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Abstract: Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part
due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-
to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and
bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by
various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of
cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparti-
cles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents
for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic
morphological features, MNPs now cover a broad scope which the current review aims to overview.
Considering the exponential expansion of the field, the current review will be limited to roughly the
past three years.
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1. Introduction

Ever since nanotechnology grew into a reckoned field of its own, the implications
in medicine and pharmacology became obvious, and are today exploited commercially
on many drug formulations. A busy lifestyle, erratic work schedule and oxidative stress,
together with genetic and other risk factors have contributed to a surge in cancer incidence
throughout the globe, and current estimates predict about 1.26 million deaths for 2022 in
the EU due to cancer alone. Conventional approaches come with unavoidable side effects
due to systemic exposure and response and are less effective than directed therapy—a
field where MNPs and SPIONs, in particular, have emerged as suitable candidates with
more efficient delivery of the anticancer drugs and limited negative effects on neighboring
tissues and organs.

Magnetic nanoparticles (MNPs) are at the very core of magnetic delivery systems and
they aim to tackle site-specific tumors while ideally affording a controlled-release profile
suitable for disease treatment. Their multifunctional dimensionality makes it possible for
MNPs to be used in nanomedicine as elective candidates for drug targeting therapy when
using an externally applied magnetic field.

With tunable physico-chemical properties and a very high surface-to-volume ratio
typical for nanoparticles, MNPs can be engineered into drug-delivery systems with similar
sizes to the organism’s own antibodies or proteins for improved biocompatibility, while
incorporating therapeutic agents that would otherwise be difficult to deliver to the can-
cer cells. When superparamagnetic nanoparticles (SPIONs) are coated with biologically
compatible polymers of fatty acids, systems with improved colloidal stability and reduced
tendency of aggregation are obtained. MNPs were also used as contrast agents in magnetic
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resonance imaging (MRI). When functionalized with epithelial growth factor receptor
antibodies or aptamers, an efficient diagnosis tool is created for many types of cancer or
even detection of brain inflammation. MNPs are being used as alternative contrast agents
in MR imaging owing to their superparamagnetic properties and high relaxivity, doubled
by high biocompatibility upon surface functionalization and low toxicity, unlike the Gd
complexes used traditionally as contract agent in MRI, which could potentially release Gd
into the bloodstream.

The promise of viable candidates in cancer treatment made research in the field of
MNPs flourish and today hundreds of reports are published annually describing new or
improved strategies for using MNP systems in disease treatment. Conjugation of IONs
(magnetite and maghemite are generally best tolerated) with drugs yields drug-loaded
IONs that can be directed using an external magnetic field to the site where the tumor
cells reside, and this drug-delivery variant is termed magnetic drug targeting (MDT). The
variety of such approaches would make a comprehensive review quite difficult and lengthy,
hence why the current review focuses on the most notable advances recorded with MNPs
over the past three years.

2. Justification and Design Strategies for Magnetic Nanoplatforms

The current review strategy entailed an examination of search results on specific re-
search topics such as “magnetic nanoparticle” and/or “drug delivery”, “nanomedicine”,
“MR imaging” or “hyperthermia”, but is also based on pertinent examples dealing with
the above topic without specifically containing the mentioned keywords (for instance,
articles dealing with ferrofluids were also included, provided a tentative use in biomedical
applications was provided in the original text). Based on the occurrence of research direc-
tions found in both original research and review articles published in the past three years
(2020–2022), the current table of content was decided and data curation of the 500+ articles
identified was carried out around these main topics. Given the exponential expansion of
the field, only the last three years were selected, and the inclusion of each article on the
reference list was decided upon by reading the abstract and deciding on the suitability of
the article for the included review topics.

There are multiple reasons pleading for the use of MNPs as carriers for drug and
gene delivery, making nanoparticle platforms superior to the traditional administration of
the drug alone. Moreover, theranostics are able to integrate today’s MNPs in procedures
capable of both diagnosis and disease treatment, which is unachievable via traditional drug
administration. Using NPs for drug delivery allows modification of key aspects related to
drug solubility, diffusivity, penetration and retention, pharmacokinetics, biodistribution,
cytotoxicity, and half-life (controlled- and/or on-demand release).

Considering how time-consuming (~12 years on average) and extremely expensive
(up to USD 2 billion) the drug development process can be, it may be surprising to note that,
even when an efficient active component is identified, basic hiccups still plague the process,
such as a lower grade in the biopharmaceutical system, which assesses the solubility and
permeability of a drug. In other words, a highly efficient drug whose development took
years of research may never reach the patient in need due to low solubility/permeability in
the biological system. This severe shortcoming can be modulated by drug immobilization
on magnetic nanocarriers, that are able to transport insoluble drugs to the target site by
smart surface modification (for instance, with antibodies that would bind to molecules
overexpressed at the tumoral site). Drug formulations employing stable nanoparticle
dispersion of the drug can increase absorption, even when using much lower dosages—this
advantage alone can make a drug with low bioavailability and poor penetration/absorption
when used alone become suitably efficient for drug-delivery systems, with real prospects
of reaching the market. Various groups reported that drug molecules conjugated to MNPs
can exhibit efficiencies many times higher than using the drug by itself (Figure 1).
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Figure 1. Advantages of using NP-based carrier platforms compared to classical drug administra-
tion protocols; improvements are recorded across all presented segments. 

Conventional drug administration is typically carried out via oral, parental, pulmo-
nary or transdermal routes, and usually requires several doses for maximum efficiency. 
However, a controlled release system based on drug-loaded NPs can bypass these short-
comings, by reducing drug quantities and related toxicity, and also the doses required for 
treatment. In a typical, conventional drug administration, the drug concentration in bio-
logical fluids can vary greatly, from subtherapeutic (no effect) to toxic levels; by contrast, 
the release profile of a drug in a controlled release system is rather constant, and within 
the limits required for maximal therapeutic effect. Such systems can be regarded as highly 
beneficial for patients using anti-inflammatory drugs (especially the elders), or diabetic 
patients; the former will not experience pain due to constant drug concentration in the 
blood, while the latter will have better glycemic control because insulin would be released 
on-demand contingent with blood sugar levels. The release can be prolonged to multiple 
weeks from a single administration, which would be unheard of in the case of traditional 
administration. 

Another key parameter is the enhanced permeability and retention achievable due to 
specific hypervascularization at the tumor level (with the formation of epithelial pores), 
which translates into increased permeability to therapeutic drugs when conjugated to pol-
ymeric-coated NPs. For efficient drug accumulation, however, the nanoparticle-based 
drug formulation must be stable in biological fluids (it should not agglomerate/ precipi-
tate), should be tailored regarding size and concentration for optimal penetration through 
cellular membrane and cellular uptake.  

  

Figure 1. Advantages of using NP-based carrier platforms compared to classical drug administration
protocols; improvements are recorded across all presented segments.

Conventional drug administration is typically carried out via oral, parental, pulmonary
or transdermal routes, and usually requires several doses for maximum efficiency. However,
a controlled release system based on drug-loaded NPs can bypass these shortcomings, by
reducing drug quantities and related toxicity, and also the doses required for treatment.
In a typical, conventional drug administration, the drug concentration in biological fluids
can vary greatly, from subtherapeutic (no effect) to toxic levels; by contrast, the release
profile of a drug in a controlled release system is rather constant, and within the limits
required for maximal therapeutic effect. Such systems can be regarded as highly beneficial
for patients using anti-inflammatory drugs (especially the elders), or diabetic patients; the
former will not experience pain due to constant drug concentration in the blood, while
the latter will have better glycemic control because insulin would be released on-demand
contingent with blood sugar levels. The release can be prolonged to multiple weeks from a
single administration, which would be unheard of in the case of traditional administration.

Another key parameter is the enhanced permeability and retention achievable due to
specific hypervascularization at the tumor level (with the formation of epithelial pores),
which translates into increased permeability to therapeutic drugs when conjugated to
polymeric-coated NPs. For efficient drug accumulation, however, the nanoparticle-based
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drug formulation must be stable in biological fluids (it should not agglomerate/ precipitate),
should be tailored regarding size and concentration for optimal penetration through cellular
membrane and cellular uptake.

2.1. Synthetic Strategies and Feedback-Driven Design

Synthetic methods currently utilized for SPION particle synthesis involve the hy-
drothermal route (with typically mesoporous NPs as the outcome [1–9], as opposed to
the classical co-precipitation route, which has a number of disadvantages including re-
producibility issues regarding morphological parameters with direct influence over the
magnetic properties [10–12] or the well-established sol–gel [13] and (auto)combustion [14]
methods. Other synthetic routes focus on natural extracts as bio-inspired routes to MNPs
based on iron oxides, with encouraging therapeutic potential [15] and other green synthesis
strategies [16]. Other nature-inspired compounds such as magnetic zeolites are also under
investigation today [17].

2.2. Physical Characterization

Physical characterization methods were employed for particle size determination,
including analysis of magnetization curves [18], cation distribution in ferrites by X-ray
absorption [19,20] and Mossbauer spectroscopy [21,22].

Magnetic measurements aim at providing a feedback-driven synthesis route for im-
proving effective magnetic moment [23–25], especially when referring to ferrofluids since
these target actual biologic systems [26–28]. Effective quantification of the heating ability
of MNPs can be achieved via SAR determination experiments [29] and novel tools such as
small-angle scattering can improve the design of functionalized MNPs [30].

2.3. MNPs with Improved Magnetic Properties: Substitution/Doping Effect

Doping strategies have modified the therapeutic potential by altering the paramagnetic
behavior of maghemite (γ-Fe2O3) [31], metal ferrites [32], as well as Gd3+ substitution of
magnetite Fe3O4 with effect on superparamagnetic NPs [33].

Various strategies for anisotropy enhancement were explored, including layering of
MNPs on amorphous substrates with perpendicular anisotropy [34].

Ferrites of spinel structure have been synthesized; BaFe2O4 [35], Mn–Zn ferrite [36],
CuFe2O4 [37,38], Cu–Ni ferrite [39], Zn, Cu and Co ferrites [40,41], or Ni–Zn–Co ferrites
with Gd3+ substitution [42].

2.4. Flow Characteristics and Simulated Models for MNPs in Biologic Fluids and
High-Performance Ferrofluids

The flow parameters (magnetorheology) were reported recently [43–48], tackling
also convection [49], location [50] and sedimentation processes [51,52] or multi-core
MNPs [26], proper distribution in form of appropriate matrices such as gels [53], overall
tracking efficiency [54], as well as guidance for cell behavior [55], and actual flow through
artificial blood [56].

The effect of viscosity of the medium as a means to counteract the sedimentation
tendency of MNPs was investigated [57], while the dispersibility of NPs was shown to be
an efficient way to obtain stable ferrofluids and magnetic therapeutic fluids [58,59].

Simulation models of MNPs in the actual blood flow were reported very recently [60–62],
on the magnetic susceptibility vs. frequency for MNPs [63,64], suitability of poly(vinyl) alcohol
PVA coating of MNPs for drug delivery [65] or on the possible replacement of dopamine,
the go-to drug used to treat Parkinson’s disease, by magnetite Fe3O4 NPs [66]. Alzheimer’s
disease is also among the diseases targeted by functionalized SPIONs when conjugated with
NIR dyes [67].
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2.5. Morphology—Role of Size and Shape

Size control of MNPs [68] was been recently achieved in a green synthesis, bioinspired
strategy by employing lysine in the synthesis of SPION magnetite materials [69]. Studies
have shown that, for particle sizes higher than 100 nm, the MNPs are subject to macrophage
phagocytosis by the spleen and liver, hence the requirements to design particles below 100 nm.

Size and shape effects on hyperthermia performance were also studied [70–72]. Re-
sults point to relatively lower toxicity when spherical nanoparticles are used (such as
those obtained by the polyol method), rather than irregular/polyhedral-shaped NPs. I.
Craciunescu et al. have investigated hydrophobic (oleic acid coating)/hydrophilic (aze-
laic acid-coated) magnetite (Fe3O4) and ferrites of Mn and Zn (MFe2O4), produced by
the polyol method, of different shapes: spherical, cubic, hexagonal, octahedral and sizes
(10–100 nm) with interesting findings linking shape and size of MNPs to the hyperther-
mia procedure. MFH (magnetic fluid hyperthermia) is a technique currently investigated
which allows MNP-mediated conversion of alternating magnetic field energy into heat;
moreover, this heat release event can be doubled by drug release at the tumor site which
enhances the therapeutic chances of success in tumor treatment and should respect a
maximal exposure criterion f × H ≤ 5 × 109 Hz × A/m for applicability in biological
systems [70]. The SAR (specific absorption rate) is a key parameter quantifying the energy
conversion process and is dependent on AC magnetic field amplitude, frequency and
MNPs relaxation mechanisms. The magnetization at saturation increases to 90 emu/g in
the case of cubic shapes and MNPs of 100 nm average size (Fe3O4 and MnFe2O4) and lower
values (50–70 emu/g) for zinc ferrite nanoparticles [70]. Large-sized MNPs are expected to
transfer heat in hyperthermia applications by means of hysteretic losses due to magnetic
wall displacements, hence of prime interest parameters are magnetization at saturation MS
and magnetic susceptibility in low AC magnetic fields—information that can be deduced
by analysis of hysteresis loops [70]. Additional information regarding NPs size and size
distribution, interparticle interactions and magnetic domain structure can be deduced by
analysis of FC–ZFC curves (field-cooled–zero-field-cooled) or Mössbauer spectroscopy (for
anisotropy energy determination, KV: K is the magnetic anisotropy constant, and V is the
nanoparticle magnetic volume). It is worth noting that among the three types of samples
analyzed (Fe3O4, MnFe2O4 and ZnFe2O4), the highest heating efficiency was that of the
soft magnetic ZnFe2O4@azelaic acid (AZA) with a SAR of 175 W/g, more than double
that of Fe3O4. AZA (SAR = 85 W/g), although it has the lowest saturation field among
them. Increasing the heat efficiency is possible when using MNPs in a magnetically frozen
regime at room temperature, which will not allow for the formation of moving magnetic
domain walls [70].

