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Abstract: The Mega and Titan Tests were designed by Ronald K. Hoeflin to make fine distinctions in
the intellectual stratosphere. The Mega Test purported to measure above-average adult IQ up to and
including scores with a rarity of one in a million of the general population. The Titan Test was billed
as being even more difficult than the Mega Test. In this article, these claims are subjected to scrutiny.
Both tests are renormed using the normal curve of distribution. It is found that the Mega Test has a
higher ceiling and a lower floor than the Titan Test. While the Mega Test may thus seem preferable as
a psychometric instrument, it is somewhat marred by a number of easy items in its verbal section.
Although official scores reported to test-takers are too high, it is likely that the Mega Test does stretch
to the one in a million level. The Titan Test does not. Testees who had previously taken standard
intelligence tests achieved average scores of 135–145 IQ on those. Since the mean of all scores on
the Mega and Titan Tests was found to be IQ 137 and IQ 138, respectively, testees had considerable
scope to find their true level without ceiling effects. Both are unusual and non-standard tests which
require a great deal of effort to complete. Nevertheless, they deserve consideration as they represent
an inventive experimental method of measuring the very highest levels of human intelligence and
have been taken by enough subjects to allow norming.
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1. Introduction

Intelligence tests were invented by Alfred Binet and his student Théodore Simon in 1905 with
the purpose of identifying pupils in need of remedial help in French public education. Within a
few years, they had been translated into English and were to reach their apogee in the United States
where Lewis M. Terman, a young professor of education at Stanford University, made his reputation
as the foremost authority on all matters connected with intelligence. Terman’s first book on the topic,
The Measurement of Intelligence, featured examples of individuals within the various classifications [1].
By the time his The Intelligence of School Children was published three years later, it was clear that
Terman’s primary interest was in subjects scoring at the highest levels [2]. He had already begun a
study of exceptional children, which became the basis for longitudinal research into the lives and
careers of the gifted.

This study, published in five volumes as Genetic Studies of Genius between 1926 and 1959, required
the construction of a special instrument to accommodate Terman’s subjects as adults, called the Concept
Mastery Test [3]. This marked the beginning of experimental research on adults in the intellectual
stratosphere using psychological techniques. Due to the rarity of the individuals concerned, it was
fraught with practical difficulties. One possible method was to give adolescents achievement tests
designed for adults. That was the approach chosen by the Study of Mathematically Precocious Youth,
which began in 1971 at Johns Hopkins University and which, despite its name, also considered verbal
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Abstract: The comparison of group means in item response models constitutes an important issue
in empirical research. The present article discusses a slight extension of the robust Haebara linking
approach of He and Cui [Appl. Psychol. Meas., 44, 296–310, 2020] by proposing a flexible class of
robust Haebara linking functions for comparisons of many groups. These robust linking functions
are robust against violations of invariance. In this article, we investigate the performance of robust
Haebara linking in the presence of uniform DIF effects. In an analytical derivation, it is shown that
the robust Haebara linking approach provides unbiased estimates of group means in the limiting
case p = 0. In a simulation study, it is demonstrated that the proposed variant of the Haebara linking
approach outperforms existing implementations of Haebara linking to some extent. In an empirical
application using PISA data, it is illustrated that country means can be sensitive to the choice of
linking functions.
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partial invariance; uniform DIF

1. Introduction

One primary goal of empirical studies in psychology and education is to compare cognitive
outcomes across many groups. For example, the programme for international student assessment
(PISA; [1]) provides international comparisons of student performance for a large group of countries
(72 countries in PISA 2015). A major obstacle to these comparisons is that cognitive tests often show
differential item functioning (DIF; [2]).

In this article, we investigate robust variants to the originally proposed Haebara linking method [3]
for many groups. We study a slight extension of robust Haebara linking that was proposed by
He and Cui [4] by using a more flexible class of loss functions. We use a two-parameter logistic model
(2PL) item response model to introduce the methodology. It is shown that approximately unbiased
group comparisons can be conducted with robust Haebara linking when group-specific subsets of
items show DIF (i.e., partial invariance). Importantly, no additional steps for identifying items with
DIF are needed; items that possess DIF are essentially treated as outliers [5,6] in the linking procedure.

The paper is structured as follows. Section 2 describes the 2PL model under partial invariance that
allows the presence of uniform DIF effects. Section 3 introduces the robust Haebara linking method.
It is argued that the proposed linking method can provide unbiased estimates in the presence of
uniform DIF. In Section 4, the proposed method is evaluated in a simulation study. Section 5 presents
an empirical example of PISA data. Finally, Section 6 concludes with a discussion that focuses on
limitations and potential gaps for future research.
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2. 2PL Model with Partial Invariance: Presence of Uniform DIF Effects

In the following, we introduce the concept of partial invariance for multiple groups. For G
groups (g = 1, . . . , G), I items (i = 1, . . . , I) are administered. It is assumed that a unidimensional
item response model holds in each group with group-specific item response functions (IRF) Pig(θ),
indicating the probability of a correct item response Xig, conditional on ability θ. The IRFs in the 2PL
model [7] are given as

P(Xig = 1|θg) = Ψ(aig(θg − big)) , θg ∼ N(µg, σ2
g), (1)

where big are group-specific item difficulties for item i (i = 1, . . . , I) in group g (g = 1, . . . , G),
and aig are group-specific item loadings. In this article, we focus on the case of uniform DIF [2] that
presupposes that item loadings are invariant across groups, i.e., ai1 = . . . = aiG ≡ ai. Group-specific
item difficulties are decomposed into big = bi + eig, where bi indicates common item difficulties and
eig are denoted as uniform DIF effects. In Equation (1), Ψ denotes the logistic distribution function,
and it is assumed that the abilities within each group g are normally distributed with mean µg and
standard deviation σg.

