graphene in water. The increase in the ID/IG band ratio reveals the covalent functional-
ization, and the ID/IG spatial map indicates the functionalization prefers to occur on the
edges.
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Scheme 6. Diazonium reaction on graphene and subsequent functionalization using click chemistry.
Reproduced with permission from [20], copyright 2011 American Chemical Society.

A ball milling reaction is also widely used for the chemical functionalization of
GNPs. Baek and Dai successfully introduced carboxyl group to the edge of GNPs via
ball milling with dry ice (Scheme 7) [21]. SEM and TEM images show that the pristine
graphite was directly exfoliated into single- and few-layer GNPs simply by ball milling
with dry ice. Based on the oxygen content and the C/O ratio from element analysis, the
functionalization degree was estimated as each 7.26 carbons possessing one carboxylic acid
group. As expected, the unique peaks of the carboxyl group at 1718 cm−1 can be observed
in the IR spectrum. In the Raman spectra, the ID/IG ratio of the edges is much higher
than the ratio of the basal plane, demonstrating that the functionalization occurred mainly
on the edges of the GNPs. The intensity of oxygen peak in the XPS showed a significant
increase, indicating the presence of oxygen-rich groups. Later, the ball milling method
was also used by the same group to introduce sulfonic acid groups and carboxylic acid
groups to the edge of GNPs [22]. Mülhaupt’s group successfully increased the thermal
conductivity of polymer nanocomposites by incorporation of carboxylated GNPs obtained
from the ball milling method [23].
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Scheme 7. (A) Pristine graphite; (B) dry ice (solid phase CO2); (C) edge-carboxylated graphite;
(D) a schematic representation of the ball milling reaction. Reproduced with permission from [21],
copyright 2012 United States National Academy of Sciences.

In another example, Valiyaveettil’s group successfully introduced carboxyl groups
with the use of 1-azidoundecanoic acid via an azide addition reaction by releasing free N2
(Scheme 8) [24]. The functionalized GNPs can be dispersed in common organic solvents,
such as N,N-dimethylformamide (DMF), for a few days. With the combination of gold
nanoparticles, the carboxylic group can be identified at the edges and the basal plane of the
GNPs using TEM. The missing peaks of azides in the IR spectrum and the increase in the
ID/IG band ratio in the Raman spectra indicate the successful covalent functionalization of
GNPs.
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Wang and coworkers successfully introduced the carboxylic acid groups onto GNPs 
via a modified Birch reduction (Scheme 10) [26]. The functionalized GNPs can be further 
modified with Si nanoparticles. After functionalization, the ID/IG ratio has increased from 
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Scheme 10. The fabrication of Si@APTES/f-Gr composite. Reproduced with permission from [26], 
copyright 2021 Elsevier. 

Scheme 8. Schematic representation of the covalent functionalization of GNPs with alkylazides.
Reproduced with permission from [24], copyright 2011 The Royal Society of Chemistry.

Barron’s group reported an azidophenylalanine functionalized GNPs via nitrene
addition (Scheme 9) [25]. By using XPS and IR, the existence of alanine was confirmed.
The degree of functionalization was determined to be 1 phenylalanine per 13 carbons via
the TGA measurement. The increase in the ID/IG ratio in the Raman spectra indicates the
covalent connection between phenylalanine and GNPs.
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3.3. Hydroxyl Group

Georgakilas et al. used 1,3-dipolar cycloaddition of azomethine ylide to introduce the
hydroxyl group to the dispersion of GNPs in pyridine (Scheme 11) [27]. The functionalized
GNPs can be stably dispersed in ethanol for 30 days. The increase in the monolayer
thickness from the AFM measurement reveals that the functional groups exist across the
graphene surface. The increased ID/IG ratio in the Raman spectra indicates the covalent
connection between the functional group and the GNPs. The 25% weight loss between 250
and 350 ◦C can be observed in the TGA measurement, which corresponds to the attached
organic groups. The existence of the C–O stretching band at 1250 cm−1 and the O–H
stretching band at 3500 cm−1 in the IR prove the presence of phenols.
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Scheme 11. 1,3-dipolar cycloaddition of azomethine ylide on graphene and dispersion of graphene-
f -OH in ethanol. Reproduced with permission from [27], copyright 2010 The Royal Society of
Chemistry.