Manganese ferrite MnFe2O4 was investigated extensively due to tunable magnetic
properties, high biocompatibility and chemical stability [70,71]. Besides the essential role
of hysteresis losses mentioned above (where it was the dominant heat transfer mechanism),
two other mechanisms describe the heat transferred by NPs to the surroundings (SPL,
specific power losses): Neel and Brownian relaxation [71]. SPL is also strongly influenced by
particle size because this parameter alters the shape anisotropy. Chitosan-coated MnFe2O4
were obtained by co-precipitation of FeCl3 and MnCl2.4H2O with NH4OH, producing
stable, functionalized MNPs with potential applications as positive/negative MRI contrast
agents in the rat model [71]. A theoretical investigation of various sized Fe3O4 NPs (25,
50, 100 and 200 nm) showed that NPs with lower sizes produced a higher heat gradient in
the tumor mesh (61, 49, 42 and 41, respectively), while those in the 50–100 nm size ranges
were found to be the most promising candidates for hyperthermia and cellular uptake [72].
Considering the heat produced by hysteresis per volume unit P = µ0 f

∫
H dM, we can

expect better results when the alternating magnetic field frequency f is increased, within
the biologically safe limit [72,73]. Theoretical simulations for correlating size with potential
hyperthermia applications were also reported [73].
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2.6. Intra- and Interparticle Interactions: Colloidal Stability and Size Differentiation

Interparticle interaction has long been seen as a possible cause of further aggrega-
tion [74]. R. Das et al. have shown the effect of shape (NRs nanorings of 55 nm length
vs. NTs nanotubes of 470 nm length) on the MFH performance corresponding to Fe3O4
nanoparticles, while also raising the question of inter- and intraparticle interaction [74].
The morphology of NPs was controlled by the amount of NaH2PO4.2H2O used in the first
precipitation step (higher concentration leads to NRs, lower concentration favors NTs).
The iron oxide nanotubes NTs showed higher effective anisotropy and MS, but lower SAR
value (80 W/g at 400 Oe and 300 Hz) than nanorings NRs featuring weaker intraparticle
interactions (110 W/g). It becomes apparent that MFH is positively influenced by using
MNPs of lower volume and weaker intraparticle interactions [74].

Colloidal stability is a key parameter to preventing undesired NP accumulation before
ever reaching the target organ [75–80]. For instance, optical tracking of iron oxide ferroflu-
ids at 10 T and a 100 T/m gradient has shown that aqueous ferrofluids are best investigated
in high fields, which offer a reliable estimation of their behavior under lower, practi-
cal fields [75]: 0.25 vol% iron oxide as stabilized dispersion of citrate-coated maghemite
nanoparticles (γ-Fe2O3), and commercial Fe4O4 ferrofluids [75]. Depending on the mag-
netic field strength (0.3–0.5 T and ~20 T/m for a neodymium magnet, 10 T and 100 T/m for
a Bitter magnet), citrate-coated maghemite remains separately dispersed. However, when
MNPs of higher polydispersity are used, the largest NPs separate rapidly from the solution
while smaller NPs remain dispersed because of their low dipolar coupling energies [75].

V. Pilati et al. synthesized aqueous ferrofluids using the electric double-layer (EDL)
strategy to maintain their solution stability [76]. These systems were based on biomagnetic
core-shell ZnMn mixed ferrite@ maghemite shell out of which two specific compositions
were further investigated, namely ZnδMn1 − δFe2O4@γ-Fe2O3 (δ = 0.2 and 0.5). The surface
was further covered by a maghemite layer by exposing the ZnδMn1 − δFe2O4 core (co-
precipitation) to HNO3 washing followed by hydrothermal treatment with Fe(NO3)3 0.5 M.
The electrostatically stabilized ferrofluid was achieved by peptization of as-synthesized
ferrite NPs in a dialysis bag, using HNO3 with pH fine tuning (final pH = 2.0) and solution
ionic strength adjustment by means of NaNO3 formation [76]. Interestingly, dynamic light
scattering (DLS) and small-angle X-ray scattering (SAXS) revealed that changing the NPs
concentration from dilute to >25 mg/mL is accompanied by a change in global interac-
tion forces from attractive (diluted) to repulsive (concentrated) [76]. L. L. e Castro et al.
extended the applicability of EDL repulsive interactions by using Monte Carlo simulations
to surfacted MNPs, where the charge is located typically at the extremities of the surfac-
tant molecule (at the organic functionality, such as amino, carboxyl, etc.). They ran the
simulations on spherically shaped magnetic NPs using a model proposed by Schnitzer
and Morozov—an improvement over the traditional DLVO model traditionally used for
modeling colloid stability [77].

J.C. Riedl et al. used maghemite (γ-Fe2O3) NPs dispersed in ionic liquids (ILs) based
on ethylmethylimidazolium bistriflimide (EMIM TFSI) in a pursuit to obtain colloids stable
from room temperature up to 200 ◦C; the dispersion of maghemite at concentrations up
to 12 vol% was shown to be stable for several days at 200 ◦C [78]. M. Boskovic et al.
synthesized Fe3 − xGdxO4 (x = 0, 0.1, 0.2) NPs of diameter ~8 nm by the coprecipitation
method and by coating with citric acid (CA) with improved colloidal stability; the sample
Fe2.80Gd0.20O4@CA embedded in human serum albumin afforded magnetic microspheres
(MMS) as suitable carriers for drug-delivery applications [79]. Polymeric coatings of iron
oxide nanoparticles such as silica-coated Fe3O4 NPs (diblock copolymers obtained by living
cationic polymerization, PEO-b-PMAA) are oftentimes used because they lower Gibbs free
energy of magnetic nanoparticles in solution, hence maintaining colloidal stability and
preventing agglomeration [80].
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3. Coating and Surface Functionalization of MNPs: Polymers, Acids, Amines,
Siloxanes, Other Coatings

Synthetic routes were implemented using flow reactor design, including surface-
coated MNPs with, for instance, PEG [81–89], citric acid functionalization [90], aspartic
acid [91], latex [92], pectin [93,94], polycations for A549 cells [95], other acid formula-
tions [96] or polymers [97–99], biopolymers [100,101], PLGA poly(lactic-co-glycolic acid)
copolymer [102,103], or poly(L-lactide-co-glycolide) copolymer [104]. Size differentiation
was made possible by using chromatography in a simulated bed configuration [105]. The
antibacterial properties of various MNP coatings were reported, and even carbohydrates
were literally “sugar-coated” on Cu-doped Fe3O4 NPs [106,107].

These surface-modified versions of NPs can exhibit enhanced saturation magnetiza-
tion, offer a better anchor for drug molecules to bind and can sometimes even serve as active
catalysts for aromatic compounds synthesis including N-containing heterocycles [108–113],
photocatalysis [114–117] and biocatalysis for tumor therapy [118–120]. M. Rajabzadeh et al.
reported the innovative use of CuI Immobilized on Tricationic Ionic Liquid Anchored on
Functionalized Magnetic Hydrotalcite (Fe3O4/HT-TIL-CuI) for Ullman-type C–N coupling
reactions between aryl halides and N(H)-heterocycles (benzimidazoles, pyrazoles and
triazoles) (no additives, under air atmosphere) in the presence of 2.5 mol% of nanocata-
lyst [108]. The inorganic–organic hybrid catalyst Fe3O4@SiO2-L-tryptophan (L-tryptophan
functionalized silica-coated MNPs) based on Fe3O4 synthesized by co-precipitation with
NH4OH from ferric and ferrous chloride salt sources was synthesized and evaluated as
a recyclable magnetic nanocatalyst for the synthesis of spiro[indene-2,2′-naphthalene]-
4′-carbonitrile derivatives [109]. The choice of L-tryptophan, a chiral α-amino acid was
motivated by the presence of both amino (-NH2) and carboxylic (-COOH) moieties, through
which it can partake in various catalytic transformations [109]. Another very recent report
focuses on AlCl3@nano Fe3O4–SiO2 multi-layer magnetite nanocatalyst for the one-pot
synthesis of spiro[benzochromeno [2,3-d]pyrimidin-indolines] by a three-component con-
densation in refluxing C2H5OH of different naphthols, isatin derivatives, and barbituric
acids [110]. Other research efforts made use of coordination, i.e., the binding affinity of
polymers containing P-derived functional groups—phosphonic acids R–H2PO3, known
for strong affinity to metals and multidentate binding ability [111], or participation of
MNPs’ polymeric coating in further functionalization by activation of esters under mild
conditions to form amide bonds, click chemistry consisting of Cu(I)-catalyzed azide-alkyne
cycloaddition (CuAAC process), or amine addition to isocyanates, among others [112]. In
fact, CoFe2O4 MNPs recently synthesized by D. Aurélio et al. made use of a hydrothermal
process producing cobalt ferrite NPs capped by oleic acid, which was further exchanged
with N-containing organic acids such as 11-maleimidoundecanoic acid [113].

The surface functionalization and conjugation with various drugs lead, broadly speak-
ing, to core-shell structures [121,122], including siloxanic coatings of MNPs which are
environmentally benign and can be used for biomedical approaches [123–130]. Surface
functionalization of SPIONs for biomedical applications by Ar plasma was very recently
reported by Asghari et al. [131], or by other chemical methods [132–138]. Detailed experi-
mental parameters are included in Section 5.

4. MR Imaging

MRI is a non-invasive imaging technique that exploits the ability of protons to align
and process around B0 (an applied magnetic field) and to relax when perturbed from B0
by the application of a transverse radiofrequency. This relaxation process comprises two
distinct terms: T1-recovery or longitudinal relaxation (positive contrast enhancement, sen-
sitive to MNPs thickness, hence effective only for thin coatings) and T2-decay or transverse
relaxation (favored by MNPs high susceptibility, negative contrast-enhanced, most used for
SPIONs). This research direction is also motivated by the need to replace current contrast
agents based on Gd3+ complexes, which pose worrying health issues and undesired side
effects. As valuable MRI contrast agents, SPION nanoparticles have gained increased
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attention and popularity, especially iron oxide-based [139–143]. Relaxivity is a direct and
quantifiable measure of a contrast agent’s efficiency: R1 (1/T1) and R2 (1/T2), and depends
on the type of MNPs used, applied field and temperature.

Besenhard et al. have demonstrated a reproducible SPION synthesis in a flow reactor
using a co-precipitation method using dextran as the surface coverage agent, followed
by quenching (by timely 2–100 s addition of 0.32 M citric acid solution-stops nucleation
due to chelation of iron ions) after the formation of the desired iron oxide core, achieving
nanoparticles of less than 5 nm (Figure 2) [139].

The longitudinal relaxivity (r1 = 10.7–12.4 mM−1 s−1) and transversal relaxivity achieved
(r2 = 20.5–57.2 mM−1 s−1) recommend this synthetic procedure to produce inexpensive
SPIONs as efficient MRI T1 contrast agents and replacements for Gd-based ones (of smaller r1
in commercial DotaremTM or GadovistTM, 4.2–5.3 mM−1 s−1) [139].

Some general introductory reviews covering MRI imaging have emerged in the litera-
ture [144,145]. Running the reaction at 60 ◦C, the salt co-precipitation to form spinel phases
(magnetite/maghemite) confirmed by real-time XRD data that intermediate ferrihydrite
species transform swiftly into the final spinel. Key aspects that influence the efficiency
of iron oxide NPs in MRI include magnetization, size, effective radius, inhomogeneity
of surrounding generated magnetic field, crystal phase, coordination number of water,
electronic relaxation time, and surface modification [145]. T2 relaxivity for instance can be
increased by synthesizing SPIONs with improved MS and effective radius [145]. However,
recently another iron-based compound was investigated as a new agent for enhanced
hyperthermia therapy and a T2 contrast agent for MRI application: iron nitride γ′-Fe4N
nanoparticles, which exhibit three times higher saturation magnetization and could also be
properly covered by an oleic acid layer for further functionalization [146].
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ature [144,145]. Running the reaction at 60 °C, the salt co-precipitation to form spinel 
phases (magnetite/maghemite) confirmed by real-time XRD data that intermediate ferri-
hydrite species transform swiftly into the final spinel. Key aspects that influence the effi-
ciency of iron oxide NPs in MRI include magnetization, size, effective radius, inhomoge-
neity of surrounding generated magnetic field, crystal phase, coordination number of wa-
ter, electronic relaxation time, and surface modification [145]. T2 relaxivity for instance 
can be increased by synthesizing SPIONs with improved MS and effective radius [145]. 
However, recently another iron-based compound was investigated as a new agent for en-
hanced hyperthermia therapy and a T2 contrast agent for MRI application: iron nitride γ′-
Fe4N nanoparticles, which exhibit three times higher saturation magnetization and could 
also be properly covered by an oleic acid layer for further functionalization [146].  

