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Abstract: Zeolites have been successfully applied as catalysts in the pyrolysis of plastics to ob-
tain valuable lower molecular weight hydrocarbon compounds. In the present work, mordenite
was directly synthesized and chemically modified from commercial mordenite to increase pore
volume. For the first time, the performance of these mordenites was compared with that of an
alkali-treated ZSM-5 as catalysts for assisting the pyrolysis of simulated urban plastic waste. The in-
vestigated zeolites were: (i) as-supplied synthetic ZSM-5 (ZSM-5/AS); (ii) 0.2 M NaOH treated ZSM-5
(ZSM-5/02); (iii) as-supplied mordenite (MOR/AS); (iv) 0.2 M NaOH treated mordenite (MOR/02);
and (v) synthetic lab-developed mordenite (MOR/SD). The modified and synthesized zeolites were
individually applied as catalysts in the 700 ◦C pyrolyzes of combined polyethylene, polypropylene,
and polystyrene wastes in a mixture simulating most plastics found in Rio de Janeiro (Brazil) city
garbage composition. X-ray diffraction revealed crystallite sizes of all zeolites in a nanometric range
from 17 to 43 nm. Textural analysis disclosed the alkali-treated ZSM-5/02 with a superior external
surface area, 153 m2/g, and mesopore volume equal to 0.253 cm3/g. Lower values were obtained by
MOR/02 (39 m2/g and 0.072 cm3/g). The pyrolysis of the plastic mixture with ZSM-5/02 presented a
lower initial degradation temperature, 387 ◦C, followed by MOR/02, with 417 ◦C. The ZSM-5/02 cat-
alyst obtained the highest conversion in the pyrolysis of the plastic mixture, totaling 49.2%. However,
pyrolysis assisted by the MOR/02 catalyst showed the largest fraction (81.5%) of light hydrocarbons.

Keywords: catalyst; zeolites; mordenite; ZSM-5; pyrolysis; plastic waste

1. Introduction

Plastic production has faced exponential growth in recent decades, as shown in
Figure 1 [1], since its use became widespread in the 1950s, keeping up with global financial
growth. This growing demand and consumption of plastics generated large amounts of
waste, resulting in socioeconomic and environmental problems [2]. It is estimated that
plastic waste increases at rate of 3.9% per year [3]. This, combined with other solid waste,
turns plastic waste management into an overwhelming problem. Geyer et al. [4] estimated
that if waste production increases, approximately 12 trillion tons of plastic waste will
pollute water bodies and exhaust landfills by 2050.

Disposal in landfills and incineration for energy production is still the most common
method of eliminating plastic waste. In general, solid waste management presents a chal-
lenge, but it can be seen as an opportunity to obtain other goods such as mechanically
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recycled by-products, heat, or energy [5]. Indeed, there is a growing interest in alterna-
tives to fossil fuels with waste-derived raw materials, such as biomass from agroindustry
residues and plastic wastes. The latter receives the most attention mainly due to their
impact and environmental benefits [3,5–7].
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area, and microporosity [12,13]. ZSM-5 zeolite is formed by pentasil units in a three-
dimensional micropore system consisting of two 10-member rings perpendicularly 
interconnected, straight channels with dimensions of 0.55 × 0.51 nm and zigzag channels 
0.56 × 0.53 nm. These dimensions characterize ZSM-5 as a zeolite of intermediate or 
medium-sized pores [14]. In addition, ZSM-5 has a stereo impedance of interconnectivity, 
limiting mass transfer in its pores, making the depolymerization process more difficult. 
These mass transfer limitations are less evident in mesoporous materials [15]. 

Santos et al. [16], when studying chemical treatments for PE and PP pyrolysis, showed 
that the alkaline treatment in ZSM-5 zeolites effectively produced mesopores and increased 
light production fractions in pyrolysis products when compared to the same zeolite without 
treatment. By contrast, the mordenite is a zeolite with a typical composition of 
Na8Al8Si40O96.24H2O and orthorhombic symmetry [17]. Its porous structure consists of two 
types of pores. The first is a one-dimensional system that features an opening with 12-
member rings, with the main dimension of 0.65 × 0.70 nm. The second is a tortuous system 
with rings of 8 members, perpendicular to the first, with a dimension of 0.26 × 0.57 nm, 
forming the so-called side pockets [18]. The dimensionality of the mordenite channel 
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Thermochemical conversion technologies have gained increasing attention to plastic
waste management. Compared with combustion, pyrolysis has significant advantages
since it produces low amounts of gaseous pollutants due to the absence of oxygen in the
process [3]. The composition of specific elements of residual plastics inspires researchers to
seek alternative recovery technologies to produce highly valuable chemicals and fuels from
post-consumer plastics rather than simple incineration [6,8]. In this scenario, pyrolysis
has become a promising alternative since its main product is wax/oil, a substitute for
heavy fuel. It might also be applied as a raw material for the petrochemical industry [9].
Together with the production of coal and gases, it can be sold later to add value to the
global process [3].

Catalytic assisted pyrolysis has the advantage of allowing the control of the compo-
sition and distribution of compounds obtained, with a lower energy consumption of the
process and greater selectivity for valuable chemicals [10]. Zeolites are widely used as cata-
lysts in the degradation of polymers due to their strong acidity, which favors the rupture
of the carbon–carbon bond [11]. ZSM-5 stands out owing to its marked selectivity in the
formation of branched hydrocarbons fostered by isomerization and aromatization reactions
as a function of the zeolitic structure, including acid strength, external specific area, and
microporosity [12,13]. ZSM-5 zeolite is formed by pentasil units in a three-dimensional mi-
cropore system consisting of two 10-member rings perpendicularly interconnected, straight
channels with dimensions of 0.55 × 0.51 nm and zigzag channels 0.56 × 0.53 nm. These
dimensions characterize ZSM-5 as a zeolite of intermediate or medium-sized pores [14].
In addition, ZSM-5 has a stereo impedance of interconnectivity, limiting mass transfer in its
pores, making the depolymerization process more difficult. These mass transfer limitations
are less evident in mesoporous materials [15].