Hydroxyl-functionalized graphene was obtained by Dai’s group via ball milling exfoli-
ation of graphite with potassium hydroxide (Scheme 12) [28]. The hydroxyl-functionalized
graphene is highly electroactive, hydrophilic, and water-dispersible. AFM images reveal
that the functionalized graphene consists of single- to few-layer GNPs. The O–H stretching
band at around 3400 cm−1 in the IR spectrum indicates the hydroxyl group was introduced
onto the graphene. The corresponding peak was also observed in the XPS spectrum.
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Scheme 12. Schematic of the synthesis of hydroxyl-functionalized graphene via ball milling. Repro-
duced with permission from [28], copyright 2012 The Royal Society of Chemistry.

Sun and coworkers successfully introduced poly(vinyl)alcohol to GNPs via esterifica-
tion [29]. The carboxylic group on prefunctionlized GNPs was acquired by the oxidation of
GNPs in a cold nitric/sulfuric acid mixture, combined with prolonged sonication. The func-
tionalized GNPs can be easily dispersed in DMSO and hot water. The peak at 1730 cm−1 in
the IR spectrum hints the ester linkage between the polyvinyl alcohol (PVA) and the GNPs.
TEM images show a similar thickness with the prefunctionlized GNPs, which indicates
that the functionalization has no significant effects on the nanostructures of GNPs. The
increase in the glass transition temperature Tg in the DSC measurement demonstrates
that the linkage with GNPs decrease the polymer chain mobility substantially. The similar
increase in the ID/IG ratio was also observed in the Raman spectra.
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A microwave-assisted electrophilic reaction was deployed by Amiri et al. to function-
alize GNPs with ethylene glycol [30]. The functionalized GNPs show a good dispersibility
in water/ethylene glycol media. The broad peaks at 3486 and 1141 cm−1 in the IR spectra
correspond to the O-H and C-O stretching vibrations. The increased ratios of the D–G
band (ID/IG) can be seen when compared with the pristine GNPs, indicating that some
sp2-hybridized carbons changed to the sp3 hybridization. The steady weight loss between
140 and 500 ◦C in the TGA corresponds to the ethylene glycol group. However, the exact
mechanism for the functionalization of GNPs is not clear discussed in the study.

In another report, Qin et al. successfully introduced the hydroxyl group to GNPs
via the free radical reaction of hydrogen peroxide (Scheme 13) [31]. The peaks at 533.2,
532.0, and 530.2 eV in the XPS are attributed to the phenolic hydroxyl, aliphatic hydroxyl,
and carbonyl groups, respectively. The functionalized graphene shows a much better
dispersibility in water than the pristine graphene, mainly due to the introduction of the
-OH groups. By adjusting the reaction time, the bandgap of the functionalized graphene
can be tuned from 0.72 to 1.88 eV.
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Scheme 13. The hydroxylation procedure of graphene. Reproduced with permission from [31],
copyright 2021 Elsevier.

Covalent functionalization of GNPs can provide more stable connection between
GNPs and functional units compared with the noncovalent approach. Covalent function-
alization may significantly change the electronic properties of GNPs [32]. However, it is
still a convenient way to obtain functionalized GNPs with hydroxyl, amino, and carboxylic
terminal groups.

4. Noncovalent Functionalization Approaches
4.1. Hydroxyl Group

The dispersibility of GNPs can also be enhanced via noncovalent functionalization,
as demonstrated by Horacio’s group [33]. The PVA chain was covalently connected to N-
(carboxyphenyl)-N′-(8-pentadecyl)perylene-3,4,9,10-bis(dicarboximide) and then combined
with GNPs through π–π interaction. The peak at 275 nm in the UV absorption spectrum
indicates the existence of GNPs. The emission spectrum shows that GNPs have a significant
quenching effect even in low concentrations. The second order 2D peak in the Raman
spectrum offers a strong evidence that the lowest estimated thicknesses of the nanoplatelets
are between 2 and 4 layers. The polymeric surfactant adjusts the membrane-forming ability
to form stable and homogeneous solid films.

