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Abstract: Structural equation modeling (SEM) has been proposed to estimate generalizability the-
ory (GT) variance components, primarily focusing on estimating relative error to calculate generaliz-
ability coefficients. Proposals for estimating absolute-error components have given the impression
that a separate SEM must be fitted to a transposed data matrix. This paper uses real and simulated
data to demonstrate how a single SEM can be specified to estimate absolute error (and thus depend-
ability) by placing appropriate constraints on the mean structure, as well as thresholds (when used
for ordinal measures). Using the R packages lavaan and gtheory, different estimators are compared
for normal and discrete measurements. Limitations of SEM for GT are demonstrated using multirater
data from a planned missing-data design, and an important remaining area for future development
is discussed.

Keywords: generalizability theory; intraclass correlation; structural equation modeling; confirmatory
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1. Introduction

After discussing coefficient α as a measure of scale reliability [1], Cronbach et al. [2] be-
gan developing a more comprehensive framework capable of assessing reliability not only
among a set of tests (or scale items) measuring the same latent construct, but also among
any other method of obtaining measurements, such as multiple raters, occasions, or tasks.
Generalizability theory [GT] [2,3] extends classical test theory [CTT] [4] by differentiating
between a (theoretically) unlimited number of independent sources of measurement error,
rather than a single conflated error term. Beyond its value for scale development [5], the
versatility of GT has been demonstrated by applications in a wide variety of psychological
domains, such as clinical/counseling [6–8], personality assessment [9,10], and education
sciences [11–13]. GT can simultaneously quantify reliability of several types that are of com-
mon interest in psychological disciplines, including scale reliability, test–retest reliability,
and interrater reliability (IRR).

Marcoulides [14] proposed specifying a GT design as a structural equation model [SEM];
see also [15] to estimate GT variance components—an idea recently revisited by
Vispoel et al. [16], who also extended the idea to SEM with ordinal variables [17]. Ap-
plications of SEM to GT have so far focused only on obtaining a generalizability coefficient
(G-coef), which is defined using only relative error. Thus, a G-coef quantifies reliability of
decisions based on relative rather than absolute differences in scores. In many research
scenarios, a G-coef is sufficient because its interpretation is relevant when using a composite
(e.g., taking the mean of all measurements, like a scale mean) as an observed variable in a
regression or correlation analysis.

However, researchers might also be interested in quantifying the dependability of
their measurements, which is relevant when using a composite score to classify subjects
into categories (e.g., making a diagnosis or identifying the need for intervention). In this
case, (global or cut-score-specific) D-coefficients are defined using absolute error. If, for
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example, the facet of generalization is raters (who each provide measurements about a
set of N subjects), a G-coef would quantify norm-referenced consistency (i.e., consistency
among raters’ rank-ordering of subjects), whereas a D-coef would be criterion referenced
(i.e., agreement among raters about each subject’s absolute level of the construct being
measured). Absolute error includes the same variance components as relative error, plus
additional components that cannot be specified as SEM parameters simultaneously with
relative-error variance components.

Transposing the data matrix has been proposed to estimate absolute-error variance
components [15]. Transposition puts subjects in rows rather than columns, so correlations
between subjects are the basis for inferring common-variance components due to a facet of
generalization. Ark [18] (p. 54) described this “Q method” as “laborious” and “cumbersome
because they must perform a separate analysis for each facet of generalization.” The method
also becomes infeasible in the very common case that there are more rows (subjects) of
data than columns (measurement conditions). To correct a possible misconception that the
drawbacks of the Q-method would limit a researcher to computing a relative G-coef [18,19],
I show how absolute-error variance components can be indirectly captured as functions of
parameters in the same SEM that estimates relative-error variance components.

Using the open-source R [20] package lavaan [21], I demonstrate with simulated data
how to specify appropriate constraints on the mean structure of a confirmatory factor
analysis (CFA) model to represent the remaining facets necessary for absolute error in
designs with one and two (crossed and nested) facets. Whereas [14,15,17] calculated point
estimates of G- and D-coefs after fitting the model, I demonstrate how to define them as new
parameters in lavaan’s model syntax, thus additionally obtaining a delta-method standard
error (SE) and normal-theory confidence interval (CI) for G- and D-coefs. Because the delta
method relies on asymptotic theory, it can yield poor coverage and inflated Type I errors in
small or modest samples. Thus, I also demonstrate how to obtain Monte Carlo CIs, which
is a more robust method because it only assumes the estimated parameters (not complex
functions of parameters) have normal sampling distributions [22]. For ordinal data—for
which G-coefs have been defined on a latent-response metric [17,18]—I show how the same
mean-structure constraints can be specified in combination with appropriate constraints
on thresholds. I use a real-data example to demonstrate some limiting conditions under
which SEM becomes infeasible for estimating GT variance components, in which case a
mixed-effects modeling framework would be more promising.

2. Materials and Methods

The only materials necessary to conduct and replicate the analyses in this article are a
computer with the R statistical software environment (at least version 4.0), with the lavaan,
semTools, and gtheory add-on packages installed and loaded into the workspace. At
the time of this writing, I used lavaan version 0.6-8, semTools version 0.5-4, and gtheory
version 0.1.2.

No human-subjects data were gathered for this article. For illustrative analyses in
this section, I used example data provided with the semTools package, loaded into the
R workspace by running data(exLong) after loading the semTools library. Originally
simulated for the longInvariance() function’s help-page example, these data include
3 (items) × 3 (occasions) = 9 measurements of N = 200 subjects. Note that G-study
designs use factorial notation similar to ANOVA; in fact, analyses of G-study data using
mean-squares estimators of variance components have been termed GENOVA [3].