Santos et al. [16], when studying chemical treatments for PE and PP pyrolysis, showed
that the alkaline treatment in ZSM-5 zeolites effectively produced mesopores and in-
creased light production fractions in pyrolysis products when compared to the same zeolite
without treatment. By contrast, the mordenite is a zeolite with a typical composition of
Na8Al8Si40O96.24H2O and orthorhombic symmetry [17]. Its porous structure consists of
two types of pores. The first is a one-dimensional system that features an opening with
12-member rings, with the main dimension of 0.65 × 0.70 nm. The second is a tortuous sys-
tem with rings of 8 members, perpendicular to the first, with a dimension of 0.26 × 0.57 nm,
forming the so-called side pockets [18]. The dimensionality of the mordenite channel struc-
ture (1D/2D vs. 3D in MFI structure) makes it difficult for large molecules to diffuse and
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allows the diffusion of only small molecules such as nitrogen and oxygen gases through
their pores. The opening space of tortuous pores does not allow the entrance of larger
molecules, as in the case of organic macromolecules, which can only spread in a system
of pores with relatively larger opening spaces by unilateral diffusion [19,20]. The main
drawback of mordenite is its limited size of channels and cavities, including the lack of
interconnectivity. Therefore, it imposes diffusion limitations on reactions, especially in giant
molecules, such as high molecular weight polymers [19,21]. Because of this, the mordenite
becomes more susceptible to the deactivation of pores by the deposition of the residual
coke carbon or solid fraction originated in the pyrolysis [21–23]. The diffusion problem of
larger molecules can be overcome by employing zeolites with small crystal sizes and high
specific areas [8]. Therefore, to take advantage of the good properties of this zeolite, it is
very important to study new syntheses and chemical modifications in the mordenite to
increase its porosity and promote the interconnectivity of its channels.

This research aims to develop new pyrolysis catalysts to recycle plastic waste, com-
paring its performance with a reference zeolite ZSM-5 to convert it into new valuable
hydrocarbons. Alkaline treatment is indicated as an effective way for the formation of
mesopores. This treatment can preserve its acidity with a selective desilication of zeo-
lite [11,21]. The mordenite with mesoporous structure is still scarcely reported in the
literature for such application. Thus, for the first time, a comparative study of chemically-
modified (MOR/02) and synthetic-developed (MOR/SD) mordenites with alkali-modified
ZSM-5 was conducted in the pyrolysis of a plastic waste mixture. The mixture of plas-
tics was based on the data of polymer resins most consumed in Brazil [24], as a method
to simulate urban waste, formed only by commodity plastics, that is, polyethylene (PE),
polypropylene (PP), and polystyrene (PS) in concentrations equivalent to those typically
found in urban garbage landfills.

2. Results
2.1. Catalyst Characterization

Table 1 shows the bulk (Si/Al bulk), surface (Si/Al bulk surface), framework (Si/Al framework),
and EFAL composition of the studied zeolites, expressed as molar ratio obtained via
ED-XRF, EDS, and 29Si MAS NMR, respectively. The amount of EFAL was determined by
27Al MAS NMR. The NMR spectra are presented in Supporting Information (Figures S1–S6).

Table 1. Bulk, bulk surface, framework Si/Al molar ratio, and EFAL content of the studied zeolites.

Sample Si/Al bulk
a Si/Al bulk surface

b Si/Al framework
c EFAL d (%)

MOR/AS 6.6 4.5 - -
MOR/02 6.5 5.9 8.4 26.8
MOR/SD 8.7 5.4 9.9 24.3

ZSM-5/AS 13.4 n.d. - -
ZSM-5/02 12.5 10.3 16.0 18.8

a ED-XRF, b EDS, c 29Si MAS NMR, d 27Al MAS NMR; EFAL = extra-framework Al; n.d.—not determined.

The removal of Si by alkaline treatment proved to be more efficient for a ZSM-5 zeolite,
in not detecting a significant decrease concerning Si/Al for a mordenite. However, 29Si and
27Al MAS NMR analyses reveal how the changes occurred by these post-treatments [25].
The MOR/02 leaching process led to a slight decrease in Si (0Al) peak intensity and a higher
EFAL (26.8%). This result can be justified since, during desilication, Si species not linked to
Al, Si (0Al), can be easily leached.

However, it is difficult to remove Si atoms in Si (1Al) because the negatively charged
AlO4 tetrahedron makes hydrolysis of the Si–O–Al bond in alkaline solution difficult [26].
For zeolite ZSM-5/02, there was a slight decrease in Si/Al ratio (~6%) compared to the
starting ZSM-5/AS sample. For the synthesized mordenite, MOR/SD, a higher Si/Al ratio
was obtained than the alkali-treated MOR/02 mordenite, which was also confirmed by
NMR analysis.
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For all mordenite materials in this study, it was observed that the octahedral Al showed
a greater signal than expected, close to 0.9 ppm. Therefore, it is speculated that the alumina
clusters causing the chemical shift (close to 0.5 ppm) are located on the outer surface of
zeolite crystals [27].