4.2. Carboxylic Acid Group

Kar et al. successfully dispersed GNPs in water by sonicating graphite in 1-pyrenecarboxylic
acid solution (Scheme 14) [34]. The single Lorentzian shape of the second-order zone-
boundary phonon peak in the Raman spectrum indicates the monolayer nature of graphene.
The pyrenecarboxylic acid can cleave graphite layers and can also stabilize the dispersion
of graphene sheets due to π–π interaction. The functionalized GNPs can be used as a sensor
to detect alcohols because of the rapid increase in the resistance.
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structure of 1-pyrenecarboxylic acid. (B) A PCA molecule can form a stable π-stacking interaction
with graphene. (C) In a polar medium, pyrene prefers to attach itself on top of the graphene. With
continuous agitation, more pyrenes enter in between the layers and move in deeper, breaking the
π-bonding of the graphite. (D) Continuing this process releases single- and few-layer graphene. The
hydrophilic -COOH groups of the PCA molecules prefer the polar medium and keep the graphene
flakes stably dispersed in water. Reproduced with permission from [34], copyright 2010 American
Chemical Society.

4.3. Amino Group

Kuo et. al. reported the benzylamine-assisted noncovalent exfoliation of GNPs
(Scheme 15) [35]. TEM images show that the sheet size of the exfoliated GNPs is between
100–300 nm. The increase in the ratios of the D/G band indicates that the ultrasonic
condition introduces defects associated with new edges. Pt particles were connected
to benzylamine as a stabilizer. The hybrids were used as electrodes, which showed an
excellent catalytic ability toward methanol oxidation.
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Chemical Society.

Yu and co-workers used an amino acid-assisted ball-milling method for the exfoliation
of graphene (Scheme 16) [36]. The exfoliated graphene can be dispersed in various polar
solvents. The peaks between 3200–3300 cm−1 in the IR spectra correspond to the O-H and
N-H groups, respectively, which can prove the presence of amino acids. The TGA curve
shows an obvious weight loss of 4.4% corresponding to the content of organic groups.
Additionally, the peaks at 285.8 and 287.5 eV can be observed in the XPS spectrum, which
can also prove the existence of the amino acids. A similar exfoliation of graphene with
triazine was also reported by Vazquez and coworkers [37].
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Scheme 16. The schematic presentation of amino acid assisted exfoliation of graphene. Reproduced
with permission from [36], copyright 2018 American Chemical Society.

Noncovalent functionalization can tune the properties of GNPs by introducing func-
tional groups without disturbing the electronic network. However, the force based on π–π
interaction, electrostatic interaction, and/or hydrophobic interaction is apparently weaker
than the covalent connection. When further functionalization steps are needed, desorption
of molecules from GNPs may happen, which can disturb the subsequent functionalization.
Therefore, more care and stable measures should be taken when working with multistep
noncovalent functionalization methods.

The different covalent and noncovalent functionalization approaches including mate-
rials, reagents, methods, terminal groups, and characterization techniques are summarized
in Table 1.

Table 1. Covalent and noncovalent functionalization approaches of GNPs.

Covalent Approaches

Ref. Materials Reagents Methods Terminal Groups Characterization Techniques

[16] Liquid-phase exfoliated
graphene Azomethine ylides 1,3-dipolar cycloaddition Amino group Raman, XPS, TGA, TEM and

UV

[17] Exfoliated graphene in DMF PAMAM
Dendron 1,3-dipolar cycloaddition Amino group Kaiser’s test, Raman, XPS,

TGA, TEM, AFM and UV

[18] Graphene nanosheet 4-amino-benzoic
Acid Friedel–Crafts acylation Amino group XPS, FTIR, and Raman

[19] Graphene L-cysteine ethyl ester Thiol–ene click reaction Amino group SEM, TEM, XPS, Raman, FTIR,
and TGA

[20] Solution-dispersed and CVD
graphene

4-propargyl-
oxybenzenediazonium
tetrafluoroborate and

azido-dPEG4-acid

Diazonium reaction and
1,3-dipolar cycloaddition Carboxylic acid group XPS, FTIR, Raman, TEM, SEM,

and TGA

[21] Graphene nanoplatelets Dry ice Solid-state reaction Carboxylic acid group XPS, FTIR, Raman, TEM, SEM,
and XRD

[24] Graphene nanoplatelets Various alkylazides Nitrene addition Carboxylic acid group XPS, FTIR, Raman, TEM, SEM,
STM, AFM, NMR and XRD

[25] Exfoliated micro-crystalline
graphene in ODCB Azido-phenylalanine Nitrene addition Carboxylic acid group XPS, FTIR, Raman, TEM, SEM,