Throughout the examples, I assume that the objects of measurement (the facet of
differentiation) are human subjects—the persons facet—which must be represented as rows
of input data. Distinct measurements of the facet of differentiation must be represented in
different columns of input data. In these example data, the facets of generalization are ni = 3
items and no = 3 occasions, yielding nine measurements to be used as indicators in a CFA.
As pointed out by [16] [p. 6] and by [17] [p. 161], this design facilitates disentangling differ-
ent types of measurement error—namely, specific-factor error (i.e., how interindividual
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differences vary across items) and transient error (i.e., how interindividual differences vary
across occasions)—from random-response measurement error. A “one-facet design” (i.e.,
one facet of generalization) is incapable of disentangling different sources of measurement
error. To illustrate a one-facet design, I use only the three items on the first occasion in the
example below. Further details about notational conventions can be found in [3,16].

The remainder of this section describes the methods to specify CFAs for data from
one-facet, two-nested-facet, and two-crossed-facet G-studies (these map onto the first
three examples presented by [17] in their online supplementary materials), which include
an appropriately constrained mean structure to represent main and interaction effects
involving facets of generalization. I then discretize the example data and illustrate (a) how
to model the mean structure with ordinal measurements, (b) how to obtain G- and D-coefs
on the LRV scale, and (c) how to use existing software to obtain a G-coef on the ordinal
response scale (see Section 5.3). All R syntax to replicate analyses in this article can be
found on the Open Science Framework (OSF; [23]). Results are presented in the following
section.

2.1. One-Facet Design: Persons × Items

In a p × i design, the observed measurements Ypi are a linear combination of a grand
mean µ, main effects of both persons (βp = µp − µ) and items (βi = µi − µ), and the
interaction between persons and items (βpi = µpi − µp − µi + µ), the latter of which is
conflated with any other sources of measurement error:

Ypi = µ + (µp − µ) + (µi − µ) + (µpi − µp − µi + µ)

= µ + βp + βi + βpi,
(1)

where any µ represents a mean and any β represents an effect (discrepancy from a mean).
Given independent effects (each with mean β̄ = 0), the total variance of Ypi is a sum of the
variances of the components:

σ2
Y = σ2

p + σ2
i + σ2

pi. (2)

Again, the highest-order term is also conflated with any other sources of measurement
error. The G- and D-coefs are equivalent to intraclass correlation coefficients (ICCs) that
express the magnitude of universe-score variance relative to random and systematic sources
of error variance [24]. Relative error is used to quantify consistency or generalizability
of items:

G-coefp×i = ICC(C, ni) =
σ2

p

σ2
p +

σ2
pi

ni

, (3)

which is equivalent to coefficient α [1,16] because the only facet of generalization is items
and Equation (1) is consistent with essential tau-equivalence. (i.e., all indicators are equally
related to their underlying construct, represented in CFA by equating factor loadings across
indicators). Note that traditionally, GT additionally assumes that items are randomly
parallel, which is represented in CFA by equating not only factor loadings but also residual
variances. Vispoel et al. [25] have recently explored how these assumptions can be relaxed
in the SEM framework.

Absolute error is used to quantify agreement or dependability of items:

D-coefp×i = ICC(A, ni) =
σ2

p

σ2
p +

σ2
i +σ2

pi
ni

. (4)
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A more specific D-coef for the use of a particular cut-score can be calculated by adding
its squared distance from the mean to both the numerator and denominator:

D-coefcut,p×i =
σ2

p + (µ − cut)2

σ2
p + (µ − cut)2 +

σ2
i +σ2

pi
ni

. (5)

The further a cut-score is from the mean, the more dependable the scale would be
when making criterion-based decisions. When cut = µ, Equation (5) reduces to the global
D-coef (Equation (4)) and takes its lowest value, so I only present cut-score equations in
later sections. Plots can illustrate how D-coefs vary across a range of cut-scores [16,17].

For this example, I used only the measurements on Occasion 1, so the path diagram
in Figure 1 omits any reference to occasions. Figure 1 represents a CFA in which each
condition of measurement is an indicator of a common factor. Thus, subjects’ factor scores
are analogous to their universe scores in the GT framework and are the source of common
variance among the measurements. Consistent with the GT assumption that measures are
randomly parallel [2,16], all factor loadings are fixed to λ = 1.

η1:
Person
(µp =
µ+ βp)

y2:
Item 2

y1:
Item 1

y3:
Item 3

ε1
(βs,i=1)

ε3
(βs,i=3)

1

1
ψ1,1

(σ2
p)

α1 = µ

λ1,1 = 1∗

1∗

ν1
(βi=1)

θ1,1 = θ2,2
(σ2

pi)

λ2,1 = 1∗

ν2
(βi=2)

θ2,2
(σ2

pi)

λ3,1 = 1∗

1∗

ν3
(βi=3)

θ3,3 = θ2,2
(σ2

pi)

Figure 1. Path diagram depicting p × i GT model represented as a CFA with 3 indicators (items) as
the facet of generalization. Each CFA variable and parameter are labeled using traditional LISREL
notation, accompanied by GT notation in parentheses. The unique-factor variances are constrained
to equality, the item intercepts are constrained to average zero to identify the factor mean (grand
mean µ from GT), and the variance of intercepts represents the variance component σ2

i (main effect
of items). The unique factor for Item 2 is omitted for clarity, and its variance is instead depicted with
a double-headed arrow pointing to Item 2 itself.

Because variances of common or unique factors in a CFA represent variability across
rows of data (the facet of differentiation: persons), only variance components with a p
subscript are directly estimable with CFA. The variance of the Person factor (ψ1,1 in Figure 1)
is analogous to σ2

p and the unique-factor (residual) variances (θi,i) are analogous to σ2
pi.