Additionally, a transitional peak was observed in all samples between the two main
peaks of the 27Al MAS NMR spectrum and between tetrahedral Al and octahedral Al,
located as a shoulder after the peak at 50 ppm. This peak is attributed to distorted tetrahe-
dral Al (IV) or pentacoordinate Al species probably associated with structural Al atoms,
disturbed by less orderly environments of mesoporous samples [28]. This disorder in the
crystalline structure of the zeolite, with the formation of extraframework Al species, would
be responsible for the gradual amorphization of the observed structure, intensified with
the alkaline treatment, resulting in a decrease of crystallinity shown by the lower peak in-
tensity and increased peak base in the XRD diffractogram, shown in Figure 2. The position
and intensity of observed peaks were compared with the standard diffractograms in the
literature (Database of zeolite Structure) (Figure S7 in Supporting Information).

To quantify this structural modification resulting from the alkaline treatment, the XRD
of the samples was performed (Figure 2), in which it was possible to calculate the degree of
crystallinity of the treated samples by the ratio between the areas of all diffraction peaks
for the modified samples and the starting structure corresponding areas of the as-supplied
untreated zeolites, the latter chosen as reference [25].

The results of the degree of crystallinity are displayed in Table 2. The results showed
that the crystallinity of the MOR/02 sample was 95.1%, confirming that the leaching process
decreased the crystallinity degree of these zeolites. Concerning ZSM-5/02, characteristic
peaks of the little affected structure were obtained with crystallinity estimated close to 97%
compared to the as-supplied ZSM-5/AS zeolite. The obtained result agrees with other
studies [14,28], which found that the relative crystallinity of zeolites treated with NaOH
solution between 0.1–0.2 mol/L was not affected by desilication.

Table 2. Size of the crystallite (D) calculated by the Scherrer equation.

Sample 2θ
(◦)

β

(FWHM)
D

(nm) Crystallinity (%)

MOR/AS 25.71 0.2000 42.9 100
MOR/02 25.84 0.2338 34.8 95.1
MOR/SD 25.98 0.2294 35.6 -

ZSM-5/AS
23.39 0.4799 16.9

1008.18 0.2618 30.4

ZSM-5/02
23.18 0.4499 18.0

977.96 0.2393 33.3

Another very important piece of data extracted from the XRD was crystallite size.
The dimensions of zeolite crystallites have important implications for the diffusion rates
of molecules within its structure, as well as the contribution of the external surface area.
The| size of the crystallites (D) of the catalysts was determined by the Scherrer equation.

Table 2 correlates the D values using the most intense peak corresponding to the
crystallographic plane (060) for mordenite, as in the literature [29].

The crystallite size of the ZSM-5 zeolites was calculated by considering the inter-
planar distance of 1.115 nm (2θ = 7.8◦) and 1.005 nm (2θ = 8.5◦), which in the litera-
ture [30,31] correspond to the most intense peaks. For the samples synthesized in this work,
the most intense peaks were those with interplanar distances of 0.384 nm (2θ = 23.18◦)
and 0.382 nm (2θ = 23.39◦) [32,33] concerning the crystallographic planes (101) and (501),
respectively. For the as-supplied MOR/AS mordenite, alkaline desilication produced mate-
rial with smaller crystallite sizes with alkali concentration, while ZSM-5 was little affected
by desilication.
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The isotherms of the sample obtained from MOR/02 display a profile very close
to that reported by Bertrand-Drira et al. [34], with a step in P/P0 close to 0.5 in the
desorption branch. This behavior was justified as a typical capillary condensation phe-
nomenon, indicating that some mesopores were connected to the crystal surface. In ad-
dition, the isotherms showed marked adsorption at low relative pressures, revealing the
preservation of microporosity.

All mordenite showed H4 type hysteresis, which does not limit adsorption at high
relative pressures. This hysteresis type indicates that MOR catalysts do not have well-
defined mesoporous structures with wide pore size distribution [35]. For the synthetic-
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developed mordenite MOR/SD, 17% of mesopores were obtained concerning the total pore
volume. For the synthetically-developed mordenite MOR/SD, 17% of the mesopores were
obtained (Figure 3a).
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The sample ZSM-5/02 presented an isotherm type IV with H3 hysteresis, indicating
that the alkaline treatment efficiently formed mesopores. The sample ZSM-5/02 managed
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to achieve a mesoporosity of 65% related to the total pore volume (Figure 3b). The textural
properties are presented in Table 3.

Table 3. Textural analysis data of MOR and ZSM-5 catalysts.

Catalyst
Surface Area (m2/g) Pore Volume (cm3/g)

BET External
(t-Plot)

Micropores
(t-Plot)

Mesopores
(BJH)

MOR/AS 344 20 0.168 0.043
MOR/02 426 39 0.201 0.072
MOR/SD 338 16 0.163 0.034

ZSM-5/AS 278 11 0.134 0.028
ZSM-5/02 383 153 0.100 0.253

The density of catalyst acid sites was obtained as quoted in the literature [36,37].
The maximum desorption temperatures and the relative number of strong/weak sites are
shown in Table 4.

Table 4. Acid properties of catalysts obtained by TPD-NH3.

Sample Temperature
(◦C)

Total Acidity
(µmol NH3/g)

Weak/Medium Sites
(%) *

Strong Sites
(%) **

MOR/AS 288.7 511.8 2586 99.8 0.2
MOR/02 241.6 521.1 2207 71.4 28.6
MOR/SD 264.3 584.8 2093 66.3 33.7

ZSM-5/AS - - - - -
ZSM-5/02 262.4 502.6 1965 68.7 31.3

* First desorption integration up to 400 ◦C; ** Integration of the second desorption above 400 ◦C.