SPIONs are particularly efficient at allowing visualization of the cell line uptake 
(head and neck, for instance) [147], and their use became widespread in both MRI and 
MPI (magnetic particle imaging). MPI shares many similarities to MRI and is a tracer-
based modality providing convenient diagnostic and therapeutic tools featuring im-
portant advantages: high sensitivity (0.1 μm), good spatial resolution (<1 mm) and tem-
poral resolution (<1 s) with medium cost associated [141]. It does come with some draw-
backs; typically, SPIONs are used as T2 contrast agents, as demonstrated above [139], and 
in that respect, they obscure adjacent tissue, while also making the resulted contrast 

Figure 2. (a) HRTEM magnification image of ultra-small IONPs matching the [111] zone axes
of magnetite with the two 2.5 Å (113) planes and one 2.9 Å (220) plane (PDF ref. 03-065-3107);
(b) Relaxation rates R1 (longitudinal) and (c) R2 (transversal) vs. iron concentration in the (consecu-
tively diluted) dialyzed samples (CFe) to determine r1 and r2 (i.e., the slope) for IONPs synthesized at
co-precipitation temperatures and quenching times as indicated. Reprinted/adapted from ref. [139],
under a Creative Commons Attribution 3.0 Unported Licence.

SPIONs are particularly efficient at allowing visualization of the cell line uptake
(head and neck, for instance) [147], and their use became widespread in both MRI and
MPI (magnetic particle imaging). MPI shares many similarities to MRI and is a tracer-
based modality providing convenient diagnostic and therapeutic tools featuring important
advantages: high sensitivity (0.1 µm), good spatial resolution (<1 mm) and temporal res-
olution (<1 s) with medium cost associated [141]. It does come with some drawbacks;
typically, SPIONs are used as T2 contrast agents, as demonstrated above [139], and in that
respect, they obscure adjacent tissue, while also making the resulted contrast unreliable
in some particular cases—air-tissue interfaces or hemorrhagic tissue would behave simi-
larly; additionally, there is the potential risk of heating and peripheral nerve stimulation
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for patients undergoing the procedure [141]. While some coatings such as Au coatings
provide extra stability and corrosion resistance, some critical aspects of Fe3O4/Au mag-
netite/gold core-shell nanostructures pinpoint some clear disadvantages and may be a
reason why their current development came to a halt [148], although some scattered reports
exist dealing with magnetic plasmonic Co@Au/Ag/Au–Ag core-shell nanoparticles for
their biological imaging potential [149], with Fe–Pt@Au core-shell NPs [150] or custom
designed for MRI and drug delivery [151–159]. For instance, Iancu et al. have shown that
gold-coated magnetite Fe3O4@Au NPs can act be used as biocompatible drug carriers (at
concentrations <2 × 10−8 mg/cell), while in vivo tests in rats revealed a negative T2
signal at a concentration of 6 mg/100 g body would suffice for obtaining high-quality
MRI images [153].

Chelating ligands such as DoS (diblock polymer PDOPA-b-PSar) were shown to bind
to Mn2+ centers to form novel, uniform micelles Mn2+@PDOPA-b-PSar of 73.4 nm size
(low polydispersity index PDI = 0.159) that were investigated as MRI contrast agents with
good contrast features in imaging owing to the magnetic manganese core [159]. These
micelles showed good results in MRI tests as T1-weighted contrast agents with relaxivity
r1 = 27.7 mM−1s−1, and showed promising results for other biomedical applications such
as drug release systems, while in vivo tests performed on rats showed cell survival rates
higher than 70% [159].

The opportunity of using MNPs as contrast enhancements in MR imaging proves
a current topic of interest, as the results are very detailed and the irradiation impact is
reduced to a minimum [76,160–163]. Specific effects of coatings (with amine-carrying
molecules) on MNPs’ performance in MRI revealed interesting enhancement effects [164],
and examples include coating with sodium oleate [165], chitosan [166–175] or organic
acids [176], as well as amino moieties-poly(acrylamide) coatings [177].

4.1. Radiolabeling

Radiolabeling strategy (18F, 64Cu, etc) is an excellent tool for tumor imaging [178,179], one
that is constantly improving owing, in part, to complementary theoretical computations [180,181].

Metal oxides have made important strides as T1 and/or T2 MRI contrast agents [182–185],
either in the form of dysprosium oxide NPs coated with polyacrylic acid [186], gadolinium ox-
ide NPs coated with poly(methyl vinyl ether-alt-maleic acid) [187], paramagnetic gadolinium
oxide NPs coated by polyaspartic acid [188], gadolinium NPs coated with sericin—a protein
created by silkworms (Bombyx mori) in the production of silk [189], iron oxide-magnetite
Fe3O4 coated with folic acid [190] or other polymeric coatings [191–195], and colloidally
stable Fe NPs [196,197].

4.2. SARS-CoV-2 and MRI with SPIONs

SPIONs’ advances were also stimulated by the world pandemic that burst in late 2019,
which urged scientists to find new tools to identify and cure the SARS-CoV-2 virus. In
this respect, magnetic NPs have shown real promise not only for detection [143,198–200]
but also for targeted pulmonary drug release [201,202]. Magnetic particle spectroscopy
(MPS) was employed as a viable tool to detect target nucleic acids down to concentrations
of 500 pM, without special sample preparation; Bionized NanoFerrite particles with a
mean diameter of 80 nm (BNF80), coated with streptavidin were used for this goal, with a
Brownian-dominated relaxation mechanism [143]. Most patients infected with the SARS-
CoV-2 virus developed respiratory syndromes, therefore the development of microcarriers
for targeted drug delivery at the bronchi level became of high interest to the scientific
community [201]. Microcarriers of ~2 µm diameter (silica, iron oxide, nickel oxide) were
released at the lung level and their adherence to the inner walls of lung branches was
studied; interestingly, changing the inlet velocity from constant to pulsatile increased
the drug delivery performance to the lungs by ~31% when 10 nm Fe3O4 MNPs coated
microcarriers were studied in conjunction with a permanent magnet (~4 × 4 × 2 cm), a
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strategy inspired by previous reports by Cai et al. who observed increased drug release
efficiency when utilizing cobalt ferrite NPs [201,202].

4.3. Functionalization Agents and Strategies

Additional improvements can be obtained by experimental advances recorded in
synthetic methods [203,204]. Surface functionalization [205–207] and polymeric coat-
ings [208,209] are a prerequisite for using MNPs at the core of drug-delivery biocompatible
systems. Even the known family of non-ionic block copolymers known under the trade
brand PluronicTM (the surfactant typically used in many 2D and 3D mesoporous silica syn-
thesis)), were used for anti-cancer formulations [210,211]. Polymer coatings have evolved
to the usage of nanopolymers [212].

Along with drugs targeting specific diseases, genes can also be loaded onto func-
tionalized MNPs, with PDMAEMA—a water-soluble cationic polymer capable of DNA
electrostatic interaction [213] or coated by hyaluronic acid [214].

5. Therapeutic Features

Despite impressive achievements during the 21st century, life expectancy is still low
in many countries, and a common and rising leading cause of serious health problems and
ultimately death is the occurrence of cancer, which is believed to eventually be responsible
for roughly 1.3 million deaths in 2022 in the European Union alone [215]. Various tumors
and cancers were triggered by MNP formulations [216–219], and a breakthrough was the
transition of MNPs from fundamental research to viable options in oncologic treatment [220],
theranostic applications [221,222] and drug-delivery systems [98,223,224] (Figure 3).
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Antibody immobilization on MNPs can yield powerful sensing platforms [225]. Many
biomedical applications including cancer and tumor cell treatment have been reported [226–231].
Applications of MNPs in medicine and particularly nanomedicine have been reviewed recently
in the literature [232–235].

5.1. Drug Delivery

Drug-delivery systems have diversified immensely and today they cover a broad spec-
trum of both MNPs and targeting drug loadings [236–241], including intraocular delivery
via smart microrobot technology [242], or delivery of erythropoietin-hybridized MNPs for
treatment of central nervous system injury [243,244]. Magnetic nanoplatforms for delivery
of classical platinum-based anticancer medicine (i.e., cis-platin) were investigated [245]
and their toxicity in vitro was evaluated [246]. It was shown that shape contribution to
cytotoxicity is very important, with spherically-shaped NPs being comparable less toxic
than cylindrical or oval-shaped homologous, especially with increased reactive oxygen
species (ROS) concentration.

Efficient delivery of drugs by MNP-coated nanocomposites requires a thorough knowl-
edge of the proteic behavior of the drug molecule [247–249]. Pharmacokinetic behavior is
of utmost importance since it can lead to better drug administration and by this, to more
efficient disease treatment and management [250,251]. Drugs, genes and other biologically
relevant molecules can be conjugated with NPs for efficient delivery at the targeted site
(MDT, magnetic drug targeting). Drug-delivery applications have gained momentum and
many reports have surfaced, dealing with a variety of problematic-to-target-and-cure types
of cancer or disease [96,239,252–262]. A summary of the most commonly used anticancer
drugs is depicted in Figure 4, with their chemical formulas (where space allowed it) and
associated brand-name; the following organs were chosen—brain, stomach, pancreas, liver,
breast and lung (Figure 4).

Various types of cancers are currently investigated by means of MNP drug conjugation,
targeting lung cancer [263–267], gastric cancer [268–271], pancreatic cancer [272], hepatocel-
lular carcinoma [273], bone cancer—osteosarcoma [274], blood cancer—leukemia [275,276]
anemia—decreased number of red blood cells or hemoglobin [277], breast cancer [278] or
liver fibrosis [279] either as a theoretical model [280] or actively conveying the chemothera-
peutic medication Docetaxel (DTX or DXL, commercially available under the brand name
Taxotere) [281,282], Artemisinin (initially anti-malaria drug in 1972)/Tannic acid [283],
or folic acid [284]. Various types of tumors have been investigated, including grade IV
astrocytoma—Glioblastoma Multiforme (GBM), an aggressive and rapid-growing brain tu-
mor, whose management requires the MNPs to be able to bypass the feared BBB
(blood–brain barrier) [285–293]. Brain tumors continue to be a demise sentence, with
a 5% patient survival rate 5 years after the first glioblastoma (GBM) diagnosis, as statistics
show. One of the many added benefits of utilizing MNPs in a variety of cancer types is the
ability to diagnose that specific form of cancer with ease and detect it even in its early stages,
which greatly expands the life expectancy of the patients. Smart surface modifications,
i.e., coating with a biocompatible layer of tumor/cancer membrane have led for example to
important advances in bone cancer treatment. However, MNPs can now address not only
cancers but also abnormal levels of sugar or glucose in the blood, hence being potential
treatment agents in glycemia; as such, magnetic nanocomposites of α-amylase inhibitors
have been designed to this end [294]. Targeted delivery across specific organs was proven
feasible by Zhou et al. who used an MNP-robotic capsule to deliver specific drugs at the
gastrointestinal level [295] or at the cardiovascular system level [296].

Extending fundamental research to in vitro studies utilizing cell lines revealed impor-
tant features that iron oxide and other MNPs might present [297–310]. Bionanomaterials are
now at the convergence of materials science/nanotechnology and biomedical applications,
and the investigation methods have reached a level to match theoretical predictions to
in vitro and in vivo behavior of many drug formulations, many of which have become
FDA-approved and commercially available to patients in need [311].
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Magnetosomes have become important tools to manage cancer growth, and their
bacterial biosynthesis is under active development [312–316]. In the final stages of cancer
(metastasis), isolation of exosome-active participants in cancer progression and metastasis
was shown to be possible when using Fe/Au nanowires [317]. Some of the many important
advances recorded in drug delivery over the past three years are summarized in Table 1.
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Table 1. An overview of recent drug-delivery parameters for drug-delivery therapies.

Type of NP Synthesis of MNPs/Coating Surface Functionalization Type of Drug/Molecule Targeted
Disease/Application Ref.