Whereas [14,17] allowed θi,i to differ across items and averaged the residual variances after
fitting the model to obtain a single estimate of σ2

pi, the residual variances could instead be
constrained to equality across items [15], as reflected by the labels in Figure 1.
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The remaining variance component is σ2
i , which is not a CFA model parameter. Previ-

ous authors [15,18] indicated that σ2
i could only be obtained by fitting a separate CFA model

to a transposed data matrix, with an Item common factor and each person as an indicator.
However, this leads to estimation problems because typically, N > p (i.e., there would be
more columns than rows of data) [17] [p. 158]. Furthermore, estimating σ2

i in a separate
CFA prevents users from defining a D-coef parameter or obtaining its delta-method or
Monte Carlo CI. Instead, σ2

i can be defined as a function of mean-structure parameters,
as shown in the top row of Table 1. In Figure 1, the item intercepts can be estimated
under the constraint that their average is 0, which enables the factor mean to be freely
estimated. This is the effects-coding identification constraint for the mean structure [26],
which ensures the mean of the Person factor is interpreted as the grand mean µ. Likewise,
an item intercept (νi) is the difference between the item mean (µi) and the grand mean
(µ), so the intercepts are the item effects. The estimated item variance is thus the sample
variance of the estimated vector ν:

σ̂2
i =

1
ni − 1

ni

∑
i=1

ν̂2
i . (6)

Equation (6) can be used to define a new parameter in SEM software syntax such as
Mplus [27] or lavaan [21] to obtain a maximum likelihood (ML) estimate of σ2

i . Likewise,
the R script on OSF also shows how to specify the G- and D-coefs (Equations (3) and (4),
respectively) as new parameters in lavaan syntax.

Table 1. Constraints required for mean-structure parameters to represent main and interaction effects among facets
of generalization.

Latent Intercept Identification Constraint p × i p × i × o p × (i : o) Ordinal

Person (µ) ∑ni×no
m=1 νm = 0 X X X

Item 1 (βi=1) ∑no
o=1 β(i=1),o = 0 X

Item 2 (βi=2) ∑no
o=1 β(i=2),o = 0 X

Item 3 (βi=3) ∑ni
i=1 βi = 0 X

Occasion 1 (βo=1) ∑no
i=1 βi,(o=1) = 0 X X

Occasion 2 (βo=2) ∑no
i=1 βi,(o=2) = 0 X X

Occasion 3 (βo=3) ∑no
i=o βo = 0 X X

First Measurement (LRV) ∑C
c=1 τc,(m=1) = 0 X

All other LRVs τc,(m>1) = τc,(m=1), for each c = 1, . . . , C X

Note. LRV = Latent response variable. The Person factor’s constraint is given in terms of indicator intercepts (ν) indexed by measurement
m. Minor factors’ constraints are given in terms of GT effects (β∗, with i and o subscripts indexing items and occasions, respectively), which
map onto SEM parameters as shown in path diagrams for each model (Figures 1–3). Columns 3–5 indicate which constraints are required
for each GT design. The rightmost column indicates which additional constraints are required when a CFA includes a threshold (τ) model to
map each ordinal indicator with C + 1 categories onto a continuous LRV.

2.2. Two-Facet Crossed Design: Persons × Items × Occasions

A p × i × o model for observed measurements Ypio extends Equation (1) by adding a
main effect of occasions (βo = µo − µ) and three interaction terms (βpo, βio, and βpio):

Ypio = µ + βp + βi + βo + βpi + βpo + βio + βpio. (7)

As in any GT design, the highest-order interaction is conflated with any other sources
of measurement error, and the marginal variance is a sum of the variance components:

σ2
Y = σ2

p + σ2
i + σ2

o + σ2
pi + σ2

po + σ2
io + σ2

pio. (8)
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It may also be informative to calculate the proportion of specific-factor (σ2
pi) and

transient (σ2
po) error, relative to total (including random-response: σ2

pio) error; see [17] [p. 161,
Equations (14)–(16)]. The G-coef is defined using relative error (terms with p subscripts):

G-coefp×i×o =
σ2

p

σ2
p +

σ2
pi

ni
+

σ2
po

no
+

σ2
pio

ni×no

, (9)

which quantifies generalizability across both items and occasions—“a coefficient of equiv-
alence and stability” [17] [p. 161, Equation (17)]. However, G-coefs can also quantify
generalizability separately across each dimension, analogous to coefficients for scale relia-
bility and test–retest reliability [17] [p. 161, Equations (18) and (19), respectively]. Again, a
D-coef is defined using absolute error, which additionally includes components of effects
that do not vary across persons:

D-coefcut,p×i×o =
σ2

p + (µ − cut)2

σ2
p + (µ − cut)2 +

σ2
i +σ2

pi
ni

+
σ2

o +σ2
po

no
+

σ2
io+σ2

pio
ni×no

. (10)

Equation (10) collapses to a global D-coef when cut = µ.
Figure 2 depicts a CFA for all nine measurements of the example data, where each of

three items were administered on each of three occasions. The factor-loading matrix consists
only of zeros and ones that map indicators onto their respective components (see Figure 2).
Again, all measurements are indicators of a common Person factor, but additional minor
factors can be added to represent levels of multiple facets of generalization. In this case, all
Item-1 measurements are indicators of a common Item 1 factor (likewise for Items 2 and 3),
and all Occasion-1 measurements are indicators of a common Occasion 1 factor (likewise
for Occasions 2 and 3).