The as-supplied MOR/AS mordenite showed high total acidity, almost entirely refer-
ring to weak acid sites (99.8%). The leaching process resulted in a decrease of 14.7% in the
total acidity of the MOR/02 alkali-treated sample. A considerable increase in strong acidic
sites was observed, reaching 28.6%. This is consistent with the behaviors reported in the
literature [34,38].

The synthesized mordenite MOR/SD showed lower total acidity than MOR/02.
However, the sample had the highest content of strong acid sites, equivalent to 33.7%.
The alkali-treated ZSM-5/02 presented a well-defined strong and weak sites profile, with a
31.3% content of strong acid sites (Figure 4).

2.2. Waste Characterization

The post-consumer PE, PP, and PS plastics supplied for this study were characterized
separately by DSC before mixing. The PE in the plastic mixture (PMix) presented a melting
temperature of the crystals (Tm) of around 130 ◦C, characterizing the presence of high-
density polyethylene (HDPE), which presents Tm in the range of 128–135 ◦C. Evaluating
the cooling curve, it is possible to observe the main crystallization temperature (Tc), close
to 120 ◦C, and a smaller peak, close to 110 ◦C, revealing the presence of polyethylene of
different densities. The PP in the PMix had a Tm of 162 ◦C, which is about that as indicated
for homopolymer PP, approximately 160 ◦C. In the cooling curve, there is a Tc with a
major transition around 122 ◦C, a value next to that as reported in PP characterization
works [39,40]. PS is an amorphous polymer, thus it exhibits no primary thermal transitions,
Tm and Tc, but can be identified in the DSC curves by the glass transition temperature
(Tg). A related secondary transition for this polymer is close to 100 ◦C [41]. PS in the PMix
presented Tg at 97 ◦C, revealing the presence of this polymer and disclosing a melting peak
at 126 ◦C, characteristic of the low-density class of polyethylene (LDPE or LLDPE). This
suggests a PE contamination in the post-consumer PS sample, confirmed on the cooling
curve, presenting a Tc at 120 ◦C.
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2.3. TGA Pyrolysis

Figure 5 shows the TG and DTG curves associated with the thermal degradation of
the PMix composed of 58.50% PE, 31.56% PP, and 9.94% PS incorporated with the different
investigated zeolites catalysts.
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Through the TG and DTG curves in Figure 5, it is possible to observe the influence of
catalysts on the degradation of the plastic mixture, PMix. Both modified and synthesized
mordenite exhibited a greater influence on the beginning of the degradation, T10%, decreas-
ing these temperatures for PMix. It is also possible to observe the presence of a shoulder
on the curve Pmix with MOR/02, which indicates that the greater presence of mesopores
contributed to an additional stage in the degradation of this material.
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This behavior was observed with greater evidence for the pyrolysis of PMix with the
catalyst ZSM-5/02, bearing a two-stage degradation curve, with decomposition tempera-
tures close to 350 and 450 ◦C. This behavior of the ZSM-5 zeolite in plastic pyrolysis was
also observed by Paula et al. [36]. The first degradation stage occurs due to mesopores
on the catalyst’s surface. The second one is related to smaller fragments accessing more
internal acidic sites [42,43].

The crystallite size can mainly also influence the second degradation stage, since
smaller crystals generate shorter diffusion paths [44,45], contributing to pyrolysis occur-
ring at a lower degradation temperature (T50%), as observed for catalysts ZSM-5/SD
and MOR/02.

Table 5 shows the initial degradation temperatures (Tonset), mass loss temperatures of
10% (T10%) and 50% (T50%), the temperature at the maximum thermal decomposition rate
(Tmax) for the PMix, and the percentage of residues determined by TGA. The influence on
these parameters was more significant for the mordenite catalysts at the beginning of the
degradation (decrease of Tonset and T10%), with little influence on Tmax. In all TGA results,
the percentage of the residue obtained was lower than 10%, which is the content of catalyst
added, probably due to the catalyst thermal degradation.

Table 5. TGA results for the PMix sample with all catalysts.

Extrusions Tonset
(◦C)

T10%
(◦C)

T50%
(◦C)

TMax
(◦C)

Residue
(%)

PMix 432.1 421.5 453.5 459.4 0.89
PMix + MOR/AS 429.6 422.9 456.0 461.0 9.62
PMix + MOR/02 417.4 398.3 445.1 458.2 8.99
PMix + MOR/SD 423.0 411.2 449.3 456.4 8.90
PMix + ZSM-5/02 387.1 329.5 403.7 455.4 9.40

2.4. Pyrolysis in Reactor

In principle, the PMix decomposition might be understood as a two-stage process
beginning with thermal degradation followed by catalytic reforming. Table 6 presents the
results of direct thermal pyrolysis of the PMix, and the catalytic pyrolysis of PMix added
with mordenite and ZSM-5.

Table 6. Results of the non-catalytic PMix and catalytic pyrolysis.

Conversion
(%)

Fraction
C10-24

(%)

Fraction
C > 24

(%)

Light Fraction (C10-24)

Aromatic
(%)

Cyclic
(%)

Aliphatic
(%)

PMix 12.9 ± 2.0 69.7 ± 2.8 27.6 ± 2.8 26.1 ± 2.5 3.4 ± 0.9 70.4 ± 2.5
PMix + MOR/02 14.3 ± 2.3 81.5 ± 1.9 18.5 ± 1.9 35.3 ± 1.9 4.3 ± 1.2 60.4 ± 1.7
PMix + MOR/SD 14.5 ± 2.9 75.1 ± 2.1 24.9 ± 2.1 38.0 ± 2.9 3.7 ± 0.4 58.3 ± 2.6
PMix + ZSM-5/02 49.2 ± 2.7 80.4 ± 1.3 22.4 ± 1.3 40.6 ± 0.6 7.1 ± 0.1 52.3 ± 0.7

The PMix with mordenite catalysts, MOR/02 and MOR/SD, displayed a small con-
version of 14.3% and 14.5%, respectively, compared with plain PMIX thermal pyrolysis
(12.9%). Otherwise, for the catalyst ZSM-5/02, conversions were obtained around 49% and
the expressive formation of gaseous products.