Fe3O4
Tripolyphosphate (TPP) and

glutaraldehyde stabilizers polyvinyl alcohol/collagen BSA protein drug release system [65]

NixCu1−x-silica
nanoparticles (x = 0.675) sol–gel method

SiO2 silica from tetraethyl-orthosilicate
(TEOS, Si(OC2H5)4) hydrolysis

and condensation

PTX
(C13H18N4O3), BPC (C18H28N2O),

PCM (C8H9NO2)

Skin cancer-Humanskin
fibroblasts

(ATCC-CCL-110, Detroit 551)
[126]

Multifunctional
Fe3O4@SiO2-APTES-DOTA sol–gel

SiO2 with amino-functionality by
aminopropyltriethoxysilane (APTES) usage;

and 1,4,7,10-Tetraazacyclododecane-
1,4,7,10-tetraacetic acid (DOTA)

Teniposide, anticancer drug brain tumors, acute
lymphocytic leukemia (ALL) [258]

MnFe2O4 and
Cr2Fe6O12 nanocarriers

combustion/calcination of
PVP stabilized metal

salt complexes
N/A; curcumin loading by precipitation

curcumin (CUR) release to MCF-7
cells; anti-inflammatory,

anti-oxidant, antimicrobial,
antispasmodic

and antiproliferative activity;
(release was pH-dependent)

photosensitizer for
photodynamic therapy (PDT);

drug delivery
[259]

superparamagnetic iron
oxide (Fe3O4)

nanoparticles (SPIONs)

co-precipitation; Dextran
(DEX) stabilization

Folate (FA)-modification by
conjugation to MNPs

camptothecin (CPT) action on
AT3B-1 cancer cells prostate cancer [260]

ZnFe2O4 zinc ferrite
nano-hollowspheres (NHSs) solvothermal method

Sodium folate ligand modification for
biocompatibility (folic acid

small molecule vitamin)
Doxorubicin cancer treatment [318]

iron oxides (hematite,
magnetite); carbonyl iron

(due to its low size)
various (precipitation etc.)

polyethylene glycol (PEG); Magnetic
liposomes; biodegradable polymers as

stabilizers against oxidation (celluloseacetate;
hydrogen phthalate)

Paclitaxel; Celecoxib;
(Doxorubicin—poor distribution

through BBB); Ferrocenyl
diphenoltamoxifen; Gadd 153

Glioblastoma
Multiforme management [319]

SPION (magnetite,
Fe3O4 nanospheres)

emulsion solvent evaporation
method; polymer

(ethylcellulose) coating
ascorbic acid (Vitamin C) capping Carboplatin (CPt) Breast cancer [320]
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Table 1. Cont.

Type of NP Synthesis of MNPs/Coating Surface Functionalization Type of Drug/Molecule Targeted
Disease/Application Ref.

multifunctional mesoporous
silica nanoparticles (MSNs)

coating: Polydopamine
(PDA) and graphene

oxide (GO) double layer
fluorescent conjugates to yield FMSNs ibuprofen and acetaminophen Drug release [321]

Fe3O4

dextran, PEG,
Hyaluronic acid, Human
serum albumin conjugate

polyvinyl alcohol (PVA) and
PEG-derivatives/functional ligands:

PEG(5)-nitrodopamine, PEG(5)-dopamine,
PEG(5)-hydroxipyridine

Cetuximab and doxorubicin, Gallic
acid, Erotinib, Actein, Quercetin Lung cancer [263]

Fe3O4-Dex-MA-g-
P(NVI/NVCL) (pH-sensitive

multi-functional
magnetic nanocomposite)

Dex-MA (dextran modified
by Glycidyl methacrylate)

Poly(N-vinylcaprolactam) (PNVCL), a
temperature-sensitive biocompatible polymer

5-FLU (5-fluorouracil or
5-Fluoro-2,4-pyrimidinedione) cancer [322]

magnetic microspheres
(MMS) based on Fe3O4

co-precipitation and
water-in-oil-in-water
(W1/O/W2) ternary

emulsion solvent
evaporation process

PLGA (poly-(D, L-lactide-co-glycolic acid))
microspheres; polymer coating tuned for

required drug release rate
5-fluorouracil cancer therapy, drug release [323]

carbon-coated iron magnetic
NPs; USPIOs; magnetite-gold

nanocluster
Fe3O4@AuNCs@ERL

nanocomposite

various (precipitation
followed by

magnetic separation)
carbon coating; Au/polymeric coating

Erlotinib. ERL:
N-(3-ethynylphenyl)-6,7-bis(2-

methoxyethoxy)-4-
quinazolinamine (epidermal

growth factor receptor
(EGFR) inhibitor)

metastatic non-small cell lung
cancer; aggressive
pancreatic cancer

[324]

magnetite
nanoparticles (MNPs)

modified co-precipitation
method (MNPs);
glutaraldehyde
(GA)/calcium

chloride CaCl2 (crosslinker)

sodium alginate
(SA)/polyvinylpyrrolidone-co-vinyl acetate

(PVP-co-VAc) semi ipn microbeads

curcumin
(CUR)

(encapsulation by simple
ionotropic gelation technique)

cancer treatment [325]
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Table 1. Cont.

Type of NP Synthesis of MNPs/Coating Surface Functionalization Type of Drug/Molecule Targeted
Disease/Application Ref.

SPIONs (Maghemite) no organic dispersant linking the keto-enol moiety of CUR with Fe
atoms to form SPION@curcumin hybrids curcumin

photodynamic therapy (PDT):
photodynamic action against

S. aureus using blue
LED light.

[326]

iron oxide nanoparticles
(bare Fe3O4 NPs)

Micellar-assisted aqueous
stabilization: micelles

(dhydrodynamic =120 nm):
sodium dodecyl sulfate (SDS)

and aniline
hydrochloride (AHC)

- curcumin
hyperthermia therapy (under

AC magnetic field); drug
(curcumin) delivery

[327]

multicore magnetic
nanoparticles: magnetite

(Fe3O4) and/or
maghemite (γ-Fe2O3)

coprecipitation method;
coating with SiO2 silica using

TEOS, in a modified
Stöber method

SiO2 coating of MNPs yields
MNP@SiO2 (centrifugation)

Curcuminoids (CC) extracted from
turmeric: curcumin (>50%),
desmethoxycurcumin, and

bisdemethoxycurcumin

theranostic nanoplatform;
drug release;

hyperthermia candidate
[328]

Fe3O4
chemical co-precipitation;

folic acid labeling of MNPs

Polyethylenimine-graft-poly (maleic
anhydride-alt-1-octadecene) coated, to

yield Fe3O4@PIMF

curcumin
(effect on MCF-7 and Helacells)

Drug delivery, MRI (negative
signal enhancement in MRI) [329]

NiFe2O4 in
x(NiFe2O4)@(100−x)SiO2

@HKUST-1 (10≤ x≤ 60 wt.%)

Core-shell strategy;
trichloroacetic acid (BTC) as
the organic binding for MOF

Silica coating (by TEOS) and MOF
functionalization; NiFe2O4@SiO2@HKUST-1

as Novel Magnetic Metal-Organic
Framework Nanocomposites

Curcumin
adsorption in mesoporous host drug delivery [330]

Magnetite Fe3O4 in
PEGylated

Fe3O4/hydroxyapatite
(PMHA) nanocomposite

PEG coating Hydroxyapatite (shell)
Curcumin (effect on A549, MCF-7,

and MRC-5 cells) (1.9 mg/g
loading, pH-dependent release)

MRI; drug release [331]

Yttrium Y3+-Doped Iron
Oxide Fe3O4 Nanoparticles

Co-precipitation (Fe3O4
and Y3+

xFe2+Fe3+
2 − xO4)

- (effect on 4T1 cells-mice mammary
gland cancer cells; ATCC CRL2539) Hyperthermia [332]
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Table 1. Cont.

Type of NP Synthesis of MNPs/Coating Surface Functionalization Type of Drug/Molecule Targeted
Disease/Application Ref.

Mesoporous Fe3O4
nanoparticles (SPIONs)

solvothermal method
(PEG-diamine, hydrazine; for

SPIONs); Folate
encapsulation in

PEG-diamine grafted NPs

Multifunctional polyethyleneglycol-diamine
functionalized;

1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide

hydrochloride/Nhydroxysuccinimide

doxorubicin (DOX) (effect on
breast cancer cells MCF-7); through

electrostatic attachment to
daunosamine (NH3

+)

(breast) cancer treatment [333]

iron oxides maghemite
(γ-Fe2O3) and magnetite

(Fe3O4) nanoparticles

ultrasonic irradiation assisted
co-precipitation route

(providing good dispersion)
- - Hyperthermia [334]

Co/Li/Zn-mixed ferrites:
Co0.76Zn0.24Fe2O4,

Li0.375Zn0.25Fe2.375O4 and
ZnFe2O4

mixed-structure ferrite

‘dry gel’ formed by a sol–gel
auto-combustion method - - Magnetic hyperthermia [335]

FeNiCo ternary
alloy nanoparticles

[FeNi]100−xCox (2.5 ≤ x ≤ 50)
by polyol method - - Hyperthermia [336]

Co2+-doped magnetite,
CoxFe3−xO4–

carboxymethylcellulose
conjugate ferrofluids

Cox-Fe3O4; (x = 3, 5, and
10% mol of cobalt)

carboxymethylcellulose (biocompatible
macromolecular ligand) ferrofluids

(effect of AC magnetic field on
human brain cancer cells U87)

magnetic hyperthermia,
cancer therapy [337]

magnetic hydrogel based
on Fe3O4 NPs

co-precipitation method;
Hydrogel formation

Gelatin formulation; Functionalization with
methacrylic anhydride (GelMA), then

copolymerization with
(2-dimethylaminoethyl) methacrylate

(DMAEMA) monomer

Doxorubicin (Dox) breast cancer, hyperthermia [338]
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Table 1. Cont.

Type of NP Synthesis of MNPs/Coating Surface Functionalization Type of Drug/Molecule Targeted
Disease/Application Ref.

Copper Ferrite Nanoparticles
CuFe2O4 MNPs

Co-precipitation, then
magnetic separation; Silica
coating (TEOS tetraethyl
orthosilicate and CPTMS

(3-chloropropyl)-
trimethoxysilane)

Aromatic Polyamide Chains by
polymerization of diamino-benzenes and

-naphtalene with terephthaloyl chloride. Final
nanocomposite:

CuFe2O4@SiO2-poly(p-phenylene
Terephthalamide) star-like polymers

-
Hyperthermia evaluation-

suitable for mild
hyperthermia (∆T~4 ◦C)

[339]

Fe3 − xCoxO4 (X = 0–1)
spherical nanoparticles (7 nm)

thermal decomposition or
organometallic precursors:

Fe(acac)3 and Co(acac)2 in 1,2
hexadecanediol, oleic acid,

and olylamine (polyol)

hydrophilization of hydrophobic Fe3−xCoxO4
by TMAH (tetramethyl ammonium hydroxide,

caping agent)
- Hyperthermia (maximum

SAR for x = 0.75) [340]

Fe3O4

polyol synthesis to give
Fe3O4@Au@Cu2 − xS

dumbbell heterostructures

hydrophobic-to-hydrophilic by two-step
procedure (ligand exchange);

thiol-polyethylene glycol coordinate Au and
Cu2-xS surfaces and

polycatechol–polyethylene glycol bind Fe3O4
surface; 64CuCl2 radiolabeling

-

Photo-Magnetic
Hyperthermia and 64Cu

Radio-Insertion (Tri-Modal
Therapy); suggested efficient

for skin cancer treatment

[341]

Mg1 − xCoxFe2O4 (0 < x < 1;
∆x = 0.1)

chemical
co-precipitation method

surface-functionalized: chitosan and
chitosan-coated MNPs reported

biocompatible behavior

(effect on HeLa cells
showed no cytotoxicity)

hyperthermia and in vivo
MR imaging [342]

Coated Iron Oxide
Nanoparticles (IONPs)

cross-linking with the
adsorbed model drug (DOX)

Gelatin-coated (biocompatible
natural polymer)

Doxorubicin (DOX); effect on
MG-63 osteosarcoma cells

Cancer Treatment; potential
hyperthermia effect [343]

Magnetic nanoparticles
(MNPs) Iron oxide (Fe3O4)

co-precipitation synthesis of
magnetite Fe3O4; coated with

four types of primary
surfactants, polyethylene

glycol 2000 (PEG 2000), oleic
acid (OA), Tween 20,

and Tween 80

- Doxorubicin (high loading); effect on
lung adenocarcinoma A549 cell line cancer treatment [344]
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Table 1. Cont.
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MNPs (Fe3+)

Mohr salt
(NH4)2Fe(SO4)2(H2O)6

alkaline solution with sodium
hypophosphite NaH2PO2
in the presence of NIPAM;

Fe2+/PAA = 1/1

polyacrylic acid (30%), N-isopropylacrylamide
(70%) (NIPAM) nanogel of ~150 nm Doxorubicin (DOX) anticancer activity [345]

Magnetite Fe3O4

simple ionotropic
gelationmethod
(Gelatin-Coated)

Sodium Alginate (anionic
polysaccharide)/Magnetite Nanoparticle

Microbeads, doped with Mg2+and Al3+ ions
Doxorubicin (DOX) drug delivery carriers

and applications [346]

MNPs—manganese ferrite
MnFe2O4 nanoparticles

co-precipitation method
(MnFe2O4) citrate coating yielding Cit-MnFe2O4

Doxorubicin (effect on 60 male
Wistar rats)

kidney injury (in rats);
Chronic kidney
disease (CKD)

[347]

MNPs (Magnetite
Fe3O4 NPs)

co-precipitation (product
recovery by

magnetic decantation);

PEG coating to produce Fe3O4@PEG;
Fe3O4@PEG immersion in Graphene quantum
dots solution (by pyrolysis of citric acid, and

24 h still) to yield Fe3O4@PEG@GQD
dispersed in PBS, then

Fe3O4@PEG@GQD-DOX
(magnetic separation)

Doxorubicin (effect on breast
cancer MCF7 cells)

anticancer activity, drug
release (in vitro) [348]

- unseeded stable
cavitation (ultrasound) -

Doxorubicin (or Adriamycin);
effect on 4T1 murine
mammary carcinoma

Murine Mammary
Tumor Cells [349]

Magnetite-based magnetic
gelatin microspheres

co-precipitation method;
using FeCl2 instead of FeSO4

produces higher Ms
(61.6 emu/g); gelatin coating

fructose, glucose, genipin (most efficient) and
1-ethyl-3(3-

dimethylaminopropyl)carbodiimide (EDC) as
crosslinking agents of gelatin

Doxorubicin drug delivery [350]
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MgFe2O4 ferrite MNPs glycol-thermal method
Chitosan (CHI), polyethylene glycol (PEG)

and polyvinyl alcohol (PVA); CHI-MNPs have
highest DOX encapsulation (84.28%)

Doxorubicin; effect on human
embryonic

kidney (HEK293), colorectal
adenocarcinoma (Caco-2), and

breast adenocarcinoma (SKBR-3)
cell lines

(pH controlled) drug release,
cancer treatment [351]

Fe3O4@SiO2@SBA-15
co-precipitation (and
magnetic separation);

PEG 400 coating
SiO2 silica coating (TEOS); PEI grafted Doxorubicin MCF-7 cell line drug delivery [352]

MNPs

co-precipitation in alkaline
media (NH4OH) of

Fe2+/Fe3+/ethylene diamine
(for introduction of -NH2

functionalization)

carboxymethyl chitosan (CMC) coating to
yield MNPs-CMC-DOX Doxorubicin drug release [353]

Superparamagnetic
SPIONs (Fe3O4)

co-precipitation (using
chloride sources);

polymer-coated NPs, by
polymerization of glycidyl

methacrylate (GMA).