η1:
Person

(µp = µ+ βp)

y5:
Item 2,

Occasion 2

y4:
Item 1,

Occasion 2

y3:
Item 3,

Occasion 1

y2:
Item 2,

Occasion 1

y1:
Item 1,

Occasion 1

y6:
Item 3,

Occasion 2

y7:
Item 1,

Occasion 3

y8:
Item 2,

Occasion 3

y9:
Item 3,

Occasion 3

ε1
(βp,i=1,o=1)

ε2
(βp,i=2,o=1)

ε3
(βp,i=3,o=1)

ε4
(βp,i=1,o=2)

ε5
(βp,i=2,o=2)

ε6
(βp,i=3,o=2)

ε7
(βp,i=1,o=3)

ε8
(βp,i=2,o=3)

ε9
(βp,i=3,o=3)

1

1

λ1,1 = 1∗ λ2,1 = 1∗ λ3,1 = 1∗ λ4,1 = 1∗ λ5,1 = 1∗ λ6,1 = 1∗ λ7,1 = 1∗ λ8,1 = 1∗ λ9,1 = 1∗

1∗ 1∗ 1∗ 1∗ 1∗ 1∗ 1∗ 1∗ 1∗

α1

(µ)

ν1
(βi=1,o=1)

ν2
(βi=2,o=1)

ν3
(βi=3,o=1)

ν4
(βi=1,o=2)

ν5
(βi=2,o=2)

ν6
(βi=3,o=2)

ν7
(βi=1,o=3)

ν8
(βi=2,o=3)

ν9
(βi=3,o=3)

ψ1,1

(σ2
p)

θ1,1
(σ2

pio)

θ2,2 = θ1,1
(σ2

pio)

θ3,3 = θ1,1
(σ2

pio)

θ4,4 = θ1,1
(σ2

pio)

θ5,5 = θ1,1
(σ2

pio)

θ6,6 = θ1,1
(σ2

pio)

θ7,7 = θ1,1
(σ2

pio)

θ8,8 = θ1,1
(σ2

pio)

θ9,9 = θ1,1
(σ2

pio)

(a) Layer 1 includes the following GT effects (and their parameters): µp (µ and σ2
p), βio, and βpio (σ2

pio).

Figure 2. Cont.



Psych 2021, 3 119

η3:
Item 2
(βp,i=2)

y5:
Item 2

Occasion 2

η6:
Occasion 2
(βp,o=2)

y4:
Item 1,

Occasion 2

y3:
Item 3,

Occasion 1

y2:
Item 2,

Occasion 1

y1:
Item 1,

Occasion 1

y6:
Item 3,

Occasion 2

y7:
Item 1,

Occasion 3

y8:
Item 2,

Occasion 3

y9:
Item 3,

Occasion 3

η2:
Item 1
(βp,i=1)

η4:
Item 3
(βp,i=3)

η5:
Occasion 1
(βp,o=1)

η7:
Occasion 3
(βp,o=3)

1 1

1

λ1,2 = 1∗

λ2,3 = 1∗
λ3,4 = 1∗

λ4,2 = 1∗

λ5,3 = 1∗

λ6,4 = 1∗

λ7,2 = 1∗
λ8,3 = 1∗

λ9,4 = 1∗

λ1,5 = 1∗ λ2,5 = 1∗ λ3,5 = 1∗ λ4,6 = 1∗ λ5,6 = 1∗ λ6,6 = 1∗ λ7,7 = 1∗ λ8,7 = 1∗ λ9,7 = 1∗

α2

(βi=1)

α3

(βi=2) α4

(βi=3)

α5

(βo=1)

α6

(βo=2) α7

(βo=3)

ψ2,2

(σ2
pi)

ψ3,3 = ψ2,2

(σ2
pi)

ψ4,4 = ψ2,2

(σ2
pi)

ψ5,5

(σ2
po)

ψ6,6 = ψ5,5

(σ2
po)

ψ7,7 = ψ5,5

(σ2
po)

(b) Layer 2 includes the following GT effects (and their parameters): βi, βpi (σ2
pi), βo, and βpo (σ2

po).

Figure 2. Two layers of a path diagram depicting a p × i × o GT design represented as a CFA model with 9 indicators
(3 items × 3 occasions). Each CFA variable and parameter are labeled using LISREL notation, accompanied by GT notation
in parentheses. Identification constraints on the mean structure are listed in Table 1. (a) The Person facet (of differentiation)
is the first common factor. Residuals capture the highest-order term, confounded with any other source(s) of error. Intercepts
of indicator residuals represent the interaction between all facets of generalization. (b) The facets of generalization interact
with the Person facet (captured by the common factors), and their main effects are captured by the factor means.

As with unique factors, the variances of the minor factors represent variability across
persons within a particular measurement condition, so

• all Item factor scores represent the βpi effects, and the Item factor variances are
constrained to equality to represent σ2

pi;

• all Occasion factor scores represent the βpo effects, and the Occasion factor variances
are constrained to equality to represent σ2

po;
• all unique-factor scores (indicator residuals) represent the βpio effects, and the residual

variances are constrained to equality to represent σ2
pio.

The remaining variance components are σ2
i , σ2

o , and σ2
io. Because these do not include

any variance across persons, those effects are constants, which can be reflected in the mean
structure. With the appropriate constraints, the Item factor means can represent Item
effects (βi), the Occasion factor means can represent Occasion effects (βo), and the indicator
intercepts can represent the Item × Occasion interaction effects (βio).

The two-facet design’s CFA model has seven common factors, so seven constraints
must be imposed on the mean structure to identify their means, as listed in Table 1. Recall
that each effect (β∗) is defined as varying around a mean of zero:

• As with the one-facet model, the factor scores represent µp = µ + βp, so a freely
estimated Person mean represents the grand mean (because β̄p = 0). To identify this
latent mean, impose the effects-coding constraint on all nine indicator intercepts, as
shown in the top row of Table 1. This constraint reflects β̄io = 0, which is equivalent
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to constraining the sum of βio = 0 because the mean is merely the sum scaled by
1/(ni × no).