It is generally accepted for a zeolite that the higher the acidity, the greater the catalyst
activity. This is because the cracking of polyolefins requires medium or strong acid sites
for the reaction to occur via the carbene ion [45]. Still, other factors must be considered
when zeolites of different families are compared since they have variations in their channel
systems, pore structure, and textural properties [43,46]. Only a small conversion was found
in mordenite compared to the plain PMix non-catalytic pyrolysis. Even though it exhibited
total acidity higher than that of ZSM-5, mordenite also showed a lower mesopore content,
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making it difficult for polymeric chains to access their acidic sites, leading to rapid deactiva-
tion. Alves et al. [32] reported that a greater mesoporosity decreases the shape selectivity of
these catalysts, allowing larger chains to access internal acidic sites and contributing to an
effective cracking of polymeric chains. The fact that the obtained mordenite did not achieve
a significant mesoporosity content in their structures and unidimensional diffusion resulted
in difficulty of moving larger molecules within its pores. As such, one molecule prevents
another from passing through the mordenite pores. As a result, these mordenite catalysts
become more susceptible to deactivation of their pores by the deposition of residual coke,
or solid fraction originated during pyrolysis [21,47]. In addition, there may have been
difficulties in cracking the composition of the PMix itself. Marcilla et al. [48] suggested
that polymeric branches or the ends of the chains may have better access to active sites
located on the surface of larger pores of zeolites, resulting in greater activities. According
to this argument, the catalytic effect will be greater in polymers with higher branches or
chain ends since the decomposition would contain many initiation points. As the PMix
is formed mostly by HDPE, an almost entirely linear-chain polymer, the penetration of
polymer chains in the catalyst’s active sites may have been hampered, contributing to low
conversions obtained in the pyrolysis.

The composition of the pyrolytic oils was determined by a semi-quantitative method,
in which peaks in the homologous series in the interval of 5 to 50 min show the pres-
ence of C10 to C24 hydrocarbons [49]. The complete scans associated with the total ion
chromatogram of the pyrolytic oil of thermal and catalytic pyrolysis are shown in Figure 6.

By evaluating the composition of the pyrolytic oil of the PMix in Figure 7, it is possible
to observe that, even with the increase of light compounds in pyrolysis liquid products,
the mordenite caused changes only in the composition of the light fraction. This is more
significant for the synthetic MOR/SD, with a greater increase in the aromatics content
shown in Figure 7b. It further confirms that this catalyst contributed to pyrolysis with its
high acidity and specific area. However, due to the low mesoporous content, mordenite
suffered rapid deactivation. Therefore, it is also possible that two-stage pyrolysis occurred
in this case, with thermal degradation followed by catalytic reforming of the products.
The present result demonstrated that mordenite might enhance its catalytic efficiency
when modified to increase mesopore’s amount and distribution. For the ZSM-5 catalyst,
there was a greater formation of aromatic compounds, already predicted for this type
of synthetic catalyst, with an increase of around 12%, accompanied by a reduction in
aliphatic components.
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The thermodynamic stability of the intermediate ion generated from a strong acid
directly affects the formation of olefins in catalytic degradation [12,50]. This ion can follow
the reaction routes (i) β fission or (ii) hydrogen transfer [51], with olefin production being
enhanced when the intermediate ion favors β fission reactions. Otherwise, other products
are generated. The stability of carbonium ions in acid catalysts will depend on their
chemical properties. However, they are also affected by the pyrolysis conditions, the specific
area, and the pore structure of the catalyst, related to its activity and selectivity [12,52].

Bimolecular secondary reactions are impaired in the case of mordenites with larger
pores than ZSM-5. They have less stereo interconnection impediments, contributing to
greater access to the interior pores. This characteristic promotes the formation of many
alkenes as primary products. Thus, mordenite catalysts tend to generate more olefins than
aromatics compared with ZSM-5 ones [42]. However, this is not what the present study
found. An increased light aromatic fraction was generated when mordenite catalysts were
added to PMix (Figure 7). As the mordenite presented an irregular pore size distribution,
they may have contributed to secondary reactions occurring preferentially on the catalyst
surface. According to Manos et al. [42] and Zhang et al. [12], this behavior can be justified
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3. Discussion

The thermodynamic stability of the intermediate ion generated from a strong acid
directly affects the formation of olefins in catalytic degradation [12,50]. This ion can follow
the reaction routes (i) β fission or (ii) hydrogen transfer [51], with olefin production being
enhanced when the intermediate ion favors β fission reactions. Otherwise, other products
are generated. The stability of carbonium ions in acid catalysts will depend on their
chemical properties. However, they are also affected by the pyrolysis conditions, the specific
area, and the pore structure of the catalyst, related to its activity and selectivity [12,52].