It is well known that not all DIF effects eig and group means µg can be simultaneously identified
in the 2PL model [8,9]. To resolve the identification issue, the set of items for each group is partitioned
into two distinct sets (see [10]). More specifically, we assume that for each group g, a subset of so-called
anchor items JA,g ⊂ J = {1, . . . , I} exists such that eig = 0 for all i ∈ JA,g. The set of biased items
is defined as JB,g = J \ JA,g. Biased items are allowed to possess DIF effects eig 6= 0, which differs
from zero. This situation is also referred to in the literature as partial invariance [11,12]. If there are
no biased items, all item parameters are invariant, which is denoted as full invariance. One central
argument in the DIF literature is that items with DIF effects have the potential to bias the estimated
ability distributions (i.e., group means or group standard deviations) and should, therefore, not be
included in group comparisons (e.g., [1], for arguments in the PISA study, or [13]). Biased estimates of
group means can be particularly expected in the case that all DIF effects of items within a group have
the same sign (i.e., unbalanced DIF).

In practice, it is not known which items serve as anchor items for group g. The choice can be based
on a substantive basis (e.g., considerations outside of psychometrics, see [14]) or using psychometric
methods. In this article, the identification of group means and group standard deviations is conducted
using psychometric methods, namely linking methods (see [15–19] for overviews). Linking methods
rely on separate scalings for all groups. In more detail, the 2PL model is fitted for each group (under the
assumption θ ∼ N(0, 1)), resulting in estimated item loadings âg and estimated item intercepts b̂g for
all groups. In the second step, estimated parameters (âg, b̂g) are used to determine the vector of group
means µ = (µ1, . . . , µG) and σ = (σ1, . . . , σG) standard deviations.

Alternatively, biased items could be determined by a statistical DIF detecting method prior to
linking (see, e.g., [12,20,21]). The linking method is then subsequently applied only on the anchor
items. This approach relies on the somewhat arbitrary choice of a cutoff value for the DIF statistic.
In this article, the proposed robust Haebara linking method does not require a prior determination of
biased items, and in the next section, it is shown it can provide unbiased group mean estimates in the
case of uniform DIF effects.

3. Haebara Linking

In this section, we introduce the robust Haebara linking method that determines group means
µ, group standard deviations σ, common item slopes a = (a1, . . . , aI), and common item difficulties
b = (b1, . . . , bI) based on estimated item loadings âg and estimated item intercepts b̂g for all groups g.
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A linking function H is employed that minimizes the distances between group-specific IRFs and
aligned common IRFs for computing unknown parameters (µ, σ, a, b)

H(µ, σ, a, b) =
I

∑
i=1

G

∑
g=1

∫
ρ
(

Ψ(âig[θ − b̂ig])−Ψ(ai[σgθ − bi + µg])
)

ω(θ)dθ, (2)

where ρ is a loss function, and ω is a weighting function that fulfills
∫

ω(θ)dθ = 1. In all subsequent
analyses, we choose the standard normal density function as the weighting function ω. Linking
based on the function H in Equation (2) is referred to as robust Haebara linking and generalizes the
originally proposed Haebara linking method for two groups [3] that uses the loss function ρ(x) = x2.
He and colleagues [4,22] considered the loss function ρ(x) = |x| for two groups. Haebara linking for
multiple groups was investigated in several articles [10,23–25]. In particular, it was shown in [10]
that the loss function ρ(x) = |x| was efficient in handling the situation of partial invariance for
multiple groups.

In this article, we consider the class of loss function ρ(x) = |x|p with nonnegative power values
p. In Figure 1, the loss functions for different values of p are shown. It can be seen that p = 1 and
p = 2 put different weights for values near zero. In the limiting case of p→ 0, ρ(x) is the step function
that takes the value 0 if x is zero, and 1 for all other x values. With ρ(x) = |x|p for very small p values
(e.g., p = 0.02) in Equation (2), the linking function essentially counts the number of events in which
the group-specific IRF deviates from the aligned common IRF.
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Figure 1. Loss function ρ(x) = |x|p used in robust Haebara linking with different values of p.

It should be noted that there are competitive linking methods to Haebara linking.
The Stocking-Lord method [26] minimizes the difference of the integrated squared difference of
the sum of group-specific IRFs and the sum of aligned common IRFs. There are also alternative linking
approaches that directly rely on estimated item parameters instead of IRFs, such as mean-mean
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linking [17], Haberman linking based on regression modeling [27], invariance alignment [28],
and distance-based measures (like χ2; [29,30]), to name a few. For Haberman linking and invariance
alignment, robust alternatives were recently studied [10,31–33]. The linking approach is a two-step
method as separate scalings are applied group-wise in the first step. However, it can be shown that
one can reformulate the two-step estimation problem as a one-step estimation problem with side
conditions [34].

3.1. Estimation

In the minimization of the robust Haebara linking function H defined in Equation (2),
the unknown parameters can be obtained by setting the first derivatives to 0, i.e., ∂H

∂µ = 0, ∂H
∂σ = 0,

∂H
∂a = 0, and ∂H

∂b = 0. However, the loss function ρ(x) = |x|p is not differentiable for p ≤ 1, and the first
derivative must be replaced by a subdifferential. Moreover, due to nondifferentiability of ρ, standard
optimization algorithms that rely on derivatives cannot be used. However, in robust Haebara linking,
the function ρ(x) = |x|p is replaced by a differentiable approximating function ρD(x) = (x2 + ε)p/2

using a small ε > 0 (e.g., ε = .001). Because ρD is differentiable, quasi-Newton minimization
approaches can be used that are implemented in standard optimizers in R [35]. The implementation
of robust Haebara linking in the sirt [36] package specifies a sequence of decreasing values of
ε in the optimization, each using the previous solution as initial values (see [37] for a similar
approach). It should be noted that alternative differentiable approximating function for the loss
function ρ(x) = |x|p for values p nearby zero have been employed [38].