• The effects-coding constraint can also be imposed on the indicators of each item’s fac-
tor (e.g., across occasions, Item 1’s indicators sum to zero, shown in Row 2 of Table 1).
However, only ni − 1 such constraints are needed because the nth

i constraint would
be redundant given the constraint on all nine intercepts. That is, if ni − 1 mutually
exclusive subsets each sum to zero, then the remaining subset must also sum to zero
in order for the entire set to sum to zero. The final nth

i Item factor’s mean is identified
by constraining all Item-factor means to sum to zero, consistent with β̄i = 0. The
means of Item factors can thus be interpreted as Item effects (βi).

• The same pattern holds for Occasion factors as for Item factors. The effects-coding
constraint is placed on the subset of indicators (e.g., across items, Occasion 1’s indica-
tors sum to zero) for no − 1 Occasion factors, and the nth

o Occasion factor’s mean is
identified by constraining all Occasion means to sum to zero: β̄o = 0. The means of
Occasion factors are thus interpreted as Occasion effects (βo).

With the appropriate specifications for main and interaction effects among facets of
generalization, their variances can be calculated as functions of the estimated common-
factor means (α f ) and measured-variable intercepts (νm).

σ̂2
i =

1
ni − 1

4

∑
f=2

α̂2
f , (11)

σ̂2
o =

1
no − 1

7

∑
f=5

α̂2
f , (12)

σ̂2
io =

1
(ni × no)− 1

ni×no

∑
m=1

ν̂2
m. (13)

The R script on OSF specifies these functions as new parameters in lavaan syntax
to obtain ML estimates of these variance components and the G- and D-coefs defined
in Equations (9) and (10), respectively, along with delta-method SEs and Monte Carlo CIs.

2.3. Two-Facet Nested Design: Persons × (Items within Occasions)

A p × (i : o) model for observed measurements Yp(i:o) resembles Equation (7):

Yp(i:o) = µ + βp + βo + βpo + βi:o + βp(i:o), (14)

but with fewer terms. Person and occasion effects are still fully crossed, but administering
a unique set of items on each occasion prevents disaggregating independent item and
occasion effects. The main effect of items and the i × o interaction are confounded in
the term βi:o. Items are still repeatedly administered across persons, but because item
effects cannot be disentangled from the occasion effects in which they are nested, specific-
factor error (the p × i interaction) and random-response measurement error (the p × i × o
interaction) are confounded in the term βp(i:o).

Using the associated variance decomposition,

σ2
Y = σ2

p + σ2
o + σ2

po + σ2
i:o + σ2

p(i:o), (15)

the G-coef is still defined using relative error (all terms with a p subscript):

G-coefp(i:o) =
σ2

p

σ2
p +

σ2
po

no
+

σ2
p(i:o)

ni:o×no

, (16)

where ni:o is the number of items within each occasion (constant across occasions). Again,
the D-coef is defined using absolute error, which additionally includes components of
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effects that do not vary across persons, and a cut-score-specific D-coef also incorporates a
criterion’s distance from µ:

D-coefcut,p(i:o) =
σ2

p + (µ − cut)2

σ2
p + (µ − cut)2 +

σ2
o +σ2

po
no

+
σ2

i:o+σ2
p(i:o)

ni:o×no

. (17)

The path diagram in Figure 3 portrays a CFA representing a p × (i : o) design.
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Figure 3. Path diagram depicting p × (i : o) GT model represented as a CFA with 9 indicators (items) across 3 occasions as
facets of generalization. LISREL (and GT) notation are provided for each CFA variable and parameter. The Person facet (of
differentiation) is the first common factor, and the p × o interaction is captured by Occasion factors, whose variances are
constrained to equality. Residuals capture the highest-order term, confounded with any other source(s) of error, and their
variances are constrained to equality. Identification constraints on the mean structure are listed in Table 1.

In the example lavaan syntax on OSF, the nine measurements are treated as though
they were nine distinct items—Items 1–3 only on Occasion 1, Items 4–6 only on Occasion 2,
and Items 7–9 only on Occasion 3—rather than the same three items on each occasion.
Note that it is also possible to derive coefficients for this design from the fully-crossed
p × i × o data [17] [pp. 161 & 168–169]. Figure 3 resembles Figure 2 for a fully crossed
design, but because each item is measured on only one occasion, no common factors are
specified to represent items. The same constraints in Table 1 are used to identify the person
and occasion factor means (with the same interpretation as in the p × i × o model), but no
constraints are required for the (absent) item factors. The occasion variance is estimated as
in Equation (12) (except the sum is over factors 2–4 rather than 5–7), and Equation (6) can
be used to estimate σ2

i:o rather than σ2
i .
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2.4. Discretized Data

The CFA models described so far were developed in the context of indicators having
continuous (e.g., interval-level) scales of measurement, but social science data are often
discrete (e.g., binary checklists or ordinal Likert scales). Historically, GT variance compo-
nents have been estimated by treating ordinal data the same way continuous data would
be treated [28], using numeric weights for ordinal categories (e.g., 1–5 for a 5-point Likert
scale, or 0–1 for a checklist of binary items). In that case, the methods already described
can simply be applied to ordinal measurements as though they were continuous. How-
ever, G-coefs have also been estimated for ordinal measurements by capitalizing on the
latent response variable (LRV) interpretation commonly used in SEM [17,18]. Item factor
analysis [IFA] [29] augments CFA with a threshold model that assumes that an observed
discrete variable x represents a crude measurement of a continuous LRV y. Estimators
typically assume y (or its residuals) to be normally distributed, which is equivalent to
specifying a (cumulative) probit link between a discrete outcome and its linear predictor in
the generalized linear model [30] [pp. 122–124]. The same LRV interpretation is available
when using a (cumulative) logit link [31] [pp. 187–189], but the LRV’s residuals are as-
sumed to follow a standard logistic distribution (with variance π2

3 ) rather than a standard
normal distribution. This approach has also been explored in item-response theory (IRT)
models for GT [32–34], some of which are statistically equivalent to IFA models (e.g., the
2-parameter normal-ogive or logit model and analogous graded response models).