Bimolecular secondary reactions are impaired in the case of mordenites with larger
pores than ZSM-5. They have less stereo interconnection impediments, contributing to
greater access to the interior pores. This characteristic promotes the formation of many
alkenes as primary products. Thus, mordenite catalysts tend to generate more olefins than
aromatics compared with ZSM-5 ones [42]. However, this is not what the present study
found. An increased light aromatic fraction was generated when mordenite catalysts were
added to PMix (Figure 7). As the mordenite presented an irregular pore size distribution,
they may have contributed to secondary reactions occurring preferentially on the catalyst
surface. According to Manos et al. [42] and Zhang et al. [12], this behavior can be justified
by the difficulty of the intermediate cracking molecules in penetrating the catalyst’s internal
acid sites and impairing the subsequent cracking steps. Consequently, these molecules
react more on the surface, favoring bimolecular secondary reactions and generating higher
levels of aromatic compounds. The high acidity on the surface of the MOR/SD catalysts
and the lower amount of mesopores may also have contributed to secondary reactions on
the catalyst’s surface.

Despite the lower conversion compared with ZSM-5/02, the present results disclose
that mordenite modification in the direction of increasing the amount and regular distribu-
tion of mesopores might enhance its catalytic efficiency.

The formation of aromatics in catalytic pyrolysis of biomass and lignin with mordenite
was also reported by Mihalcik et al. [53] and Kumar et al. [54], respectively. Kumar [55]
noted that each zeolite’s pore system, acidity, and pyrolysis temperature significantly affect
product distribution. On the other hand, when comparing the performance of different
zeolites as catalysts in biomass pyrolysis, Mihalcik et al. [53] found that the ZSM-5 was
the most effective zeolite for the production of aromatic compounds, but also showed that
the pore structure and channel size of the catalyst tend to affect the composition of the
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pyrolysis product, coke formation and pore saturation, which directly affects the blocking
and eventual deactivates the catalyst action.

As for the ZSM-5/02 catalyst, Figure 7 shows an increase in the content of aromatic and
cyclic compounds, associated with a decrease in aliphatic ones, which revealed aromatic
contents close to 40% and about 7% of cyclic and 52% of the aliphatic fraction. This
behavior was expected since some studies with ZSM-5 catalysts reported high selectivity
towards aromatics [12,51,54]. Seo et al. [52] identified the percentages of olefins, naphthene,
and aromatics resulting from the thermal and catalytic pyrolysis of HDPE likewise at
450 ◦C as in our work, in a batch reactor. The percentages were 39% for olefins for thermal
cracking, 18% for naphthene, and 0.68% for aromatics. The catalysts used were ZSM-5
and zeolite Y. For ZSM-5, the amounts were 16, 23, and 58% for olefins, naphthenes,
and aromatics, respectively, while for the investigated zeolite Y, they were 79, 7, and 7%,
respectively. The authors indicated that ZSM-5 favors secondary reactions in thermal
pyrolysis, unlike zeolite Y.

Ratnasari et al. [51] investigated two-stage high-density polyethylene catalytic pyroly-
sis, thermal pyrolysis followed by catalytic with mesoporous MCM-41 catalysts followed by
microporous ZSM-5. The results showed that a high oil product yield (83.15% by mass) was
obtained from high-density polyethylene, with a highly aromatic product (95.85% by mass
of oil) consisting of 97.72% by mass of hydrocarbons in the gasoline range, characteristic of
the ZSM-5 catalyst. On the other hand, Li et al. [56], in their study on the catalytic pyrolysis
of cellulose and low-density polyethylene, observed greater aromatic selectivity and the
positive synergistic effect on co-pyrolysis, which increases the production of aromatics,
decreases the formation of coke, and lowers the deactivation rate.

Hong et al. [55] investigated the effects of the pore size of the ZSM-5 catalyst on the
generation of aromatic hydrocarbons in the co-pyrolysis of cellulose and polypropylene,
observing that the formation of aromatic hydrocarbons are favored by the mesopores
generated in the desilication of the ZSM-5. The authors indicated that this is because the
opening of the catalyst pore allows the diffusion of large molecules in association with
a decrease in stereo interconnectivity impediment. Their results corroborate the better
performance found in the present investigated ZSM-5.

4. Materials and Methods
4.1. Materials

Post-consumer plastics were supplied by a company responsible for screening and
sending materials for recycling in Rio de Janeiro, Brazil, selected after density separation,
and classified as suitable for mechanical recycling. Three main types of municipal plastic
wastes, classified as polyethylene (PE), polypropylene (PP), and polystyrene (PS), were used
in concentrations equivalent to 58.50%, 31.56%, and 9.94%, respectively, for the formation
of a plastic waste mixture, herein denoted as PMix. These plastic wastes were washed
three times with ethanol and dried overnight. Subsequently, they were characterized by
differential scanning calorimetry (DSC) in a TA Instruments model Q1000, (TA Inst, New
Castle, DE, USA), where samples were heated from 25 to 200 ◦C with a heating rate of
10 ◦C/min and then cooled to room temperature. The data of the second heating run
of the DSC analysis were considered. The two investigated precursor zeolites were the
as-supplied commercial zeolite ZSM-5/AS, in ammoniacal form, donated by the Petrobras
Research Center (CENPES) Rio de Janeiro, Brazil; and the mordenite zeolite CBV90A
(MOR/AS) produced by PQ Corporation (Malvern, PA, USA), in its acid form. These
zeolites were treated and used as catalysts for pyrolysis of the post-consumer PMix.

4.2. Chemical Treatment of Original Zeolites

The MOR/AS was subjected to the alkaline desilication process, according to Bertrand-
Drira et al. [34], with a NaOH 0.2 M solution. After treatment, the solid phase was collected
by centrifugation, washed with distilled water to pH 7, and dried overnight at 80 ◦C. Next,
ion exchange was performed with ammonium chloride employing a 1 M solution of NH4Cl
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under reflux at 100 ◦C for 2 h. Next, the solid was centrifuged, washed with warm water
three times, and oven-dried at 80 ◦C overnight. Finally, the product was calcined under a
heating rate of 5 ◦C/min in static air at 550 ◦C for 12 h. The corresponding final sample
was named MOR/02.