3.2. Estimated Group Means as a Function of DIF Effects

Next, we investigate the bias in estimated group means of robust Haebara linking for infinite
sample sizes (i.e., the asymptotic bias). Assume that the vector of joint item parameters a and b
and group standard deviations σ are already identified. We now investigate the estimated group
mean µ̂g and use the part in Equation (2) that relates to the group mean µg. The estimate µ̂g can be
determined as

µ̂g = arg min
µ

{
I

∑
i=1

∫
ρ
(

Ψ(âig[θ − b̂ig])−Ψ(ai[σgθ − bi + µ])
)

ω(θ)dθ

}
. (3)

By using two Taylor approximations, we can formulate the estimated group mean µ̂g as a function
of the true mean µg and weighted DIF effects eig. For p 6= 1, we get (see Appendix A; Equation (A11))

µ̂g = µg −
1

p− 1

I

∑
i=1

wigeig

I

∑
i=1

wig

, (4)

where wig = |eig|p−2
∫

Wi(θ)
pω(θ)dθ, and Wi is the information function of item i. The item-specific

weights wig consist of two factors. First, the factor |eig|p−2 governs the influence of DIF effects.
Items with large DIF effects eig are down-weighted for p < 2. Second, the factor

∫
Wi(θ)

pω(θ)dθ is the
integrated information function with respect to ω. The influence of this factor is largest for items with
large item loadings ai and item difficulties bi that are located in the center of the ability distribution.
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We now consider two important special cases of Equation (4). For p = 2, we obtain the Haebara
linking proposed in [3], and it holds that

µ̂g = µg −

I

∑
i=1

(∫
Wi(θ)ω(θ)dθ

)
eig

I

∑
i=1

∫
Wi(θ)ω(θ)dθ

. (5)

All DIF effects are weighted according to their item information function. There is no
down-weighting of large DIF effects because the weights only involve the integrated information
functions. In the case of p = 1 (as proposed in [4,22]), it can be shown that the bias in estimated group
means in robust Haebara linking is a weighted median of DIF effects (see Equation (A15) in Appendix
A.5 and [39]).

Finally, it is shown in Appendix A.6 that the estimated group means can be estimated without an
asymptotic bias in the limiting case that p equals 0. For p = 0, within each group, the linking function
H counts the number of items that show DIF. Hence, the number of noninvariant items is minimized
within each group. The minimum within each group is given as |JB,g|, i.e., the number of biased items
within each group. In empirical applications of robust Haebara linking it can be expected that the
bias decreases with decreasing values of p. Obviously, the reasoning relies on asymptotic arguments,
and it is of interest whether the property also holds true in moderately sized samples and to assess a
potential loss of efficiency in using small values of p in applications.

4. Simulation Study

In this simulation study, we investigate the statistical properties of the proposed robust Haebara
linking method in the presence of uniform DIF effects. The primary goal is to assess the performance
of group mean estimates in terms of bias and variability.

4.1. Simulation Design

In this study, we generated dichotomous item responses and investigated the performance of
robust Haebara linking for the 2PL model. We simulated item responses from a 2PL model for
G = 9 groups. For each group g, abilities were normally distributed with mean µg and standard
deviation σg. Across all conditions and replications of the simulation, the group means and standard
deviations were held fixed (see Appendix B for values used in the simulation). The total population
comprising all groups had a mean of 0 and a standard deviation of 1.

Item responses Xig for item i in group g were simulated according to the 2PL model

P(Xig = 1|θg) = Ψ(ai(θg − bi − Zigδ)), (6)

where DIF effects in item difficulties were defined as eig = Zigδ. The DIF indicator variables Zig had
values of 0, 1, or −1, where values different from zero indicated uniform DIF effects. For each country,
either all nonzero Zig values were 1 or were −1, meaning that all DIF effects had the same direction
(i.e., unbalanced DIF). Item loadings ai were assumed to be invariant across groups. The DIF effect size
was chosen as δ = 0.6, and it resembles moderate to high amounts of DIF [40,41]. A fixed proportion
πB of biased items was selected and was equal across groups, i.e., ∑I

i=1 |Zig| = IπB for all groups
g = 1, . . . , G. For example, if 30% out of I = 20 items have DIF effects, 6 items have values of Zig
that differ from zero. The item parameters were held constant across conditions and replications
(see Appendix B for data-generating parameters). In total, I = 20 items were used in the simulation.

For each condition of the simulation design, a relatively low number R = 300 replicated datasets
was used because we were only interested in statistical properties of point estimates. We manipulated
the number of persons per group (N = 250, 500, 1000, and 5000) to cover situations of small-scale
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and large-scale studies. The case of N = 5000 persons per group corresponds to the situation in
which identified item parameters are estimated with negligible sampling errors. We also varied the
proportion πB of biased items with DIF effects (0, 10, and 30%).

4.2. Analysis Methods

The performance of robust Haebara linking with powers p = 2, 1, 0.5, 0.25, 0.1, and 0.02 for
estimated group means were compared with the scaling approach that relies on full invariance of all
item parameters. The approach with full invariance (FI) was specified as a 2PL multiple group item
response model.

To identify group means and group standard deviations in the linking procedure, for the first
group, the mean was set to 0, and the standard deviation was set to 1. Estimated group means and
group standard deviations were linearly transformed to obtain a mean of 0 and a standard deviation
1 for the total sample comprising all groups. These conditions were also fulfilled in the data generating
model (see Section 4.1).