SiO2 and SiO2-NH2 functionalization with
tetraethoxysilane (TEOS) and

3-(trimethoxysilyl) propyl
methacrylate (TMSPM)

carboranes (by
1sopropyl-o-carborane

immobilization)

boron neutron
cancer therapy [354]

MNPs magnetite Fe3O4
co-precipitation;

Silica coating

surface-modification with N-
(phosphonomethyl) iminodiacetic acid

(PMIDA) to Fe3O4@SiO2@PMIDA

anti-CD4 monoclonal antibody
(by bioconjugation)

positive selection of
peripheral blood

T CD4+ lymphocytes
[355]

γ-Fe2O3

bio-assisted method/aqueous
co-precipitation;

3 morphologies of MNPs:
nanospheres (NS),

nanograsses (NG) and
nanowires (NW)

green route: biosurfactant Furostanol Saponin
(FS) from Fenugreek seeds extract dopamine (DA) and uricacid (UA)

biosensors (molecular
recognition platform for
simultaneous detection

of biomarkers)

[356]
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Iron oxide MNPs
precipitation (under N2);

coating and conjugation to
yield Gem-PHB-MNPs hybrids

polyhydroxybutyrate coated
gemcitabine (effect on cell

proliferation assay using SKBR-3
and MCF-7 breast cancer cell lines)

targeted drug delivery;
treatment of breast cancer [357]

SPION-type, reduced
graphene oxide GO—Fe3O4

co-precipitation; In situ
surface functionalization;

coating with Pluronic F-127
(PF) to reduce cytotoxicity

delivery via an oriental fungus-type
Ganoderma lucidum(provides stabilization);
after drug Que loading: rGO-Fe3O4-GL-PF

Quercetin (Que), natural
polyphenolic flavonoid with

anti-cancer properties

cancer therapy; targeted
drug delivery [358]

Magnetite Fe3O4

precipitation in aqueous
media with NH4OH of
precursors, then oleic

acid coating

PLGA–mPEG star-like block copolymers
using biodegradable poly(lactic-co-glycolic
acid) (PLGA) and methoxy poly(ethylene

glycol) (mPEG)

Quercetin
(conjugation to MNPs by

dialysis method)

anticancer; nanocarrier for
hydrophobic drugs [359]

Magnetite Fe3O4

microemulsion-assisted
co-precipitation method

(for MNPs)
PEG-ylation (coating) to PMNPs gallic acid cancer treatment [360]

Paramagnetic
Fe3O4 nanoparticles

Monte Carlo simulated
annealing scheme; molecular

dynamics (MD)
PEG-ylation 5-fluorouracil cancer treatment;

drug delivery [361]

MNPs (DEAE-FluidMAG;
5 mg, 200 nm, ChemicellTM)

enzyme encapsulation
stable at 37 ◦C -

CLytA-DAAO Chimeric Enzyme;
effect against Hs766T, IMIM-PC-2
and RWP-1 pancreatic carcinoma
cells, HT-29, SW-480and SW-620

colorectal carcinoma cell lines

cancer therapy (pancreatic
and colorectal carcinoma

and glioblastoma)
[362]

iron oxide nanoparticle

Quantum chemical analysis
(B3LYP/6-31G(d,p) in

aqueous solution; M06-2X
dispersion correction)

-
5-aminolevulinic acid (anticancer
drug); drug binding via advanced

hydrogen bonding
cancer treatment [363]
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self-assembled magnetic
nanospheres (MNS)

solvothermal method (MNS);
Nintedanib (NTD)

conjugated with MNS-APTES
through the acid liable

imine bond

Aminopropyltriethoxysilane (APTES)
monolayer coating and functionalization

Nintedanib (NTD); targets human
lung cancer cells L-132 anticancer [364]

iron oxide (IO)

wet chemical
co-precipitation (with

enriched KNO3 content of
FeSO4 solution prior to

KOH precipitation)

APTES-Modified Nanohydroxyapatite
(nHAp); Nanohydroxyapatite–Iron Oxide

Composite (nHAp/IO) produces after APTES
surface modification: nHAp/IO@APTES

effect on murine osteoblast
precursor cell line (MC3T3-E1) and
murine monocyte–macrophage cell

line (RAW 264.7)

Early Osteogenesis, Reduces
Inflammation and Inhibits

Osteoclast Activity
[365]

Magnetic
nanoparticles Fe3O4

co-precipitation method
(using chloride iron sources);
drug was loaded on MNP-CS

through an amide bond
between -NH2 groups
(chitosan) and -COOH

groups (TEL)

Chitosan coating; their solutions shaken
gently for 2 h at 25 ◦C to

obtain chitosan coated MNPs (MNP-CS)

Telmisartan (TEL), a water-soluble
anticancer drug cancer treatment [366]

Fe3O4 in superparamagnetic
graphene oxide

(SPMGO) nanocomposite

chemical precipitation
method, graphene
oxide/magnetite
nanocomposite

cyanuric chloride (CC), used as linker; final
nanocarriers: SPMGO and SPMGO/CC, to

yield SPMGO/MTX and SPMGO/CC/MTX

methotrexate (MTX); tested against
Caov-4, HeLa and MCF-7 cell lines cancer treatment [367]

Mn0.5Zn0.5DyxFe2−xO4
(x ≤ 0.1) NPs

ultrasonic
irradiation method

sonication in LB (Luria Bertaini)
to achieve the suspended broth-drug solution

tested against Escherchia coli
ATCC35218 as Gram-negative and

Staphlyloccocus aureus
ATCC29213, as Gram-positive

bacteria; and Human colorectal or
colon carcinoma cells (HCT-116)

anticancer; antifungal activity
(vs. Candida albicans
ATCC 14053, yeast)

[368]
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magnetic silk nanoparticles microfluidic device using silk
fibroin and MNPs

Peptide-functionalization of magnetic silk
NPs, with Antitumor peptide G3-a cationic

amphiphilic anticancer
peptide, G(IIKK)3I-NH2

Dimethylcurcumin (ASC-J9),
androgen receptor inhibitor; tested

against HCT 116 colorectal
cancer cells

anticancer [369]

metal ferrite NPs,
MnFe2O4, CuFe2O4

one-pot solvothermal method
(270 ◦C, polyol method, in situ
CD formation, ethanolamine
1-amino-2-hydroxy-ethane

as source)

oleyl amine surface coating and
functionalization; carbon dots-metal ferrite

hybrids, CDs-MNPs: CDs@MnFe2O4,
CDs@CuFe2O4

(tested on HeLa cancer cells) multipurpose marker agent
of HeLa cancer cells [370]

magnetic graphene oxide
hybrid, based on MnFe2O4

magnetic core

nanocomposite (mGG3F) of
graphene, MnFe2O4 NPs,

poly(amidoamine) dendrons
and folic acid

poly(amidoamine) dendron-functionalization

Pd(II) complex synthesized using
Naphcon as a model drug, with

entrapment efficiency (EE)
73.9% ± 0.08

cancer therapy [371]

SPIONs (Fe3O4) superparamagnetic iron
oxide nanoparticles

polyamidoamine PAMAM-modified
mesoporous silica-coating of SPIONS

folic acid (effect on MCF-7 cells);
Indocyanine green (ICG) a

near-infrared dye was loaded in
M-MSN-PAMAM nanocarriers

cancer
(photodynamic) therapy [372]

Methionine Magnetic
Nanoparticles

Ni1−xCoxFe2O4
@Methionine@PEG NPs

Ni1−xCoxFe2O4 NP coated
with methionine

using the reflux method
(under N2); 1 mg of

Ni1 − xCoxFe2O4
@Methionine@PEG NPs

could load 0.51 mg naproxen

PEG-coating by 30 min vigorously stirring
PEG-6000 powder in a

phosphate-buffered saline (PBS) with
Ni1−xCoxFe2O4@Methionine

Naproxen (most potent COX-1 and
COX-2 inhibitors)

cancer growth inhibition;
controlled drug release [373]
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iron oxide
nanocubes (IONCs)

one pot synthesis, from
Fe(acac)3, decanoic acid and

dibenzylether (DBE) in
squalene (SQ) at 310 ◦C, then

magnetic separation and
centrifugation yield IONCs

(15 nm ± 1 nm and
23 nm ± 5 nm edge length)

polycaprolactone fibers
(electrospinning process)

doxorubicin; tested against Mouse
embryonic fibroblast cell line (NIH

3 T3 cells), DOXOsensitive
HeLa-WT cervical cancer cells and

the DOXO-resistant
MCF7 breast cancer cells

hyperthermia and
cancer treatment [374]

Iron Oxide nanocomposites
with Fe2O3 core commercial Polyurethane diol/Polycaprolactone to yield

PUD/PCL-Fe2O3 nanocomposites - catalytic effect (potential
alternative use in fuel cells) [375]

Iron Oxide (Fe3O4)

Two-Step LASER Ablation in
Aqueous Media; TiO2

(core-shell), in both Fe3O4
and TiO2 pressed into pellets

(commercial sources)

organic binder material
cytotoxicity against lung cancer

cell lines (A549), Escherichia coli and
Staphylococcus aureus

Antimicrobial and Anticancer [376]

Iron MNPs

Co-precipitation method
(MNPs); Polymer coatings

were synthesized by two-stage
melt polycondensation using

BD:ADA:TBT as catalyst
(molar ratio of 1:1:0.1),

under N2.

biofunctionalized with poly(butylene
adipate-co-terephthalate) (PBAT), and

poly(butylene adipate) (PBA).

Absorption of DOPh and DBPh
from aqueous medium Phthalate absorption [377]

SPIONs

dextran-coated PEG-COOH
functionalized

super-paramagnetic
ironoxide nanoparticles,

SPIONs (micromod
Partikeltechnologie, GmbH);

carbodiimide chemistry
producing FGF2-SPIONs

dextran-coated PEG-COOH functionalized
super-paramagnetic ironoxide nanoparticles,

SPIONs (micromod Partikeltechnologie,
GmbH, Rostock, Germany)

Fibroblast growth factor 2 (FGF2);
effect studied on normal and

cirrhotic human livers, Human
hepatic stellate cells (LX2 cells)

treatment of acute liver injury
(in vivo) [378]
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Manganese ferrite MnFe2O4
magnetic core

Microwave Driven
Solvothermal Synthesis

Functionalization by oxidation polymerization
process to yield polyrhodanine manganese

ferrite PRHD@MnFe2O4 binary hybrids

effect against specific cell lines:
macrophages (RAW 264.7),

osteosarcoma cells line (UMR-106),
and stromal progenitor cells of

adipose tissue (ASCs);
Antimicrobial activity against

Escherichia coli and Staphylococcus
aureus.

protection against Fenton’s
reactions, and generation of

highly toxic radicals;
antimicrobial therapy

[379]

Zn2+Doped Magnetite
Fe3O4 Nanoparticles

low-cost method oleic
acid/alcohol/water system
to synthesize Zn0.4Fe2.6O4

NPs; dimercaptosuccinic acid
coated Zn2+ doped magnetite

nanoparticles
(DMSA-Zn0.4Fe2.6O4)

dimercaptosuccinic coating providing
-SH functionalization

Spleen accumulation through
translocation of oral medicine;

in vivo study (rats)