The ZSM-5/02 sample was obtained starting from ZSM-5/AS. The alkaline treatment
was similar to that for mordenite, using 0.2 M NaOH solution, with a zeolite (g)/NaOH
(mL) ratio of 0.008 at 75 ◦C for 30 min, as described in the literature [16,32]. In short, the
zeolite was suspended in a 0.2 mol/L NaOH solution, and then the solid was separated by
filtration and washed with deionized water until reaching neutral pH. Then, it was dried at
200 ◦C for 1 h. Next, ion exchange of the sample was performed with a 2 M NH4Cl solution.
The zeolite was then filtered, washed, and calcined at a rate of 5 ◦C/min under static air at
450 ◦C for 4.5 h.

4.3. Synthesis of Mordenite

The reaction for obtaining synthetic mordenite with the molar composition of
20SiO2:1.0Al2O3: 4.0Na2O was based on adaptations of Santos et al. [57], using the route
of soft template synthesis employing a cationic surfactant. A solution containing 0.94 g
of sodium hydroxide in 30 mL of distilled water was placed under mechanical stirring,
to which 3.7 g of the surfactant cetyltrimethylammonium bromide (CTABr) was added.
Subsequently, 0.95 g of sodium aluminate (NaAlO2) was added, stirring for 10 min. Finally,
5.61 g of hydrophilic fumed silica, Aerosil 200, was slowly added, and after the homogeniza-
tion period, the formed mass was dried in an oven at 100 ◦C for 24 h. Subsequently, the dry
solid was sieved. Then, about 2 g of that solid was placed on Teflon support, and 60 mL of
distilled water was added to the reactor to avoid contact between the solid and water. After,
the ion exchange was carried out, in which for every 2 g of mordenite obtained, a solution
was prepared with 0.99 g of NH4Cl in 18.80 mL of distilled water and kept in reflux at
100 ◦C for 2 h. Next, the solid was centrifuged, washed three times with warm water,
and oven-dried at 80 ◦C overnight. Finally, the solid was calcined under a heating rate of
5 ◦C/min in static air at 550 ◦C for 12 h and identified as synthetic-developed MOR/SD.

4.4. Catalyst Characterization

The crystalline phases of the samples were determined by X-ray diffraction (XRD)
on a Rigaku Miniflex diffractometer (The Woodlands, TX, USA), using Cu-Kα radiation
(λ = 0.1542 nm) at 30 kV and 15 mA. XRD data were recorded in a 2θ range from 5 to 50◦

with an angular step of 0.05◦ and a counting time of 1◦(2θ)/min. The average crystal size
was calculated by the Scherrer formula using XRD data according to Equation (1):

Dhkl =
kλ

βcoscos θ
(1)

where D is the size of the crystallite in the direction perpendicular to the planes analyzed,
hkl are the Miller indices of these planes, k is a numerical factor often referred to as the
crystallite shape (k = 0,9), λ is the X-ray wavelength (nm), β is the width at half-height of
the peak after correction for intrinsic, instrumental line extension using the FITYK software
(Free Software Foundation Inc., Boston, MA, USA). Angles must be in radians, and θ
is the Bragg angle, i.e., the maximum peak angle [28]. Anisotropic broadening due to
non-isometric crystallite shape was neglected.

Textural properties were determined on a Micromeritics ASAP 2020 ASTM 2020 nitro-
gen gas adsorption analyzer (Norcross, GA, USA), measured at −196 ◦C, with automatic
degassing. Before analysis, the samples were treated at 300 ◦C for 12 h under vacuum. The
surface area was estimated by the Brunauer–Emmett–Teller (BET) equation. Total pore
volume was determined from nitrogen adsorbed at P/Po = 0.98, microporous volume and
external surface area were determined by the t-plot method, the mesoporosity was obtained
by the Barrett–Joyner–Halenda (BJH) method.
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The Halsey thickness equation with Faas correction was used to calculate the thickness
(t) of the layer adsorbed on the pore walls to a given relative pressure. External surface area
and micropore volume were determined by applying the t-plot method. In this method,
the adsorbed layer thickness (t) of N2 was calculated with the Harkins-Jura equation.

All analyses of the composition of the catalysts were made using their powder form.
Energy Dispersive X-ray Fluorescence Spectrometry (ED-XRF) was performed on a Shi-
madzu spectrometer model 720 (Kyoto, Japan), under vacuum, in which the results were
expressed as mass% of the elements. The molar amounts of Si and Al in the samples were
obtained by dividing the mass% of Si and Al by the respective molar mass, and the bulk
Si/Al molar ratio was calculated [16]. The zeolite composition was also determined by
dispersive energy spectrometry coupled with scanning electron microscopy (SEM-EDS)
that analyzes the localized elemental composition. The measurements were performed at
three different points, and the averages of the amounts of Si and Al present in the points of
the evaluated surface were calculated.

The framework’s Si/Al molar ratio and the extra-framework Al (EFAL) content of
the studied zeolites were determined by solid-state nuclear magnetic resonance (NMR)
of 29Si and 27Al. Both 29Si and 27Al NMR spectra were obtained in a Bruker Avance
400 spectrometer (MA, USA) at a resonant frequency of 79.2 MHz, while 27Al MAS NMR
spectra were acquired at 103.9 MHz on the same spectrometer. The Si/Al molar ratio in the
structure was calculated from the 29Si MAS NMR spectra using Equation (2):

Si/AlNMR 29Si =
∑4

n=0 ISi(nAl)

∑4
n=0 0.25nISi(nAl)

(2)

where n is the number of Al atoms in the second Si coordination sphere, and I is the peak
intensity corresponding to the Si environment (nAl).