The statistical performance of the vector of estimated means µ̂ is assessed by summarizing the
biases and variances of estimators across groups. Let µ = (µ1, . . . , µG) be a parameter of interest and
µ̂ = (µ̂1, . . . , µ̂G) its estimator (i.e., for means and standard deviations). For R replications, the obtained
estimates are µ̂r = (µ̂1r, . . . , µ̂Gr) (r = 1, . . . , R). The average absolute bias (ABIAS) is defined as

ABIAS(µ̂) =
1
G

G

∑
g=1

∣∣∣∣∣ 1
R

R

∑
r=1

µ̂gr − µg

∣∣∣∣∣ = 1
G

G

∑
g=1

∣∣Bias(µ̂g)
∣∣ . (7)

The average root mean square error (ARMSE) is computed as the average of the root mean square
error (RMSE) of all group means:

ARMSE(µ̂) =
1
G

G

∑
g=1

√√√√ 1
R

R

∑
r=1

(
µ̂gr − µg

)2
=

1
G

G

∑
g=1

RMSE(µ̂g). (8)

The simulation uncertainty for the ABIAS and ARMSE criteria is summarized by Monte Carlo
standard errors (MCSE; see [42]). As suggested by an anonymous reviewer, bootstrap samples of
replicated values are drawn, and the standard deviation of the ABIAS and ARMSE values across
bootstrap samples served as estimates of the MCSE.

In all analyses, the statistical software R [35] was used. Robust Haebara linking was carried out
with the sirt::linking.haebara() function in the R package sirt [36]. The TAM::tam.mml.2pl() function
in the R package TAM [43] was used for estimating the 2PL model with marginal maximum likelihood
as the estimation method.

4.3. Results

In Table 1, average absolute bias (ABIAS) and average RMSE (ARMSE) as a function of sample size
are shown. If there are no biased items, all linking methods provided unbiased estimates. As indicated
by the ARMSE, there were some efficiency losses by using robust Haebara approaches (p ≤ 1)
compared to nonrobust approaches (p = 2 or the FI model). The pattern of results for ABIAS and
ARMSE for 10% biased items mimic findings for 30% biased items but were less strongly pronounced.
Hence, we only describe the results for 30% biased items. The most biased estimates were obtained for
the FI model and p = 2. Using small values of p resulted in a reduction of bias. Notably, the smallest
biases were obtained for p = 0.02. However, biases for robust Haebara linking were larger for smaller
sample sizes. For group sizes N = 500, 1000, and 5000, the pattern of RMSE followed that of the bias.
Very small values of p are preferred in terms of most precise estimates. However, for N = 250,
the smallest ARMSE was obtained for p = 0.5. Probably, uncertainty in estimated item parameters
adds additional variation and outweighs the smaller bias for small p.
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Table 1. Average Absolute Bias (ABIAS) and Average Root Mean Square Error (ARMSE) of Group
Means as a Function of Sample Size.

ABIAS ARMSE

Model N 250 500 1000 5000 250 500 1000 5000

FI 0.006 0.001 0.003 0.001 0.059 0.042 0.029 0.013
p = 2 0.008 0.002 0.003 0.001 0.059 0.042 0.029 0.013
p = 1 0.008 0.002 0.003 0.001 0.059 0.043 0.029 0.013
p = 0.5 0.007 0.002 0.003 0.001 0.059 0.043 0.029 0.013
p = 0.25 0.007 0.002 0.003 0.001 0.060 0.043 0.029 0.013
p = 0.1 0.007 0.003 0.003 0.001 0.060 0.044 0.029 0.013
p = 0.02 0.007 0.003 0.003 0.001 0.060 0.044 0.029 0.013

10% Biased Items
FI 0.037 0.034 0.032 0.033 0.075 0.057 0.046 0.037
p = 2 0.038 0.032 0.032 0.032 0.075 0.056 0.045 0.036
p = 1 0.026 0.019 0.014 0.012 0.069 0.048 0.034 0.019
p = 0.5 0.020 0.014 0.008 0.007 0.068 0.046 0.031 0.016
p = 0.25 0.018 0.012 0.006 0.005 0.068 0.046 0.031 0.015
p = 0.1 0.018 0.012 0.005 0.004 0.069 0.046 0.031 0.015
p = 0.02 0.017 0.011 0.005 0.004 0.069 0.046 0.030 0.014

30% Biased Items
FI 0.111 0.108 0.110 0.109 0.132 0.119 0.116 0.110
p = 2 0.109 0.108 0.110 0.109 0.132 0.119 0.116 0.110
p = 1 0.086 0.077 0.072 0.062 0.115 0.092 0.082 0.065
p = 0.5 0.072 0.058 0.048 0.034 0.107 0.079 0.062 0.037
p = 0.25 0.068 0.049 0.038 0.024 0.124 0.072 0.054 0.029
p = 0.1 0.064 0.044 0.032 0.020 0.123 0.069 0.051 0.025
p = 0.02 0.062 0.042 0.030 0.018 0.123 0.068 0.049 0.024

Note. N = sample size; FI = linking based on full invariance; p = power used in robust Haebara linking.

In Table A4 in Appendix C, MCSE estimates for all ABIAS and ARMSE values displayed in
Table 1 are shown. It can be seen that simulation uncertainty was sufficiently small for drawing reliable
conclusions.

To sum up, robust Haebara linking effectively handles situations of partial invariance.
Interestingly, values of the power p smaller than 1 are preferred in terms of ABIAS and ARMSE
and are superior to previously proposed approaches that use p = 2 [3] and p = 1 [22]. If there are no
biased items, robust Haebara linking with all studied values of p has an efficiency comparable to the
FI approach (see also [44] for similar findings).

5. Empirical Example: PISA 2006 Reading Competence

In order to illustrate the choice of different values for the power p in robust Haebara linking
in the case of many groups, we analyzed the data from the PISA 2006 assessment [45]. In this case,
groups constitute countries. In this reanalysis, we included 26 OECD countries that participated in
2006 and focused on the reading domain (see [46] for a similar analysis, but see also [10,39,47] for
findings using the same dataset). Reading items were only administered to a subset of the participating
students, and we included only those students who received a test booklet with at least one reading
item. This resulted in a total sample size of 110,236 students (ranging from 2010 to 12,142 between
countries). In total, 28 reading items nested within eight testlets were used in PISA 2006. Six of the
28 items were polytomous and were dichotomously recoded, with only the highest category being
recoded as correct. We used seven different analysis models to obtain estimates of the country means:
a full invariance approach (concurrent scaling with multiple groups; FI), and robust Haebara linking
using powers p = 2, 1, 0.5, 0.25, 0.1, and 0.02. For all analyses, the 2PL model was estimated using
student weights. Within a country, student weights were normalized to a sum of 5000, so that all
countries contributed equally to the analyses. Finally, all estimated country means were linearly
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transformed such that the distribution containing all (weighted) students in all 26 countries had a
mean of 500 (points) and a standard deviation of 100. Note that this transformation is not equivalent
to the one used in officially published PISA publications.