(oral) drug delivery, MRI;
evidence of drug

translocation from oral to
organ (liver, spleen) in

non-toxic forms

[380]

magnetic microspheres with
γ-Fe2O3 magnetic core

core-shell synthesis; doping
with Tb3+ ions could sensitize

the fluorescence of Enr

silica coating with -NH2 grafted functionality,
and MOF and CMC- sodium carboxymethyl

cellulose functionalization;
γ-Fe2O3@SiO2-NH2-CMC/MOF5 and

γ-Fe2O3@SiO2-NH2-CMC/IRMOF3 magnetic
MOF nanoparticles

Enrofloxacin Enr (fluoroquinolone
antibiotic, brand name: Baytril®);

best results for γ-Fe2O3@SiO2-
NH2-CMC/IRMOF3

treatment of
bacterial infections [381]

Ni(1−x)CoxFe2O4 NPs

reflux process (modified
co-precipitation with NaOH

under N2, reflux, then
amino-acid addition)

Methionine (amino acid) coating during
MNPs synthesis

Tetracycline (drug loading 0.33 mg
in 1 mg of carrier); tested on

Melanoma cancer cell line (A375)
and HFF normal cell,
Staphylococcus aureus,

Escherichia coli.

drug delivery [382]
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MNPs Fe3O4 co-precipitation SH functionalization via (3-Mercaptopropyl)
and trimethoxysilane

Coenzyme Q0 (CoQ0,
2,3-dimethoxy-5-methyl-1,4-

benzo-quinone); effect on Saos,
MCF7 and Hela cell lines

antitumoral effect;
anti-inflammatory, anticancer,

and antioxidant
[383]

MNPs Fe3O4

coprecipitation of iron sulfate
salts in basic media; 2-step

strategy for nanohybrid

APTES linker between MNPs and the stearyl
moiety (amide bond) (R)-9-Acetoxystearic Acid (9-HSA);

biomedical (antiproliferative
agent active against different

cancer cells)
[384]

iron oxide NPs

co-precipitation of Fe(III) and
Fe(II) in alkaline medium (MNPs);

ceftriaxone (CFT)-loaded N′-
methacryloylisonicotinohydrazide

(MIH)-functionalized magnetic
nanoparticles(CFT-MIH-MNPs)

high functionalization degree

ceftriaxone (oral administration,
brand name Rocephin, a

third-generation cephalosporin
antibiotic) in vitro stability using
simulated gastrointestinal tract

(GIT) fluids

treatment of bacterial
infections; high drug

entrapment, gradual drug
release; enhanced oral

delivery of CFT.

[385]

α -Fe2O3/Gadofullerene
(GdF) Hybrid

simple chemical
precipitation method chitosan

chitosan-α-Fe2O3/GdF hybrid
composites-antibacterial resistance
against Escherichia coli, Pseudomonas

aeruginosa, Bacilus subtilis, and
Staphylococcus aereus, and

P. aeruginosa
(inducing pneumonia)

Treatment of
Antibiotic-Resistant
Bacterial Pneumonia

[386]

α-Fe2O3 chemical precipitation method chitosan

Chitosan/α-Fe2O3 nanocomposite;
antibacterial activity against

Staphylococcus aureus and
Escherichia coli.

antibacterial treatment [387]

SPION Fe3O4
co-precipitation with sonication
in thermostatic bath (under Ar) chitosan coating, collagen functionalization -

biomedical and technological
applications, scaffolds for

tissue regeneration
[388]
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Fe2O3 chitosan coating

Fe2O3/chitosan/montmorillonite (MMT,
polymer layered silicate); after encapsulation,

QC release is pH-dependent and follows
Weibullkinetic model.

Quercetin (QC) delivery (potential
adjuvant in COVID-19 medication);

Fe2O3/CS/MMT NPs tested
against MCF-7 cells

drug delivery;
cancer treatment [389]

Fe3O4@PAA@MIL-100(Cr)
metal-organic framework

50 wt% drug CIP
encapsulation in

Fe3O4@PAA@MIL-
100(Cr)@CIP

PAA@MIL-100(Cr)

ciprofloxacin
(CIP)(fluoroquinolone antibiotic);
tested by disk diffusion method

against Escherichia coli and
Staphylococcus aureus

antibacterial [390]

Ag-coated MNPs; Fe3O4/Ag
and Fe3O4@SiO2/Ag

(33.2–35.1 nm)

chemical reduction method
(co-precipitation) Ag coating; -NH2 functionalization via APTES

trimethoprim (antibiotic);
sulfamethoxazole; effect on

Escherichia coli and Staphylococcus
aureus

antibiotic treatment;
drug release [391]

CoFe2O4–BaTiO3,
CoFe2O4–Bi4Ti3O12 and
Fe3O4–BaTiO3 core-shell

magnetoelectric nanoparticles

core-shell type
magnetoelectric nanoparticles PNIPAm. -functionalized

methotrexate MTX (model drug; its
adsorption best described by

Freundlich model)
drug delivery [392]

magnetic
nanoparticles MNPs

Co-precipitation of Fe2+/
Fe3+ = 1/2, with NH4OH

Tryptophan (amino acid involved in metabolic
functions); 99mTc labeling afforded evaluation
of the biodistribution and the blood kinetics

indoleamine 2,3 dioxygenase (IDO)
and L-type amino acid transporter
(effect on cell lines A-549, MCF-7)

tumor treatment; cancer
treatment (ovarian,

lung, colorectal)
[393]

Maghemite (γ-Fe2O3) core-shell magnetic
nanoparticles;

γ-Fe2O3@SiO2, γ-Fe2O3@SiO2-NH2 and
γ-Fe2O3@SiO2-NH2-COOH MNPs via TEOS,
APTMS and glutaric anhydride (GA). Further

functionalization: Core-Shell package of
Tb-BDC-NH2 and Tb-BDC, with ligands

2-aminoterephthalic acid (H2BDC-NH2) and
terephthalic acid (H2BDC).

norfloxacin (Nor); via coordination
between γ-Fe2O3@SiO2-NH2-

COOH/Tb-BDC
and Nor

antibiotic [394]
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MNPs (Fe)
For C-coating, Fe is more

biocompatible and less toxic
than Fe3O4

Graphene-encapsulated to produce Fe@C
(biocompatible graphene shell)

ferulic acid (pharmaceutical
ingredient found in the traditional

Chinese herb Angelica sinensis)

diabet (mice); (controlled)
drug release [395]

Ionic magnetic Fe2O3
core-shell nanoparticles

coprecipitation of Fe3+ and
Fe2+ ions at a molar ratio of 2:1.

with NH4OH. Oxidation
occurs due to air
exposure (24 h)

silica shell and functionalized with
alkylimidazolium organic halide:

Guerbet imidazoles
(to yield NpFeSi MNPs)

DNA extraction and stabilization
against fragmentation

promising platform
for therapeutic delivery;

DNA extraction
[396]

superparamagnetic iron
oxide nanoparticles Fe3O4

(APTMS@SPIONs)

co-precipitation method from
iron salts Fe3+/Fe2+: 2/1

(mol ratio) using NH4OH in
presence of APTMS at 85 ◦C

(Ar flow)

3-aminopropylsilane coating (APTMS) for
cationic APTMS@SPIONs; after ICG

encapsulation, hydrodynamic size increased
from 18 to 35 nm for ICG-APTMS@SPIONs

indocyanine green (ICG)
(25 µg mL−1); effect evaluated on

planktonic cells and
biofilms of Gram-negative (E. coli,
K. pneumoniae, P. aeruginosa) and

Gram-positive
(S. epidermis) bacteria

Antimicrobial photodynamic
therapy (aPDT) and

antimicrobial photothermal
therapy (aPTT)

[397]

MNPs (Fe3O4) as
Fe3O4@SIO2/SH/NH2

Chemical co-precipitation for
core-shell MNPs (under N2)

Silica-thiol coating; -NH2 functionalization via
hydrolysis/condensation of APTES solution,

CPTES and MPTES.

methotrexate (MTX) and cysteine
(Cys); up to 65% drug absorption

drug release
(tested at 37◦ and 25 ◦C) [398]

Magnetite Fe3O4

(commercial powder, from
Sigma-Aldrich Ltd.,
≥97% trace metal basis,

particle size 50–100 nm.)

chemical-free, pulsed laser ablation (PLAL) to
give ibuprofen:magnetite composites 4:1,

3:1 and 2:1 (wt)
ibuprofen

inflammation and pain
management;

targeted drugdelivery
[399]

MNPs Fe6(OH)18(H2O)6

quantum chemical study
(using GAUSSIAN 09 and

LANL2DZ basis set)

drug approaches TPZ via NH2 (MNP/TPZ1),
NO (MNP/TPZ2-3) and

intraring N-atom (MNP/TP4) functional
groups/-NH2 mechanism leads to the
thermodynamically- stable product via
reaction to surface -OH groups (MNPs)

Tirapazamine (TPZ), experimental
anticancer drug activated to a toxic
radical only at hypoxia (low [O2])

cancer treatment [400]
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core-shell magnetic
nanoparticles (NPs):
Fe3O4@SiO2/NH2

and Fe3O4@CS

co-precipitation under Ar
atmosphere;

chitosan coating

silica coating and -NH2 functionalization
using APTES (3-(triethoxysilyl)-propylamine)

goat anti-HBsAg antibody (with
NaIO4 activation procedure)

antibody immobilization;
sensing nanoplatforms
(detection of HBsAg)

[401]

iron oxide nanoparticles
(Magnetite Fe3O4 with

hydroxyl endings)

standard co-precipitation
technique (MNPs);

silane coating with APTES by
silanization reaction;

Galactosylated coating

lactobionic acid (LBA)-functionalized:
MNP-LBA ceftriaxone (CFT) controlled drug release for

the oral delivery of CFT [402]

bare iron oxide NPs (IONs):
magnetite (cubic) - - lasioglossin III (short cationic

peptide) from bee venom

drug delivery (Escherichia coli
tests show higher

antimicrobial activity of
bound lasioglossin)

[403]
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As one may observe from Table 1, many MNPs have a core derived from either
Fe3O4 (magnetite) or from Fe2O3 (maghemite). After successful drug loading, the release
parameters are essential for the evaluation of efficient therapeutic drug levels in biological
systems. Various release mechanisms have been proposed in the literature, and research
data suggest some are more appropriate than others. For instance, when ibuprofen or
acetaminophen was conjugated to multifunctional mesoporous silica nanoparticles (MSNs)
containing APTMS and PDA/GO double layer functionalization, the drug loading was
facilitated by π–π stacking interactions (Figure 5).
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FITC conjugates, followed by coating of the PDA and GO double layer, and their controlled drug
release mechanism. Reprinted/adapted from ref. [321] with permission from RSC—Royal Society of
Chemistry, 2020.

The drug release profiles seemed pH-dependent, and this consideration is typically
valid for a plethora of drugs; the release ability under slightly acidic pH (4–6) seems to
be considerably higher than under near-neutral or slightly basic pH values (pH > 7.4).
However, the latter is more important since the biological pH usually is maintained by
living organisms at around 7.4, with coma or convulsions whenever the pH deviates by
more than 0.3 pH units from this value. Therefore, ongoing efforts concentrate on enhancing
kinetic release profiles under this biologically relevant value. Analysis of ibuprofen or
acetaminophen from NPs (FMSNs) bearing a single-layer coating of PDA (FMSNs@PDA)
or a double-layered coating of PDA and GO (FMSNs@PDA@GO) revealed that the most
relevant release mechanisms are Fickian, Kp and Higuchi models (Figure 6), as illustrated
the goodness of fit (GoF) parameter [321]. The results can serve as reference data for
nanoparticulate systems that bear similar surface coating and functionalization to MNPs;
their behavior in drug-release systems reveals many similarities [321,322].

The drug transport can show concomitant effects from both swellings of the poly-
mer chain and diffusion of the drug from the matrix. Since typically polymeric coatings
can be protonated under acidic pH if their functional groups allow it (such as imidazole,
for instance), the enhanced drug release is dominated under acidic conditions (pH < 7)
by swelling of the polymer [322]. This aspect is important, and evaluation of drug re-
lease under acidic pH is useful since tumors usually feature an acidic microenvironment
that can trigger further invasion of organs and metastasis through many possible mech-
anisms (intracellular pHi = 7.0–7.2, while extracellular pHe = 6.4–7.0 or even lower). As
such, when magnetite MNPs (Fe3O4) coated with glycidyl methacrylate, dextran and then
N-vinylcaprolactam and N-vinylimidazole monomers (used for inducing temperature
and pH sensitivity, respectively) were conjugated with 5 FU drug in Fe3O4-Dex-MA-g-
P(NVI/NVCL), the release profile confirms a much better release under acidic pH values
(pH = 5) rather than near-neutral conditions (pH = 7.4) when just ~20% of the drug was
being eliminated by 62 h mark (Figure 7) [322].
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and (e–h) acetaminophen were loaded in PBS (pH 7.4) at 37 °C. Model fits of ibuprofen and aceta-
minophen release from FMSNs-Drug, FMSNs-Drug@PDA, and FMSNs-Drug@PDA@GO by the 
Fickian exponential or Higuchi model versus cumulative time or square root time, and Kp model 
versus cumulative time. Reprinted/adapted from ref. [321] with permission from RSC—Royal Soci-
ety of Chemistry, 2020. 
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Figure 7. (a) pH responsive 5 FU release profile of 5 FU-loaded Fe3O4-Dex-MA-g-P(NVI/NVCL) at 
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MAg-P(NVI/NVCL) at pH 7.4. Reprinted/adapted from ref. [322] with permission from Elsevier, 
2020. 
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environment, but the value of “n” is much lower for release under bloodstream conditions 
(pH = 7,4), n = 0.302, so only minute amounts of drug will be released during blood circu-
lation [322]. This divergent behavior of drug-loaded microcarriers will be beneficial for 
reaching maximum target efficiency.  
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nohybrids was assessed towards tumoral cell lines: HeLa (cervical cancer), BxPC-3 (pan-
creatic cancer) and MCF-7 (breast cancer) with promising results motivating a shift to bo-
ron cancer therapy. Interestingly, Mossbauer spectra of starting Fe3O4 differ significantly 
from that of Fe3O4/TEOS pointing to a change in phase composition upon coating and 
further functionalization. Nevertheless, the saturation magnetization registered a de-
crease upon siloxanic coating, from 65.2 emu/g (Fe3O4) to 48.6 emu/g in final nanocompo-
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Notably, due to the immobilization of a water-soluble drug, 5-fluorouracil (5 FU),
the drug release may occur also due to a chemical potential gradient [322]. A typical
release profile such as those in Figure 5 or Figure 6 exhibits an initial burst release due
to drug diffusion at the solid–liquid interface. The Korsmeyer–Peppas fit of drug release
( Mt

M∞
= ktn) bears important mechanistic significance, especially when referring to the value

of “n”. Under acidic conditions, which are indicative of tumoral site behavior, n = 0.585
(R2 = 0.997), pointing to both swelling and diffusion mechanisms when reaching the acidic
tumoral environment, but the value of “n” is much lower for release under bloodstream
conditions (pH = 7.4), n = 0.302, so only minute amounts of drug will be released during
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blood circulation [322]. This divergent behavior of drug-loaded microcarriers will be
beneficial for reaching maximum target efficiency.