Two peaks are expected in the 27Al MAS NMR spectra, the first with a chemical shift
close to 60 ppm, corresponding to tetrahedral Al atom, and the second at around 0 ppm,
octahedral Al (EFAL% = 100% − Al tetra%).

The total acidity and strength distribution of the acid sites present in the catalysts
were evaluated by the temperature-programmed desorption (TPD-NH3) technique in a
Pfeiffer PrismaPlus quadrupole mass spectrometer model QMG220 (Asslar, Germany),
as described by Paula et al. [36]. Briefly, 120 mg of sample was pretreated in a U-shaped
quartz tubular reactor (heating to 600 ◦C, helium flow of 30 mL/min). The sample was
cooled to 100 ◦C, and the chemisorption process was initiated. Adsorption step: passing
through the sample a 30 mL/min flow of 5% molar NH3 in He until saturated. Then,
a stream of pure He was passed at the same flow to remove the physisorbed ammonia. This
cycle was repeated, and the total acidity was calculated by the difference between the areas
obtained in the two adsorption peaks. Desorption process: at 100 ◦C to 600 ◦C at a heating
rate of 10 ◦C/min under the same He flow. The amount of NH3 desorbed x temperature
was measured through the mass spectrometer.

4.5. Pyrolysis of Plastic Waste
4.5.1. TGA Pyrolysis

For the thermogravimetric analysis (TGA) of the pyrolysis characteristics, the plastic
mixture (PMix) was extruded either plain or mixed with the catalysts for homogenization
of the samples using a Haake Minilab (Agawam, MA, USA), double screw mini-extruder
at 60 RPM for 7 min at 180 ◦C, 10% by mass catalyst content. Then, pyrolysis in TGA was
carried out in triplicate in a TA Instruments Q500 equipment (New Castle, DE, USA), with a
heating rate of 10 ◦C/min to 700 ◦C under a nitrogen atmosphere [9].

4.5.2. Pyrolysis in Pyrolysis Reactor

Pyrolysis was performed in triplicate under a nitrogen atmosphere at 450 ◦C for
15 min at a 30 mL/min flow rate. The pyrolysis system consists of a fixed bed unit with
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a stainless-steel tubular reactor and a vertical electric oven. To carry out the experiment,
approximately 1 g of the plastic mixture was weighed, and 0.1 g of catalyst was previously
mixed. The preparation of the reactors was initially carried out by weighing about 0.3 g
of glass wool, which had the function of composing the reactor bed, in order to leave
the material to be pyrolyzed in the central zone of the reactor and to help maintain the
residual pyrolysis solid inside during the process. This already heavy glass wool wad was
divided into two parts. The first part of the glass wool was inserted at the end of the reactor,
and later, the plastic–catalyst mixture was inserted into the reactor over this wool. Finally,
another part of the glass wool was inserted into the reactor.

The yield was determined by gravimetric analysis of the pyrolytic residue (solid
fraction) and pyrolytic oil (liquid fraction), while the gas yield (gaseous fraction) was
determined by difference [58]. The liquid fractions were dissolved in n-hexane and an-
alyzed by HRGC–MS, Scion 456 HRGC-TQ, Bruker (City, MA, USA). This device has a
30 m × 0.25 mm, coated with a 0.1 µm thick 5% phenylmethyl polysiloxane (BR-5) film,
with a heating ramp up to 300 ◦C, at a heating rate of 10 ◦ C/min, maintained for 25 min.

A semi-quantitative methodology was used to determine the percentages of the
peaks for light and heavy compounds concerning the area of the total ion chromatogram.
The yields of aromatic, linear, and cyclic compounds were determined as described by
Milato et al. [49] and Faillace et al. [59]. In brief, aromatic, linear, and cyclic yields were
determined by reconstructed ion chromatogram using m/z 77, 85, and 191, respectively.
Data were processed by the MS Data Review® program (V. 8.0, Chemical Analysis, Bruker,
City, State if Canada/USA, Country).

5. Conclusions

In this work, for the first time, the catalytic activity of the developed synthetic and
chemically-modified mordenites was compared to the modified ZSM-5 zeolite as catalysts
in the pyrolysis of a real mixture of plastic waste. With alkaline treatment and calcination,
a low content of mesoporosity in the mordenite catalyst structures was obtained. However,
with its high surface acidity, mordenite catalysts contributed to a small increase of light
compounds (C10-C24) in pyrolysis liquid products. Furthermore, this class of catalysts
proved to be very susceptible to deactivation, resulting in low conversion rates. It is sug-
gested that this may be related to their monodimensional channel systems and the low
mesoporosity that hindered the access of polymer chains to their innermost active sites.
Another indication that cracking reactions occurred mainly on the surface of mordenite was
the increased number of aromatic molecules in the liquid pyrolysis products. Indeed, sur-
face reactions favor bimolecular secondary reactions, generating more aromatic compounds
and reaching 82% of light fraction (C10-C24) hydrocarbons. Despite the lower catalytic
conversion compared with ZSM-5, these results show that mordenite has potential in the
pyrolysis of urban plastic wastes. Indeed, if modified to increase the mesopore amount
and distribution, mordenite might enhance its catalytic activity. The alkaline-treated cata-
lyst ZSM-5 resulted in a better catalytic performance in the pyrolysis than mordenite by
significantly decreasing the degradation temperature of the mixture of plastic waste in
association with bimodal thermogravimetric curves. Likewise, in the reactor pyrolysis,
the performance of the ZSM-5 catalyst was also superior, with greater conversion rates of
about 49% for the liquid and gas fractions.
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