Table 2. Country Means for the Reading Domain for PISA 2006 for 26 Selected OECD Countries.

Robust Haebara Linking with Power p

Country N rg FI 2 1 0.5 0.25 0.1 0.02

AUS 7562 1.9 516.7 515.5 516.1 516.5 516.8 516.9 517.4
AUT 2646 0.4 496.2 496.0 495.7 495.6 495.7 495.7 495.7
BEL 4840 1.4 506.7 506.8 507.4 507.8 508.0 508.1 508.2
CAN 12142 4.5 528.0 526.1 528.3 529.5 530.0 530.4 530.6
CHE 6578 2.0 502.1 502.3 503.4 503.9 504.1 504.2 504.3
CZE 3246 0.6 483.1 482.6 483.1 483.2 483.2 483.2 483.2
DEU 2701 4.2 496.1 497.0 499.3 500.3 500.8 501.1 501.2
DNK 2431 2.4 500.0 499.5 501.0 501.5 501.7 501.8 501.9
ESP 10506 4.3 465.5 465.0 467.1 468.3 468.8 469.1 469.3
EST 2630 3.8 499.2 497.5 499.3 500.4 500.9 501.2 501.3
FIN 2536 2.2 551.6 548.4 549.8 550.3 550.4 550.5 550.6
FRA 2524 3.3 499.0 498.6 500.3 501.1 501.5 501.7 501.9
GBR 7061 2.5 499.1 498.2 496.6 496.1 495.9 495.7 495.7
GRC 2606 7.7 456.9 458.5 454.1 452.3 451.5 451.1 450.8
HUN 2399 2.4 485.2 485.9 487.2 487.9 488.1 488.2 488.3
IRL 2468 1.9 518.4 517.2 516.3 515.8 515.6 515.4 515.3
ISL 2010 2.0 493.1 492.2 493.1 493.6 493.9 494.1 494.2
ITA 11629 3.0 470.7 471.6 473.1 473.9 474.3 474.5 474.6
JPN 3203 6.1 502.9 506.8 503.8 502.4 501.6 501.1 500.7
KOR 2790 16.1 556.1 560.5 552.1 548.0 546.1 545.0 544.4
LUX 2443 1.4 481.9 481.6 482.3 482.6 482.8 483.0 483.0
NLD 2666 3.6 509.3 511.3 509.9 508.9 508.3 507.9 507.7
NOR 2504 3.2 489.3 488.1 486.5 485.7 485.3 485.1 484.9
POL 2968 2.0 506.7 507.2 508.3 508.8 509.0 509.2 509.2
PRT 2773 0.5 475.8 476.1 476.0 475.8 475.7 475.7 475.6
SWE 2374 0.6 510.5 509.5 509.7 509.9 510.0 510.1 510.1

Note. N = sample size; rg = range of country estimates across different results from robust Haebara
linking; FI = linking based on full invariance; p = power used in robust Haebara linking.

In Table 2, the country mean estimates obtained from the seven different analysis models are
shown. Within a country, the range of country means differed between 0.4 (AUT, Austria) and 16.1
(KOR, South Korea) points (M = 3.2, SD = 3.1) across the different models. These differences
between the methods can be traced back to different amounts of country DIF. The model based on full
invariance and Haebara linking with p = 2 appeared to be similar, resulting in a large correlation of
estimated country means (r = 0.997) and small absolute differences (M = 1.2, SD = 1.1). In contrast,
Haebara linking for p = 2 and p = 0.02 differed quite a lot, resulting in a correlation of r = 0.980
and non-negligible absolute differences between methods (M = 3.2, SD = 3.1). Given that standard
errors due to sampling of students in country means in PISA are typically about 3 points, in some
cases, differences between different model estimates would provide different statements regarding
statistical significance. Interestingly, the country mean estimate for South Korea (KOR) dropped from
560.5 (p = 2) to 544.4 (p = 0.02). The reason is that robust Haebara linking down-weights items
with large DIF effects from the computation of country means. For South Korea, there are four items
with large negative DIF effects (a relative advantage) and no items with large positive DIF effects
(a relative disadvantage) that are most strongly down-weighted (see [10]). Hence, it can be concluded
the choice of a particular linking method has the potential to impact the ranking of countries in PISA
(see also [48,49]).
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6. Discussion

In this article, we investigated the performance of a slight extension of Haebara linking in many
groups. By using a robust loss function family ρ(x) = |x|p (p > 0) it was shown that the method
efficiently handles the case of the presence of uniform DIF effects. Originally, Haebara linking has been
proposed for p = 2 [3] and has been robustified using p = 1 in [22]. The linking method is robust
insofar as it provides nearly unbiased estimates in the case of uniform DIF effects (but see [28,50]
for an alternative robust linking method). Our analytical derivations give an intuition of the bias
in estimated group means. The bias is determined as a function of weighted DIF effects per group
where weights are given as integrated information functions. In the limiting case that p tends to zero,
the robust Haebara linking function essentially counts the number of deviant item response functions.
In this sense, robust Haebara linking with a small p maximizes the number of invariant items per
group. We also showed analytically that in case p → 0, robust Haebara linking provides unbiased
group estimates under reasonable statistical assumptions. Our simulation study indicated that power
values p smaller than 1 had superior performance to p = 1 or p = 2. More concretely, in the case of
many groups, p values of at most 0.25 were particularly advantageous. It should be noted that robust
Haebara linking is always superior to a concurrent calibration approach if there exist biased items.
If there were no biased items, the efficiency loss using Haebara linking is negligible (see [10,39,44] for
similar findings).