Other release models under consideration are the 0th (constant amount of drug re-
leased per unit time, irrespective of drug concentration) and 1st order (c = c0e−kt) kinetics,
linear equation (y = ax + b), Weibull ( Mt

M∞
= 1− e−atb

), Michaelis–Menten (ν = Vmax [S]
Km+[S] ) or

Hill equation (y = ymax xα

cα+xα ) [329].
An interesting functionalization process is depicted in Figure 8. The magnetite NPs

obtained from the co-precipitation method are covered by hydroxyl groups (from either
NH4OH or MOH, where M = Na, K), and this provides chemical anchors for Si(OEt)4
(tetraethoxysilane), forming a silica-coated MNPs as a result (product 1, Figure 8). Then,
there is a further reaction with 3-(trimethoxysilyl) propyl methacrylate (TMSPM) to pro-
duce Fe3O4/TEOS/TMSPM hybrids containing C=C bonds for grafting subsequent func-
tional polymers. Subsequently, polymerization of Fe3O4/TEOS/TMSPM with glycidyl
methacrylate (GMA) initiated by benzoyl peroxide occurs, and a reactive suspension of
Fe3O4/TEOS/TMSPM/GMA is obtained, that reacts with isopropyl-o-carborane to pro-
duce Fe3O4/TEOS/TMSPM/GMA/Carborane (product 4, Figure 8). The cytotoxicity of
these nanohybrids was assessed towards tumoral cell lines: HeLa (cervical cancer), BxPC-3
(pancreatic cancer) and MCF-7 (breast cancer) with promising results motivating a shift to
boron cancer therapy. Interestingly, Mossbauer spectra of starting Fe3O4 differ significantly
from that of Fe3O4/TEOS pointing to a change in phase composition upon coating and
further functionalization. Nevertheless, the saturation magnetization registered a decrease
upon siloxanic coating, from 65.2 emu/g (Fe3O4) to 48.6 emu/g in final nanocomposite
Fe3O4/TEOS/TMSPM/GMA/Carborane [354].
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Figure 8. Functionalization scheme for Fe3O4 MNPs with carborane immobilization. Reprinted from 
ref. [354], with permission from Elsevier, 2020. 

Another typical example depicting MNPs formation is coating with biocompatible 
chitosan (MNP-CS) and further binding Telmisartan (an anticancer drug that is water-
soluble and contains carboxyl -COOH moieties) (Figure 9). 

The chitosan is loaded by gently shaking the as-prepared Fe3O4 MNPs (by co-precip-
itation from chloride iron sources) with an acylated chitosan solution (chitosan reaction 
with CH3COOH). The obtained hybrid, MNP-CS, was magnetically separated from the 
reaction mixture. The actual loading of Telmisartan by a classical condensation reaction 
between an amine and an acid, produces an amidic bond -NH-C(=O)- when kept in an 
incubator shaker for 24 h at 100 rpm, at room temperature [366]. 

Figure 8. Functionalization scheme for Fe3O4 MNPs with carborane immobilization. Reprinted from
ref. [354], with permission from Elsevier, 2020.
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Another typical example depicting MNPs formation is coating with biocompatible
chitosan (MNP-CS) and further binding Telmisartan (an anticancer drug that is water-
soluble and contains carboxyl -COOH moieties) (Figure 9).
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Figure 9. Synthesis of drug-loaded, chitosan-coated magnetite NPs. Reprinted from ref. [366], with 
permission from Elsevier, 2021. 

In this case, the magnetization curves of MNPs and MNP-CS show a close resem-
blance, and, more importantly, the MS is only slightly reduced by coating from 59 emu/g 
(Fe3O4) to 50 emu/g (Fe3O4@chitosan) (Figure 10a). The magnetization curves show no co-
ercivity, indicative of the superparamagnetic behavior of Fe3O4. The reduction of magnetic 
response and MS is potentially problematic in polymeric coatings of MNPs since this coat-
ing procedure leads to a decrease in MS. Ideally, the coating agent should have a thin cov-
erage such that the magnetic behavior would remain largely unchanged [366]. 

Figure 9. Synthesis of drug-loaded, chitosan-coated magnetite NPs. Reprinted from ref. [366], with
permission from Elsevier, 2021.

The chitosan is loaded by gently shaking the as-prepared Fe3O4 MNPs (by co-precipitation
from chloride iron sources) with an acylated chitosan solution (chitosan reaction with
CH3COOH). The obtained hybrid, MNP-CS, was magnetically separated from the reaction
mixture. The actual loading of Telmisartan by a classical condensation reaction between an
amine and an acid, produces an amidic bond -NH-C(=O)- when kept in an incubator shaker
for 24 h at 100 rpm, at room temperature [366].

In this case, the magnetization curves of MNPs and MNP-CS show a close resemblance,
and, more importantly, the MS is only slightly reduced by coating from 59 emu/g (Fe3O4)
to 50 emu/g (Fe3O4@chitosan) (Figure 10a). The magnetization curves show no coercivity,
indicative of the superparamagnetic behavior of Fe3O4. The reduction of magnetic response
and MS is potentially problematic in polymeric coatings of MNPs since this coating proce-
dure leads to a decrease in MS. Ideally, the coating agent should have a thin coverage such
that the magnetic behavior would remain largely unchanged [366].

An example of cytotoxicity assessment involved testing on PC-3 human prostate
cancer cell line. The cell viability showed dependence on pH (drug release occurring at
acidic pH) and dose administered (Figure 10b). The coating/functionalization techniques
described in Figures 8 and 9 represent a strategy with wide applicability for the conjugation
of many other drugs (Table 1).
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Figure 10. (a) Room temperature magnetization curves of MNPs and MNP-CS. (b) In vitro cytotox-
icity assay of MNP-CS, MNP–CS–TEL, and TEL on PC-3 human prostate cancer cell line by MTT 
assay. Reprinted from ref. [366], with permission from Elsevier, 2021. 
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efficiency of MNPs to uptake different biologically active molecules, such as paclitaxel 
(PTX), better known under its commercial name of Taxol, a chemotherapy medication for 
the treatment of many types of cancer [404], among others. There is a fine line delimiting 
cell uptake and accumulation, and MNPs should only accumulate at the target site where 
cancer or tumor cells lie [405]. 

Other in situ/operando characterization methods have been employed to better vis-
ualize the uptake process of NPs by cancer cells and Raman spectroscopy has served re-
cently this purpose when cancer cells were subjected to Co-NPs [406,407]. Improvements 
in cell uptake were recorded when using biomimetic MNPs, attesting once again that the 
key to overcoming biologic barriers is to use other bio-inspired mechanisms [408].  

5.3. Hyperthermia 
Magnetic nanoparticles investigated for biomedical and hyperthermia applications 

have been reviewed recently [409–412]. Of particular interest are hyperthermia applica-
tions, since they can offer new horizons in cancer treatment and disease detection, man-
agement and treatment [70,335,413–428]. Many critical aspects have been investigated re-
garding the use of ferrofluid media and critical heat transfer issues [429,430]. At the core 
of MFH interpretation lies the proper establishment of the magnetic state of the examined 
NPs, and the main parameter is the blocking temperature (TB), the vast majority of SPIONs 
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the mean NP volume, and t as the measurement time, typically ~10−6 s, Keff the anisotropy 
constant and kB the Boltzmann’s constant 1.38 × 10−23 J K−1 [76]. In order for MNPs based 
on biomagnetic core-shell ZnδMn1 − δFe2O4@γ-Fe2O3 composition (δ = 0.2 and 0.5) to exhibit 
a blocking temperature near room temperature (TB = 300 K), their size was estimated to be 

Figure 10. (a) Room temperature magnetization curves of MNPs and MNP-CS. (b) In vitro cytotoxic-
ity assay of MNP-CS, MNP–CS–TEL, and TEL on PC-3 human prostate cancer cell line by MTT assay.
Reprinted from ref. [366], with permission from Elsevier, 2021.

5.2. Cell Drug Uptake

The porous structure containing mesopores (Dp = 2–50 nm) enhances remarkably the
efficiency of MNPs to uptake different biologically active molecules, such as paclitaxel
(PTX), better known under its commercial name of Taxol, a chemotherapy medication for
the treatment of many types of cancer [404], among others. There is a fine line delimiting
cell uptake and accumulation, and MNPs should only accumulate at the target site where
cancer or tumor cells lie [405].

Other in situ/operando characterization methods have been employed to better visu-
alize the uptake process of NPs by cancer cells and Raman spectroscopy has served recently
this purpose when cancer cells were subjected to Co-NPs [406,407]. Improvements in cell
uptake were recorded when using biomimetic MNPs, attesting once again that the key to
overcoming biologic barriers is to use other bio-inspired mechanisms [408].

5.3. Hyperthermia

Magnetic nanoparticles investigated for biomedical and hyperthermia applications
have been reviewed recently [409–412]. Of particular interest are hyperthermia applications,
since they can offer new horizons in cancer treatment and disease detection, management
and treatment [70,335,413–428]. Many critical aspects have been investigated regarding
the use of ferrofluid media and critical heat transfer issues [429,430]. At the core of MFH
interpretation lies the proper establishment of the magnetic state of the examined NPs, and
the main parameter is the blocking temperature (TB), the vast majority of SPIONs being

found in a superparamagnetic state at room temperature: TB =
Ke f f V

kB ln
(

τ
τ0

) , with V as the

mean NP volume, and t as the measurement time, typically ~10−6 s, Keff the anisotropy
constant and kB the Boltzmann’s constant 1.38 × 10−23 J K−1 [76]. In order for MNPs
based on biomagnetic core-shell ZnδMn1 − δFe2O4@γ-Fe2O3 composition (δ = 0.2 and 0.5)
to exhibit a blocking temperature near room temperature (TB = 300 K), their size was
estimated to be 32–25 nm; hence, the actual MNPs synthesized with sizes 7.2–9.2 nm were
all in superparamagnetic state at 300 K [76].

Aiming for a more effective hyperthermia procedure to combat tumors would imply
a synergic effect of drug delivery (tuned for the specific disease), corroborated with the
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hyperthermia effect itself providing an efficient tool to locally increase the temperature to a
range where cancer/tumor cells are most sensitive to and eventually die (41–46 ◦C) [431,432].

DFT modeling using the Monte Carlo model is also available for clinical hyperthermia
applications [433] or magnetic gel behavior under magnetic guidance simulation [434].
Mechanistic studies on the effect and interplay of the essential heat release mechanisms
have been presented in detail [23,435,436], as well as the effect of Ti atoms on Néel relax-
ation of MNPs [437], the drug-release modeling such as the 0th order, 1st order, Higuchi
model or Korsmeyer–Peppas kinetic models [438], the magnetization reduction essential in
sustainable hyperthermia [439], or others [440].

Theoretical simulations have revealed interesting features of MNPs related to their
performance in hyperthermia experiments, and some of these investigations pointed to
an optimal aspect ratio for maximum heating effect [441]. Closing the loop in the heating
process, the temperature reduction mechanism was shown to greatly depend on the heating
rate of a core-shell magnetite NP system [442].

5.4. Hypoxia

Hypoxia is a medical condition where the oxygen levels in body tissues are low and
represents a turning point in cancer treatment that is resistant to traditional or targeted
therapies. Oxygen binds to hemoglobin to form oxyhemoglobin and deoxyhemoglobin,
and these two forms experience concentration modifications that can be visualized by func-
tional MRI (fMRI) technique: BOLD (blood oxygenation-dependent imaging) MRI [144].
Biodegradable Fe-based nanohybrids have been used for hypoxia-modulated tumor treat-
ment when H-MnFe(OH)x hydroxide nanocapsules were designed with high loading
capacity, for instance using a chemotherapeutic drug, doxorubicin (DOX) with in vitro and
in vivo proof-of-concept anticancer synergy [443,444].