2.4.1. The Threshold Model and Latent Response Scales

Using thresholds τ1 = −0.5 and τ2 = 1.0, the example data were discretized into three
ordinal categories (c = 0, 1, or 2) using the following threshold model:

xpio = c if τc < ypio ≤ τc+1, (18)

with C + 2 thresholds forming boundaries around C + 1 contiguous regions of the ypio
distribution, corresponding to C + 1 categories. Because the normal distribution is un-
bounded, τ0 = −∞ and τC+1 = +∞ by definition, and only the remaining C thresholds
are estimable.

Because the y variables in IFA are latent (circles instead of squares in the path diagrams
above), the locations and scales of their distributions are arbitrarily chosen, often by fixing
their intercepts to ν = 0 and either their marginal or residual variances to 1 [35] (i.e., the
delta or theta parameterization, respectively) [36]. This allows all thresholds to be estimated,
but an indicator’s intercept can be estimated if a constraint is placed on its threshold(s) [37].
(Constraining a second threshold would allow its marginal or residual variance to be
estimated, but that provides no benefit in this context.) Either parameterization is arbitrary,
just as common-factor locations and scales are arbitrary [38], but calculations are simpler
using the theta parameterization because all residual variances are simply fixed to 1 (i.e., no
pooled calculation is required). The constraints listed in the bottom two rows of Table 1 are
minimally sufficient to identify the intercepts (i.e., statistically equivalent to estimating all
thresholds and fixing all intercepts to zero), so that the mean-structure constraints already
described can continue to be used in an IFA for GT.

For the first (or any arbitrarily chosen) measurement, rather than freely estimating all
C thresholds, they can be estimated under the constraint that their average is zero. This
allows the LRV intercept to be estimated, analogous to the effects-coding constraint used
on intercepts to identify common-factor means [26]. For a binary variable with C = 1
threshold, the constraint is achieved simply by fixing the threshold τ = 0, in which case the
estimated intercept would be equal in magnitude (but with opposite sign) as the estimated
threshold when fixing ν = 0. Thus, a statistically equivalent approach for binary variables
would be to simply place the intercept constraints in Table 1 on the thresholds instead,
yielding identical estimates of variance components derived from the mean structure.
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However, this would also change the sign of the estimated Person mean. The final example
demonstrates this approach with real multirater binary measurements.

With this constraint in place for one measurement, the thresholds for each remaining
measurement can be constrained to equality with the first (or fix all τ = 0 for binary
measurements), thus identifying intercepts for the remaining measurements. The esti-
mated intercepts can then be constrained as described in Table 1 such that LRV and factor
intercepts represent GT components. Thus, once the threshold model is appropriately
constrained, the remaining IFA parameters can be specified using the same principles
discussed for CFA parameters above.

2.4.2. Coefficients on Ordinal vs. Latent-Response Scales

The LRV interpretation has also been utilized in CTT by applying the formula for
coefficient α to an estimated polychoric correlation matrix instead of a covariance matrix
on the observed response scale [39,40]. The LRV interpretation has advantages relative
to simply treating ordinal measurements as continuous. Using a threshold model to link
observed ordinal responses to LRVs can eliminate scaling irregularities due to transforma-
tion and categorization errors [17], which facilitates comparing results across studies that
use different scaling metrics (e.g., 3-point vs. 5-point Likert scales). When disattenuating
scale-composite correlations for measurement error, G-coefs on the ordinal and LRV scales
are quite similar when Likert scales have many points [17]. However, because scale coarse-
ness can be considered one type of measurement error [41]—because the variable being
measured is truly continuous—the LRV scale becomes better equipped to fully disattenuate
correlations in scales with fewer categories [17,18].

Whereas G- and D-coefs on the LRV scale quantify reliability of ideal or hypothetical
data [42], G- and D-coefs on the observed scale quantify the reliability of the data on hand.
Thus, treating the ordinal response scale as continuous can also be advantageous, especially
when calculating a D-coef for a specific cut-score. Typically, a cut-score is an absolute
criterion with reference to the actual scale used for measurements, or some function of it
(e.g., the possible range of a scale total). Vispoel et al. [17] [p. 163, Equation (25)] proposed
a D-coef on the LRV scale that only required relative-error variance components, based
on the assumption that the LRVs were z scores (i.e., µ̂Y = 0 and σ̂Y = 1). A global D-coef
was then equivalent to a G-coef, and cut-scores could be expressed in units of SD but were
divorced from the observed response scale.

Vispoel et al. [17] [p. 163] noted their proposed LRV-scale D-coef was limited because
“differences among the absolute levels of scores are not taken into account or presumed
not to differ.” Another limitation is that their assumption of standardized LRVs is only
consistent with the delta parameterization [36], in which the marginal LRV variances
are fixed to 1 for identification and residual variances are merely functions of marginal
variances and other model parameters (factor loadings and variances) [35]. In order for
residual variances to be constrained to equality [15,17] (rather than averaging residual
variances across measurements), they must be treated as model parameters by utilizing the
theta parameterization [36], in which case they are fixed to 1. In this case, a D-coef equation
on the LRV scale [17] [Equation (25)] would have to be adapted to allow for marginal LRV
variances in excess of 1. Another potential problem with the approach in [17] is that LRV
scales were not linked across measurements by constraining thresholds to equality [37].