As it is true for all simulation studies, our study has some limitations. First, we restricted the
number of groups to 9. For international large-scale assessments like PISA (e.g., [1,45]), the number
of groups–countries in this case–are much larger, say 30, or even 50. On the other hand, we believe
that the robust Haebara linking method could also be attractive in the case of two groups [20] or a few
groups [51]. Second, we only used 20 dichotomous items in the simulation studies. The performance
of robust Haebara linking with a very low or higher number of items could be a relevant topic of
future research. Third, we restricted ourselves to dichotomous data. Robust Haebara linking could
be extended to polytomous items (see, e.g., [44]). Fourth, the performance proposed robust Haebara
linking method was only assessed in the presence of uniform DIF (i.e., DIF effects in item intercepts).
It could be expected that the linking approach can also be successfully applied in the presence of
nonuniform DIF (i.e., DIF effects in item slopes; see, e.g., [52]). The analytical derivations have to be
adapted to a joint analysis of (µ̂g, σ̂g). This probably complicates arguments a bit, but we suppose that
unbiasedness can be also be shown in this situation when p tends to zero. Nevertheless, in large-scale
educational studies, uniform DIF does typically more frequently occur than nonuniform DIF [1,53].

In the simulation study, it was shown that robust Haebara linking shows desirable performance
in the situation of partial invariance with uniform DIF effects. However, DIF effects could also be
rather unsystematically distributed that cancel on average. This situation is sometimes referred to as
approximate invariance (or random DIF, see [31,54–58]). It can be concluded that in the presence of
approximate invariance, power values of p = 2 are probably optimal [31,32,39], and the use of robust
Haebara linking can lead to inferior statistical performance. We also did not compare linking and full
invariance approaches with partial invariance approaches that allow that some item parameters are
group-specific. The determination of which parameters should be estimated group-specific requires an
additional step using DIF statistics. Unfortunately, a user-defined cutoff value for this DIF statistic is
needed in this step. Previous research has shown that the partial invariance approach can only compete
with robust or nonrobust linking approaches when the cutoff value is appropriately chosen [10,20,39].
The partial invariance approach can be seen as an inferior implementation of a regularization based
approach to the presence of DIF that statistically determines group-specific item parameters in a
one-step approach (see, e.g., [59,60]).

It should be emphasized that robust Haebara linking is only robust with respect to violations of
measurement invariance. It is not robust with respect to misspecifications in the item response model.
For very large sample sizes, more flexible item response functions (e.g., B-spline functions) can be used
for linking [61]. Moreover, the estimation of linking constants could be probably made more robust to
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misspecifications in the IRT model if the first two moments of the trait distribution (i.e., the mean and
the standard deviation) instead of item parameters or item response functions are aligned (see [62] for
such an approach).

It should be emphasized that we did not investigate the computation of standard errors in our
linking approach. There is ample literature that derives standard error formulas for linking due to
sampling of persons (e.g., [44,50,63–67]) Alternatively, variability in estimated group means due to the
selection of items has been studied as linking errors in the literature [47,68–72]. In future research,
it would be interesting to accompany robust Haebara linking with error components that reflect these
sources of uncertainty [24,64,73]. We suppose that resampling procedures correctly reflect uncertainty
due to persons and items in group mean estimates.

In this article, we focused on linking multiple groups for cross-sectional data. However,
the approach can also fruitfully applied to longitudinal data in which the group to be linked constitute
measurement waves [74]. One can simply use estimated item parameters resulting from separate
scalings of each wave as the input for a linking procedure (see, e.g., [75–82]).

Finally, we think that using separate estimation with subsequent linking has a number of
advantages to concurrent calibration assuming full invariance (see [44]). Often, computation times
are substantially lower with separate estimation. In addition, it is often easier to diagnose potential
estimation problems with separate estimation. Finally, concurrent calibration can only realize more
efficient estimates if the model assumptions hold true. As one cannot be confident that there are no
unmodelled DIF effects, there are likely only rare situations in which concurrent calibration should be
preferred.
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2PL two-parameter logistic model
ABIAS average absolute bias
ARMSE average root mean square error
DIF differential item functioning
FI full invariance
IRF item response function
MCSE Monte Carlo standard error
PISA programme for international student assessment
RMSE root mean square error

Appendix A. Estimated Group Means in Robust Haebara Linking

Appendix A.1. Taylor Approximation of Power Loss Function ρ

Let ρ(x) = |x + a|p for p > 0, p 6= 1, and a 6= 0. We now apply a Taylor approximation up to the
second order around x = 0. We get ρ′(0) = p|a|p−1sign(a) = p|a|p−2a and ρ′′(0) = p(p− 1)|a|p−2.
Then, we obtain the following approximation

ρ(x) = |x + a|p ≈ |a|p + p|a|p−2ax +
1
2

p(p− 1)|a|p−2x2. (A1)
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Appendix A.2. Minimization of a Quadratic Function

For the derivation of an estimated group mean in robust Haebara linking, we consider the
following quadratic minimization problem

µ̂g = arg min
µ

(
A + B(µg − µ) +

1
2

C(µg − µ)2
)

, (A2)

where A, B, and C are real numbers. By taking the first derivative in Equation (A2), we obtain

− B− C(µg − µ̂g) = 0 ⇒ µ̂g = µg +
B
C

. (A3)

Appendix A.3. Taylor Approximation of Item Response Function with DIF Effects

We now apply a Taylor expansion for the difference of item response functions that appear in
robust Haebara linking:

Tig(θ) = Ψ(ai[σgθ − bi − eig + µg])−Ψ(ai[σgθ − bi + µ]). (A4)