5.5. MDT: Magnetic Drug Targeting

Targeting cancer and tumors with an effective treatment therapy is at the forefront
of biomedical research and diagnosis [24,141,208,445–464]. This is the result of traditional
chemotherapy treatments being non-specific, and by this, the healthy tissues could also
be harmed by the aggressive anticancer drugs. MNPs respond to an externally applied
magnetic field, offering the means to guide the transport and delivery of cytotoxic drug-
loaded magnetic nanocarriers at the target organ/tissue. Many variables complicate this
process, including blood flow velocity, drug immobilization strategy on MNP carriers, poor
diffusion control after intravenous injection, geometry and depth of affected organ among
others. Moreover, in order to beat the odds, early diagnosis is an essential moment—vital
for the life of affected patients, especially when the drug formulation has to target specific
organs/tissue [261,465–495].

The flow behavior in MDT was studied by several groups [496–500], as well as their
ability to penetrate different types of tissues, including eye tissue [501]. The modeling of
flow behavior is even more important when the targeted disease is localized at the arterial
segment (atherosclerosis), where control of NP aggregation is vital and is addressed by
numerical solving of vorticity stream-function formulation [497]. Other research groups
studied the potential removal of MNP-tagged cytokine during cardiopulmonary bypass, by
employing simulation methods based on Navier–Stokes equations [498], or the feasibility
study of introducing multicore MNPs of ~50 nm through the eye tissue using a magnetic
field gradient of 20 T m−1 [501]. Many of the research groups concluded that the best
results in MDT can be obtained only when affected tissues are close to the body surface,
hence the depth factor of the tumor seems to be prevalent. Moreover, the behavior of MNPs
in the coronary circulatory system is of vital importance to understand and optimize the
drug-delivery nanovehicles [502].
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5.6. On-Demand Drug Release

Nano-engineered hybrid formulations can release the loaded molecule on-
demand [378,503–513], but also leach divalent cations from ferrite composites [514]. The
leaching test mentioned is an important piece of evidence regarding magnetic core integrity
on its passage through the biological system, and ideally, it should retain its integrity, as
some data in the literature has shown.

5.7. Apoptosis

The process of programmed cell death (apoptosis) is another important achievement
of utilizing SPIONs; HT-29 cells have shown apoptosis by stimulative oxidative stress by
iron oxide SPIONs [515–517].

6. Biocompatibility and Toxicity

Biocompatibility and toxicity features of anti-cancer formulations are nowadays
treated with equal care and thoroughly investigated [518,519]. Oftentimes, endocyto-
sis is not an easy task because various immune responses from the cells can decompose the
nanocarrier before entering the cell membrane. Biomimetics was exploited as a tool to ease
the incorporation of MNPs into living tissue [450,520,521].

Liposomes resemble the structure of cell membranes and are spherical vesicles com-
posed of multiple phospholipid bilayers, and the incorporation of MNPs or SPIONs into
such vesicles can ease the design and efficiency of drug-delivery systems since both hy-
drophilic and lipophilic drugs can be encapsulated [522,523]. Liposome use was expanded
to vaccine formulation and stabilization [524]. This bio-inspired strategy typically affords
swift entry of the drug by endocytosis with no to minimal damage.

6.1. Cytotoxicity

Oftentimes, the therapeutic effect was the main concern of the clinician; however, the
toxicity that MNPs can have towards neighboring tissue or during its magnetically-guided
path to the tumor site is less investigated, yet is just as important. The non-magnetic
shell typically covering MNPs was shown to be essential to the reduced overall toxicity
of polymer-coated metal oxide-based MNPs [525–527], drug-loaded nanoparticles [528]
or that of bare MNPs [529,530] and derived ferrofluids with biological administration
relevance [531]. The antioxidant effect was assessed by recent reviews in relation to the
potential toxicity issues of MNPs [532].

The effect of CoFe2O4 cobalt ferrite on Channel catfish ovary cells was reported
in 2022 by Srikanth et al. [533]. However, magnetite Fe3O4 can reduce CdCl2-induced
toxicity by oxidative stress as shown in a test on small intestine cells of mice, while orally-
administered nano-Fe3O4 showed no toxicity at all [534]. The biodistribution and cyto-
toxicity of oral iron supplements, which are particularly relevant for patients suffering
from iron-deficiency-induced anemia, have been investigated [535], and the effect on
the human adipose tissue-derived stromal cell system of very small SPIONs [536,537] or
targeting Parkinson’s disease [538]. Other coatings of magnetite showed no gene toxic-
ity, making them suitable candidates for biomedical applications when guar gum-coated
Fe3O4 MNPs obtained by co-precipitation (Fe3O4-GG nanocomposites) were used on
Drosophila melanogaster (fruit fly), a leading invertebrate model system used in aging
research [539]. Regarding anemia treatment options, MNPs are now available in a com-
mercially, FDA-approved drug formulation, ferumoxytol (Feraheme as brand name), with
intravenous administration.

6.2. NPs Accumulation in Tissue: The Fate of MNPs in Biological Systems

Accumulation of MNPs is an issue for MDT practices, as well as understanding the
complete picture of MNP fate in the biological systems [540]. It was also found that
the injection rate can affect the efficiency of MNPs accumulation [541–543]. However,
the natural evolution in the treatment of cancerous cells would be to increase localized
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MNPs concentration, a theme tackled by various groups [544], as well as investigating its
suitability to stimulate the activation of a targeted immune response [545].

Other research directions use model fish systems such as the common carp (Cyprinus
carpio) to evaluate the accumulation of SPIONs in tissue and subsequent antioxidant and
immune responses to iron oxides [546,547], or the effect of KFeO2 nanoparticles on MCF-7
cell lines [548]. General toxicology studies have been also performed [526]. Other metal
ferrites such as NiFe2O4 NPs have been investigated regarding histopathological mediated
toxicity and the oxidative stress induced in rabbits [549]. The final fate of MNPs introduced
in biological systems is complex and still not completely understood but it constitutes a
theme of great practical significance [550–553].

7. Conclusions and Outlook

Various types of MNP platforms exist today and they are under rapid development.
The MNPs can be tailored for detection (MR imaging contrast agents) and treatment ther-
apies of various diseases, including early-stage and advanced forms of cancer. Surface
manipulation (silica, gold or biocompatible polymers such as PEG or dextran) can yield sta-
ble MNP systems with minimal aggregation or opsonization, providing minimal systemic
response and a high likelihood of passage through biological barriers (reticuloendothe-
lial, vascular endothelium or blood–brain barrier). Achieving enhanced biocompatibility,
precise targeting and increased accumulation of target cells for proper biological response
remain the main goals. Multifunctional MNPs can offer diverse therapeutic strategies for
healthcare providers.

Improvements to MNP formulations are still possible, and they tackle enhanced
magnetic features of the magnetic core, new bio-inspired coatings and/or multifunctional
drug loading. When a suitable system is identified, it will undergo scrutiny from quality,
reproducibility, efficacy and stability criteria—all necessary prerequisites for scaling up
processes and further pre-clinical implementation and testing. However, a number of
unknowns still linger on: the uncertain fate of the MNPs after reaching the biological
system, or the interaction mechanism of MNPs in vivo, an insight to further enhance
the great opportunities that MNPs could provide, namely detection and treatment of
various diseases, including cancer. Recent years have witnessed advances in drug-delivery
systems being optimized and expanded by incorporating new functionalization agents
for multifunctional MNPs synthesis and applications, as well as expanding the scope of
therapeutic choices by employing highly-effective drugs that would be otherwise hard
to deliver at the tumoral site due to many possible shortcomings, solubility issues being
one example.

Moreover, a recent research direction aims to use magnetic (nano)particle imaging
(MPI) in diagnostic imaging and guided treatment therapy, effectively linking image
contrast and quality to relaxation mechanisms while emphasizing a safety administra-
tion profile. With no depth attenuation, MPI based on magnetic nano tracers—usually
SPIONs—could provide excellent imaging contrast, spatial and temporal resolution and
excellent signal-to-noise ratio. At its core, the emerging field of MPI relies heavily on the
successful implementation of magnetic tracers, and this endeavor can take advantage of
current development in MNPs used for drug-delivery applications.
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73. Bilmez, B.; Toker, M.Ö.; Toker, O.; İçelli, O. Monte Carlo study on size-dependent radiation enhancement effects of spinel ferrite
nanoparticles. Radiat. Phys. Chem. 2022, 199, 110364. [CrossRef]

74. Das, R.; Masa, J.; Kalappattil, V.; Nemati, Z.; Rodrigo, I.; Garaio, E.; García, J.; Phan, M.-H.; Srikanth, H. Iron Oxide Nanorings
and Nanotubes for Magnetic Hyperthermia: The Problem of Intraparticle Interactions. Nanomaterials 2021, 11, 1380. [CrossRef]
[PubMed]

75. van Silfhout, A.M.; Engelkamp, H.; Erné, B.H. Colloidal Stability of Aqueous Ferrofluids at 10 T. J. Phys. Chem. Lett. 2020, 11,
5908–5912. [CrossRef] [PubMed]

76. Pilati, V.; Gomide, G.; Gomes, R.C.; Goya, G.F.; Depeyrot, J. Colloidal Stability and Concentration Effects on Nanoparticle Heat
Delivery for Magnetic Fluid Hyperthermia. Langmuir 2021, 37, 1129–1140. [CrossRef] [PubMed]

77. Castro, L.L.; Amorim, C.C.C.; Miranda, J.P.V.; Cassiano, T.S.A.; Paula, F.L.O. The role of small separation interactions in ferrofluid
structure. Colloids Surf. A 2022, 635, 128082. [CrossRef]

78. Riedl, J.C.; Sarkar, M.; Fiuza, T.; Cousin, F.; Depeyrot, J.; Dubois, E.; Mériguet, G.; Perzynski, R.; Peyre, V. Design of concentrated
colloidal dispersions of iron oxide nanoparticles in ionic liquids: Structure and thermal stability from 25 to 200 ◦C. J. Colloid
Interface Sci. 2022, 607, 584–594. [CrossRef]

79. Boskovic, M.; Fabián, M.; Vranjes-Djuric, S.; Antic, B. Magnetic nano- and micro-particles based on Gd-substituted magnetite
with improved colloidal stability. Appl. Phys. A Mater. Sci. Process. 2021, 127, 372. [CrossRef]

80. Aguilar, N.M.; Perez-Aguilar, J.M.; González-Coronel, V.J.; Moro, J.G.S.; Sanchez-Gaytan, B.L. Polymers as Versatile Players in the
Stabilization, Capping, and Design of Inorganic Nanostructures. ACS Omega 2021, 6, 35196–35203. [CrossRef]

81. Mahin, J.; Franck, C.O.; Fanslau, L.; Patra, H.K.; Mantle, M.D.; Fruk, L.; Torrente-Murciano, L. Green, scalable, low cost and
reproducible flow synthesis of biocompatible PEG-functionalized iron oxide nanoparticles. React. Chem. Eng. 2021, 6, 1961–1973.
[CrossRef]

82. Parham, N.; Panahi, H.A.; Feizbakhsh, A.; Moniri, E. Synthesis of PEGylated superparamagnetic dendrimers and their applications
as a drug delivery system. Polym. Adv. Technol. 2021, 32, 1568–1578. [CrossRef]

83. Taghizadeh, A.; Pesyan, N.N.; Alamgholiloo, H.; Sheykhaghaei, G. Immobilization of Nickel on Kryptofix 222 Modified Fe3O4 @PEG
Core-Shell Nanosphere for the Clean Synthesis of 2-Aryl-2,3-dihydroquinazolin-4(1 H )-ones. Appl. Organomet. Chem. 2022, e6787.
[CrossRef]

84. Da, X.; Li, R.; Li, X.; Lu, Y.; Gu, F.; Liu, Y. Synthesis and characterization of PEG coated hollow Fe3O4 magnetic nanoparticles as a
drug carrier. Mater. Lett. 2022, 309, 131357. [CrossRef]

85. Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J.Y.; Afonin, K.A.; Dobrovolskaia, M.A. To PEGylate or not to PEGylate:
Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug Deliv.
Rev. 2022, 180, 114079. [CrossRef] [PubMed]

86. Karaagac, O.; Köçkar, H. Improvement of the saturation magnetization of PEG coated superparamagnetic iron oxide nanoparticles.
J. Magn. Magn. Mater. 2022, 551, 169140. [CrossRef]

87. Mohammadi, M.A.; Asghari, S.; Aslibeiki, B. Surface modified Fe3O4 nanoparticles: A cross-linked polyethylene glycol coating
using plasma treatment. Surf. Interfaces 2021, 25, 101271. [CrossRef]

88. Suciu, M.; Mirescu, C.; Crăciunescu, I.; Macavei, S.G.; Leos, tean, C.; Ştefan, R.; Olar, L.E.; Tripon, S.-C.; Ciorît,ă, A.; Barbu-Tudoran,
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