The threshold-model constraints I proposed above resolve many of these issues. Con-
straining thresholds to be invariant across measurements allows the latent scales to be
linked on a common metric [37]. Constraining each indicator’s thresholds to be distributed
around 0 (or fixing a single threshold to 0 for binary indicators) identifies the LRV inter-
cepts, which in turn can be constrained just as they are when indicators are (treated as)
continuous (Table 1). Thus, estimates of absolute-error components are available, so stan-
dard formulas for global and cut-score-specific D-coefs (Equations (4), (5), (10), and (17))
can be applied without requiring LRVs to be z scores. However, the limitation remains that
the chosen cut-score is on the LRV metric rather than the observed discrete response scale,
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so the cut-score would have to be chosen using a potentially arbitrary heuristic [17] [e.g.,
2 SDs away from the mean; p. 166, Equation (32)].

3. Results

All CFA models specified above were fitted to the normally distributed example
data from semTools, using MLE in lavaan. For comparison, G- and D-coefs were also
calculated using mean-squares (MS, i.e., GENOVA) and restricted ML (REML) estimates,
the latter of which are available from the gtheory package [43], which employs the lme4
package [44,45]. The same estimators were also used to calculate G- and D-coefs for the
discretized example data, which can be expected to be lower due to reduced variability of
the discrete data relative to the untransformed continuous data [46,47] (i.e., categorization
error). Finally, IFA models were fitted to the discretized example data, using diagonally
weighted least-squares (DWLS) estimation and relying on the LRV interpretation. Because
the example data were not simulated to reflect a substantively meaningful response scale
(either on the normal or discretized scales), and because LRVs have arbitrary scales, a
cut-score of 2 SDs above the mean was used to calculate cut-score-specific D-coefs in all
models. Vispoel et al. [17] [p. 166, Equation (32)] made a similar comparison using two
SDs below the mean (resulting in the same D-coef as for two SDs above the mean).

Results are presented in Table 2. The R syntax on OSF also demonstrates how to
obtain normal-theory CIs via the delta-method in lavaan, as well as Monte Carlo CIs
in semTools, the latter of which involves simulating a joint sampling distribution of the
parameter estimates (like a parametric bootstrap procedure) and tend to be more robust
in smaller samples [22]. I do not present CI results here because they are not the focus of
the article, but I do recommend reporting them in practice to help quantify uncertainty.
It is noteworthy that the mixed-modeling framework yields identical (to the 5th decimal
place) estimates using either (ordinary/unweighted) least-squares or REML estimation.
Likewise, the SEM framework yields identical estimates using least-squares (not presented
in Table 2) or ML estimation. However, the modeling frameworks do differ in the second
or third decimal place because the discrepancy functions differ. The sum-of-squares or
negative log-likelihood is minimized with respect to each row of data (i.e., observed vs.
predicted casewise scores) in mixed-models but with respect to summary statistics (i.e.,
observed vs. predicted means and covariance matrix) in SEM.

Table 2. Estimated generalizability and dependability coefficients for normal and discretized data under different estimators.

p × i p × i × o p × (i : o)

Data Response Scale Estimator G D D-Cut G D D-Cut G D D-Cut

Normal Observed MS 0.834 0.783 0.966 0.737 0.629 0.956 0.794 0.728 0.970
REML 0.834 0.783 0.966 0.737 0.629 0.956 0.794 0.728 0.970

ML 0.834 0.782 0.968 0.737 0.626 0.959 0.794 0.712 0.969
Discretized MS 0.759 0.706 0.958 0.715 0.602 0.958 0.758 0.691 0.970

REML 0.759 0.706 0.958 0.715 0.602 0.958 0.758 0.691 0.970
ML(R) 0.759 0.705 0.960 0.715 0.600 0.961 0.758 0.676 0.969

LRV DWLS 0.857 0.792 0.969 0.773 0.651 0.960 0.817 0.730 0.970
Observed a 0.781 — — 0.738 — — 0.780 — —

Note. LRV = latent response variable. MS = mean-squares estimates, manually calculated from R’s anova() output for linear model (lm)
objects. REML = restricted maximum likelihood estimates, obtained from the R package gtheory (cut-score D-coefs must be calculated
manually). ML(R) = maximum likelihood estimates (with robust SEs) obtained from the R package lavaan. DWLS = diagonally weighted
least-squares estimates obtained from lavaan, interpreted on the latent response scale [17,18]. The 3 GT designs are labeled in the upper
header, below which indicates columns with G-coefs, global D-coefs, and cut-score-specific D-coefs for that design. a Using IFA model
parameters on the LRV scale, Green and Yang [48] incorporated thresholds to define reliability (equivalent to a G-coef) on the observed
discrete response scale.

The top three rows of Table 2 show nearly identical G- and D-coefs across estimators
in all three designs. Rows 4–6 show the same trend for the discretized data, but as expected,
those coefficients were lower than for truly continuous indicators because continuous
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indicators capture more information about individual differences. Estimated cut-score-
specific D-coefs were more similar between normal and discretized data because of the
large distance of the cut-score from the mean. Global D-coefs are generally lower than
G-coefs because absolute error includes more variance components than relative error.
However, when using a specific cut-score to make absolute decisions, especially one that is
far from the mean (here, 2 SDs), the scale is notably more dependable [3,16], as reflected by
D-coefs for cut-scores exceeding the G-coefs.

Given that the simulated example data were drawn from a multivariate normal
distribution, it is reasonable to use their estimated coefficients as a point of reference to
compare estimates on the LRV scale in the penultimate row of Table 2. The generalizability
and dependability of ideal or hypothetical latent scores could be informative about the
quality of variables that would have been measured on a more approximately continuous
scale [42], but less so about the variables actually observed in practice. However, because
the illustrative example in fact discretized (simulated) normally distributed data, one
should expect the generalizability and dependability on the LRV scale to approximate the G-
and D-coefs for the normal data. Table 2 shows that in these discretized data, the estimated
IFA parameters (fitted to polychoric correlations among the discretized measurements)
yield slightly (roughly 0.01–0.04) higher coefficients than the CFA parameters (fitted to the
truly normal observed data that were not discretized). Across models, the DWLS estimates
of σ2

p were proportionally higher than would be expected from fixing the residual variances
to θi,i = 1. The bottom row of Table 2 is explained in the Discussion.