Let Wi(θ) be the item information in the 2PL model. A Taylor approximation in Equation (A4)
around µg − µ− eig provides

Tig(θ) = Ψ(ai[σgθ − bi + µ− eig + µg − µ])−Ψ(ai[σgθ − bi + µ]) ≈Wi(θ)(µg − µ− eig). (A5)

Appendix A.4. Derivation of Expected Estimated Group Means for p 6= 1

The minimization in robust Haebara linking for the estimated group mean µ̂g for group g is given
as (Equation (3))

µ̂g = arg min
µ

{
I

∑
i=1

∫
ρ
(

Ψ(âig[θ − b̂ig])−Ψ(ai[σgθ − bi + µ])
)

ω(θ)dθ

}
. (A6)

For large samples, it holds that âig = aiσg and b̂ig = (bi + eig − µg)/σg. Inserting these two
identities in Equation (A6) leads to

µ̂g = arg min
µ

{
I

∑
i=1

∫
ρ
(
Ψ(ai[σgθ − bi − eig + µg])−Ψ(ai[σgθ − bi + µ])

)
ω(θ)dθ

}
. (A7)

Using the Taylor expansion in Equation (A5) and the definition ρ(x) = |x|p, we get

µ̂g = arg min
µ

{
I

∑
i=1

w̃ig|µg − µ− eig|p
}

, (A8)

where w̃ig =
∫
|Wi(θ)|pω(θ)dθ. By using the Taylor approximation in Equation (A1), we get from

Equation (A8)

µ̂g = arg min
µ

I

∑
i=1

w̃ig

(
|eig|p − p|eig|p−2eig(µg − µ) +

1
2

p(p− 1)|eig|p−2(µg − µ)2
)

. (A9)

The minimization in Equation (A9) is essentially the problem addressed in Equation (A2) by
defining

A =
I

∑
i=1

w̃ig|eig|p , B = −p
I

∑
i=1

w̃ig|eig|p−2eig , C = p(p− 1)
I

∑
i=1

w̃ig|eig|p−2. (A10)
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Using Equation (A3), we obtain

µ̂g = µg −

I

∑
i=1

w̃ig|eig|p−2eig

(p− 1)
I

∑
i=1

w̃ig|eig|p−2

= µg −
1

p− 1

I

∑
i=1

wigeig

I

∑
i=1

wig

, (A11)

where wig = w̃ig|eig|p−2. As can be seen from Equation (A11), the bias in µ̂g is a function of a weighted
mean of DIF effects eig. Hence, the bias can be written as

Bias(µ̂g) = −
1

p− 1

I

∑
i=1

wigeig

I

∑
i=1

wig

. (A12)

Appendix A.5. Derivation of Expected Estimated Group Means for p = 1

We now consider the special case of p = 1. The minimization problem defined in Equation (A8)
can then be written as

µ̂g = arg min
µ

{
I

∑
i=1

w̃ig|µg − µ− eig|
}

. (A13)

The minimization problem defined in Equation (A13) has the solution

µ̂g = wmdn
i
{(µg − eig, w̃ig)}, (A14)

where wmdn denotes the weighted median based on data (xi, wi), and xi are data values and wi
sample weights. A further simplification of Equation (A14) provides

µ̂g = µg −wmdn
i
{(eig, w̃ig)}. (A15)

Appendix A.6. Unbiasedness for p = 0

In this appendix, we show unbiasedness of estimated group means for p = 0. In this case, weights
in Equation (A12) are given as wig = |eig|−2. The proof strategy relies on the idea that we start with the
assumption that anchor items i ∈ JA,g are almost invariant. This means that for a given small value
ε > 0 we assume that ε/2 < |eig| < ε. We derive a bound for the bias for this fixed ε value and let ε

tend to zero for completing the proof.
Moreover, assume that there exists a lower and an upper bound for uniform DIF effects in biased

items, that is B1 ≤ |eig| ≤ B2 for all items i. Then, for the denominator in Equation (A12), it holds that

∣∣∣∣∣ I

∑
i=1

wig

∣∣∣∣∣ =
∣∣∣∣∣∣ ∑
i∈JA,g

wig + ∑
i∈JB,g

wig

∣∣∣∣∣∣ ≥ ε−2|JA,g|+ B−2
2 |JB,g|. (A16)

Inserting (A16) in Equating (A12) results in

|Bias(µ̂g)| ≤

∣∣∣∣∣∣∣∣
∑

i∈JA,g

wigeig + ∑
i∈JB,g

wigeig

ε−2|JA,g|+ B−2
2 |JB,g|

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ ∑
i∈JA,g

wigeig

∣∣∣∣∣∣+ |JB,g|B2B−2
1

ε−2|JA,g|+ B−2
2 |JB,g|

. (A17)
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Rewriting (A17) results in

|Bias(µ̂g)| ≤

ε2

∣∣∣∣∣∣ ∑
i∈JA,g

wigeig

∣∣∣∣∣∣+ ε2|JB,g|B2B−2
1

|JA,g|+ ε2B−2
2 |JB,g|

≤ ε
2|JA,g|

|JA,g|+ ε2B−2
2 |JB,g|

+ ε2 |JB,g|B2B−2
1

|JA,g|+ ε2B−2
2 |JB,g|

.

(A18)
As ε can be made arbitrarily small in Equation (A18), we conclude that Bias(µ̂g) = 0 by letting

ε→ 0.

Appendix B. Data Generating Parameters for Simulation Study

In this appendix, data generating parameters of the simulation study (see Section 4) are provided.
Abilities θ for G = 9 groups were normally distributed with group means 0.01, −0.27, 0.20, 0.55, −0.88,
−0.01, 0.11, 0.78, −0.48, and group standard deviations 0.91, 0.90, 0.98, 0.86, 0.80, 0.81, 0.80, 0.82, 1.02,
respectively.