STM, STEM, AFM, and TGA

[26] Graphene Ammonia, 6-bromohexanoic
acid Birch reduction Carboxylic acid group Raman, XPS, FTIR, SEM, TEM,

and EDS

[27] Graphene in pyridine Azomethine ylide 1,3-dipolar cycloaddition Hydroxyl group XPS, FTIR, Raman, TEM, SEM,
AFM, and TGA

[28] Graphite Solid KOH Solid-state reaction Hydroxyl group XPS, FTIR, Raman, TEM, SEM,
STM, AFM, NMR and XRD

[29] Graphene nanoplatelets poly(vinyl)alcohol Esterification Hydroxyl group XPS, FTIR, Raman, TEM, SEM,
and NMR

[30] Graphene nanoplatelets Ethylene glycol Electrophilic reaction Hydroxyl group FTIR, Raman, TEM, and TGA

[31] Graphene Hydrogen peroxide Free radical reaction Hydroxyl group XPS, Raman, TEM, TGA, and
UV
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Table 1. Cont.

Noncovalent Approaches

Ref. Materials Reagents Methods Terminal Groups Characterization Techniques

[33] Graphene
N-(carboxy-phenyl)-N′-(8-

penta-decyl)perylene-
3,4:9,10-bis(dicarboximide)

π–π interaction Hydroxyl group UV, Raman, DSC, and SEM

[34] Graphene Pyrenecar-boxylic acid π–π interaction Carboxylic acid group TEM, SEM, AFM, Raman,
UV-Vis

[35] Physicallyexfoliated
graphite nanoplatelets Benzylamine π–π interaction Amino group TEM, Raman, XRD

[36] Graphite Amino acid π–π interaction Amino group and
carboxylic acid group FTIR, TGA, XPS

PAMAM: poly(amidoamine).

5. Applications

Functionalized GNPs have already found applications in various fields, such as
energy conversion and storage, nanocomposites, coatings, sensing, catalysts, and biological
applications.

Supercapacitor is a kind of energy storage device between lithium-ion battery and
traditional capacitor [38,39]. It has drawn a lot of interest due to the strong demand for
lightweight, flexible, portable, and high-performance energy storage devices. Owing to the
large specific surface area, high conductivity, and stability, graphene and its derivatives can
be considered as candidates for electrode materials [6,40]. The introduction of heteroatoms
can increase the specific capacitance of supercapacitors. Several studies have reported that
carboxylic graphene can be used as the electrode materials for supercapacitors [41–45].
Baek et al. have successfully introduced carboxylic groups to GNPs via a ball milling
reaction [46]. The existence of the carboxylic groups is able to increase the electroactive
surface area and wettability of GNPs, and also enables ion adsorption and rapid electrolyte
diffusion. In the meanwhile, reversible pseudo-capacitive reactions can also occur on the
carboxylic groups (Scheme 17). The specific capacitance (Csp) of the edge functionalized
graphene can reach 365.72 F g−1 at a current density of 1 A g−1, demonstrating the potential
applications for high-performance energy storage devices.
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Chronic kidney disease (CKD) is a worldwide public health problem. In stage III and
stage IV of this disease, the toxic urea or uric acid can only be removed by absorption,
which is called hemodialysis. Using carbon-based materials is one of the most promising
approaches towards this direction due to their high adsorption capacity [47,48], excellent
hemocompatibility and relatively low cost. These materials have been demonstrated in
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adsorbing different kinds of compounds and heavy metal ions [49–51]. Cabello-Alvarado
et al. developed amino modified GNPs as a potential absorbent (Scheme 18) [52]. Using
the functionalized GNPs, the maximum percentage of absorption of uremic toxins was
97%. It is worth mentioning that, at the concentration of 500 mg/mL, the functionalized
GNPs show no cytotoxicity and extremely low degree of hemolysis (<2%).
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Scheme 18. The mechanism of urea and uric acid adsorption onto the modified GNPs. Reproduced
with permission from [52], copyright 2019 Multidisciplinary Digital Publishing Institute.