In Table A1, common item parameters (i.e., item loadings and item difficulties) are shown.
Tables A2 and A3 show the values of the DIF indicator variable Zig for the condition of 10% and 30%
biased items, respectively.

Table A1. Simulation Study: Common Item Loadings and Item Intercepts.

Item i ai bi

1 0.95 −0.97
2 0.88 0.59
3 0.75 0.75
4 1.29 −0.79
5 1.28 1.23
6 1.29 −1.10
7 1.25 −0.67
8 0.97 0.20
9 0.73 1.26
10 1.27 0.05
11 1.42 1.22
12 0.75 −0.01
13 0.50 0.20
14 0.81 1.39
15 1.12 0.61
16 0.78 −1.00
17 1.30 −1.58
18 0.70 −1.62
19 1.29 1.06
20 0.74 −0.81

Note ai = item loading; bi = item difficulty.
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Table A2. DIF Indicator Variables Zig for the Condition of 10% Biased Items.

Group g

Item i 1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 −1 0 0 0 0
3 0 −1 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 −1 0 −1 0 0 0 0
6 1 0 0 1 0 0 0 0 0
7 0 0 0 0 0 −1 0 0 0
8 0 0 0 0 0 0 0 0 0
9 0 0 −1 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0
13 0 −1 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0
16 1 0 0 0 0 0 0 −1 0
17 0 0 0 0 0 −1 −1 0 0
18 0 0 0 1 0 0 0 −1 0
19 0 0 0 0 0 0 0 0 −1
20 0 0 0 0 0 0 −1 0 −1

Table A3. DIF Indicator Variables Zig for the Condition of 30% Biased Items.

Group g

Item i 1 2 3 4 5 6 7 8 9

1 0 0 −1 0 0 0 0 0 0
2 0 0 0 0 −1 −1 −1 0 0
3 0 −1 0 1 −1 0 0 0 0
4 0 0 0 1 0 −1 0 0 0
5 1 0 0 0 −1 0 0 −1 0
6 0 0 0 0 0 −1 0 0 0
7 0 0 −1 0 0 −1 0 0 0
8 1 −1 0 0 −1 0 0 0 −1
9 1 −1 0 0 0 0 −1 0 0

10 0 −1 −1 0 0 0 −1 −1 0
11 0 0 0 0 0 0 0 −1 0
12 1 0 −1 1 0 0 0 −1 −1
13 0 −1 0 0 0 0 0 0 −1
14 0 −1 0 0 0 0 −1 0 0
15 0 0 0 1 0 −1 0 0 −1
16 0 0 0 1 0 −1 0 0 0
17 1 0 −1 0 −1 0 −1 −1 −1
18 1 0 −1 0 −1 0 0 0 0
19 0 0 0 0 0 0 0 0 −1
20 0 0 0 1 0 0 −1 −1 0
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Appendix C. Monte Carlo Standard Errors in Simulation Study

In this appendix, Monte Carlo standard errors (MCSE) in the simulation study are reported. For all
reported ABIAS and ARMSE values in Table 1, Table A4 includes the corresponding MCSE values.

Table A4. Monte Carlo Standard Errors for Average Absolute Bias (MCSE ABIAS) and Average Root
Mean Square Error (MCSE ARMSE) of Group Means as a Function of Sample Size.

MCSE ABIAS MCSE ARMSE

Model N 250 500 1000 5000 250 500 1000 5000

FI 0.00112 0.00074 0.00057 0.00028 0.00092 0.00082 0.00049 0.00021
p = 2 0.00114 0.00076 0.00058 0.00027 0.00097 0.00082 0.00049 0.00021
p = 1 0.00112 0.00078 0.00057 0.00027 0.00093 0.00083 0.00049 0.00022
p = 0.5 0.00113 0.00082 0.00057 0.00027 0.00094 0.00084 0.00049 0.00022
p = 0.25 0.00113 0.00083 0.00057 0.00027 0.00097 0.00084 0.00049 0.00022
p = 0.1 0.00114 0.00084 0.00057 0.00027 0.00096 0.00084 0.00049 0.00022
p = 0.02 0.00114 0.00085 0.00057 0.00027 0.00097 0.00084 0.00049 0.00022

10% Biased Items
FI 0.00128 0.00079 0.00055 0.00027 0.00112 0.00067 0.00057 0.00028
p = 2 0.00131 0.00085 0.00052 0.00029 0.00114 0.00072 0.00058 0.00030
p = 1 0.00122 0.00078 0.00050 0.00029 0.00104 0.00073 0.00059 0.00028
p = 0.5 0.00127 0.00081 0.00054 0.00029 0.00103 0.00075 0.00058 0.00026
p = 0.25 0.00133 0.00085 0.00055 0.00028 0.00104 0.00076 0.00057 0.00025
p = 0.1 0.00136 0.00087 0.00055 0.00028 0.00105 0.00076 0.00057 0.00024
p = 0.02 0.00139 0.00087 0.00055 0.00028 0.00105 0.00077 0.00056 0.00024

30% Biased Items
FI 0.00115 0.00086 0.00066 0.00027 0.00116 0.00085 0.00065 0.00027
p = 2 0.00173 0.00084 0.00068 0.00027 0.00117 0.00083 0.00066 0.00026
p = 1 0.00112 0.00087 0.00069 0.00026 0.00191 0.00084 0.00065 0.00025
p = 0.5 0.00120 0.00094 0.00073 0.00027 0.00220 0.00087 0.00068 0.00025
p = 0.25 0.00167 0.00096 0.00073 0.00026 0.01065 0.00091 0.00070 0.00025
p = 0.1 0.00173 0.00098 0.00074 0.00026 0.01074 0.00093 0.00071 0.00024
p = 0.02 0.00176 0.00098 0.00076 0.00027 0.01077 0.00093 0.00071 0.00024

Note N = sample size; FI = linking based on full invariance; p = power used in robust Haebara linking.
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