Removing different charged dyes from industrial effluent water is very important to
society for solving pollution problems and obtaining clean water. Functionalized GNPs
can also be used to remove industrial dyes from effluent water. Hung and coworkers
reported edge-functionalized GNPs as absorbents for the removal of oppositely charged
dye ions (Scheme 19) [53]. The carboxylic acid group was introduced to the edge of GNPs
via a dry ball milling reaction. The 8-h ball-milling product shows a high surface area of
387.69 m2 g−1 and a total pore volume of 0.55 cm3 g−1. The functionalized graphene can
absorb 99.32 ± 0.2% of the differently charged dye ions within 5–20 min, demonstrating its
high potential for water purification.
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Epoxy resin is a kind of lightweight thermoset material that has been widely used in
high-performance composites. The advantages of epoxy include, but are not limited to,
low cost, durability under different temperatures, anti-corrosive nature, and high weight
to strength ratio [54,55]. However, the low thermal conductivity and a high coefficient of
friction have limited the applications of epoxy resin [56]. GNPs are expected to provide
a better reinforcing effect in polymer composites with greatly improved mechanical and
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thermal properties. Hossain et al. deployed amino-functionalized GNPs as a nanofiller to
reinforce the epoxy resin [57]. The 0.4 wt% GNPs modified carbon fiber/epoxy composites
exhibited the best properties, with a 19% increase in the flexure strength and a 15% im-
provement in the flexure modulus. The composite also showed an 18% and 19% increase
in the tensile strength and the tensile modulus, respectively.

Metal corrosion problems have been associated with the history of human beings
using metal, and countless attempts have been made to improve the corrosion resistance of
metals. Due to higher corrosion resistance and outstanding adhesion, epoxy coating has
drawn much attention among different methods [58,59]. Zhao’s group has successfully
used poly(2-butylaniline) functionalized graphene as an additive in epoxy coating [60]. A
remarkable improvement on anti-corrosion performance can be observed with the addition
of 0.5–1 wt% functionalized GNPs to the epoxy matrix. Moreover, the composite shows an
improvement in the reduction in the friction coefficient and the wear resistance under dry
conditions.

Besides the above discussed examples, functionalized GNPs using noncovalent meth-
ods have also been used for different applications. For example, with the noncovalently
functionalized GNPs, Kar et al. developed a highly selective and sensitive conductometric
sensors, which can show a rapid change in its resistance (>10,000%) when exposing to
saturated ethanol vapors [34]. A supercapacitor with a high specific capacitance (~120 F/g),
good power density (~105 kW/kg), and energy density (~9.2 Wh/kg) was also reported
in the same study. One year later, Kuo et. al. deposited Pt nanoparticles onto the amino-
functionalized GNPs, and the composite showed an excellent catalytic ability towards
methanol oxidation [35]. A 60% increment in mass activity was realized with the Pt/GN
composite compared with that of commercial Pt/XC-72.

6. Conclusions and Outlook

The functionalization of GNPs has been well developed in recent years. Amino,
hydroxyl, and carboxylic acid groups can be introduced onto GNPs using both covalent
and noncovalent methods. With these groups, dispersibility of GNPs in solvents can be
significantly improved. Furthermore, these terminal groups can be employed as linkers for
further functionalization.

Covalent functionalization of GNPs can change the electronic properties of GNPs
since the degree of functionalization is tightly related to the properties. On the other hand,
more methods of covalent functionalization of GNPs should also be developed to broaden
the chemistry of GNPs and to meet the needs of practical applications. Compared with
covalent functionalization, the connection of noncovalent functionalization between GNPs
matrix and functional groups is weaker. The advantage of noncovalent functionalization is
also significant. Noncovalent functionalization can introduce functional groups without
disturbing the electronic network of GNPs to a considerable extent [61], and noncovalent
functionalization can be deployed under a mild condition through electrostatic interaction,
hydrophobic interaction, and π–π interaction. Preparation of functionalized GNPs in bulk
quantities with high dispersibility and long-term stability in different solvents is currently
in high demand.

As one of the most developed 2D materials, the preparation and functionalization of
GNPs still suffer from the limited methods. It is inevitable to solve these synthetic problems
so that GNPs can be attached with novel functional molecules to obtain functionalized
GNPs with hydroxyl, amino, and carboxylic terminal groups under milder and environ-
mentally friendly conditions such as lower temperature, shorter reaction time, aerobic
atmosphere, and aqueous media. With newly developed methods, novel functionalized
GNPs derivatives with specific terminal groups can be prepared and be further employed
in different applications such as supercapacitors [62–64], fuel cells [65], drug delivery [66],
nanocomposites, controllable massive transport [67], and many other areas [68–72].
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