4. A Multirater Study with Planned Missing Data

A final example with real data illustrates that SEM might be infeasible using certain
measurement designs. Whereas there is little additional cost associated with some facets of
generalization (e.g., designing additional items or tasks), other facets might carry similar
costs to recruiting subjects, such as scheduling additional measurement occasions or
recruiting additional raters. Planned missing data (PMD) designs have been proposed
as a way to reduce such costs by randomly assigning subjects to complete subsets of
items [49,50], to be measured on certain occasions, or both [51]. Although not explicitly
referred to as a PMD design, random assignment of raters has also occurred in practice,
yielding extremely sparse data from studies that minimized the burden on raters [52–55].

4.1. Design

In this real-data example [55], observations were made by six physician faculty (r)
about 29 first-year internal medicine residents’ (p) communication skills, measured using
the Advanced Care Planning Communication Assessment Tool (ACP-CAT) in two task
conditions (t). The ACP-CAT is a binary checklist of 20 items (i) and also includes two
summative items measured with a Likert scale. Although the study is a three-facet design
(p × r × t × i), the facets of generalization would yield 6 × 2 × 20 = 240 variables, which
makes SEM infeasible given only 29 subjects. I therefore focus primarily on the scale total
(ranging 0–20) under one-facet (p × r) and two-facet (p × r × t) designs, as well as one
summative item to discuss potential challenges with ordinal data.

Whereas subjects (persons) and raters were each fully crossed with tasks, not all
subject–rater combinations yielded data because Yuen et al. [55] assigned two out of the
six participating raters to observe each of the 29 subjects. Nonetheless, subjects and raters
were not nested facets because no subset of raters only observed one subject (r : p), nor
was any subset of subjects observed by only one rater (p : r). Subjects and raters could
be described as partially crossed because no subject was paired with every rater (or vice
versa), but every subject was rated by multiple raters (and every rater observed multiple
subjects). With (6 × 5)/2 = 15 pairs of raters, each pair of raters was randomly assigned to
observe only two of the same subjects in each task, except for one pair of raters (in each
task) who only jointly observed a single subject.
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Because random assignment ensures a missing completely at random (MCAR) mecha-
nism, pairwise deletion should yield unbiased estimates of each element in the covariance
matrix among observed variables [56]. However, the coverage rates (i.e., proportion of
observations that can provide information about an estimate) for the covariance matrix was
quite low: 34.5% for diagonal cells (variance across subjects for each task–rater combina-
tion) and 6.9% for covariances between raters within the same condition. Because random
assignment of raters to subjects differed across tasks, the covariance between tasks within
each rater had 0% coverage and so could not be calculated (i.e., there was no summary
statistic for the SEM to attempt to reproduce). Coverage for other off-diagonal elements
ranged from 6.9 to 17.2%. The R syntax on OSF prints a data matrix and summaries that
illustrate the missing-data patterns in this design.

4.2. CFAs for the Scale Total

A path diagram for this p × r × t design would resemble Figure 2, but (a) two tasks
would replace three items and (b) six raters would replace three occasions. As the example
syntax on OSF shows, a properly specified SEM for this GT design does not converge on a
ML solution when fit to the example data (also provided on OSF) using full-information ML
(FIML) to accommodate incomplete data [19]. Rather than a problem with estimating model
parameters, the lavaan package warned that the “maximum number of iterations reached
when computing the sample moments using EM” (i.e., not all sample covariances could
be estimated), although the error did not indicate that 0% coverage absolutely prevented
estimating the model parameters.

A one-factor model was specified for a p × r design—resembling Figure 1 but with six
raters instead of three items—and fitted to the data within each task, in which there were no
summary statistics with 0% coverage. However, there remained an additional complication:
correlations could only take values of −1, 0, or 1. Correlations could even be undefined
when for a pair of raters, one (or both) rater’s scores did not vary among the two subjects
jointly observed with the other rater. This necessarily occurred for the pair of raters who
only jointly observed one subject within a task, but also when either rater in a pair provided
the same scores for both jointly observed subjects (because the variance would be 0 for those
two observations). This may be related to the error message when attempting to fit the one-
factor model to the Task-2 p × r data: “system is computationally singular”, accompanied
by multiple warning messages about trouble estimating the summary statistics, which
implies potential linear dependencies therein.

Nonetheless, lavaan was able to find a ML solution for the Task-1 p × r data. The
estimated G-coef = 0.905, with Monte Carlo 95% CI [0.833, 0.951], indicated that ACP-
CAT scale totals were quite generalizable across raters within Task 1. This G-coef is an
IRR coefficient equivalent to ICC(C,2) [24]. Note, however, that in the single-facet p × r
design, rater error cannot be disaggregated from error associated with specific tasks—what
Vispoel et al. [16] [p. 6] referred to as a “hidden facet” because p × t interaction variance is
implicitly absorbed into the numerator’s subject variance, artificially inflating estimated
G- and D-coefs. The estimated global D-coef (0.821, 95% CI [0.675, 0.890])—equivalent to
ICC(A,2) for IRR [24]—also indicated high dependability when using a cut-score at the
mean (10.884 ≈ 11) to make decisions about absolute standing of subjects on the ACP-CAT
scale. Dependability exceeded 0.90 when using cut-scores <9 or >13; Figure 4 illustrates
how dependability varies across the scale’s 0–20 range. As in Table 2, the ML estimates
from lavaan were quite similar to the REML estimates from gtheory (G-coef = 0.900, global
D-coef = 0.835, also shown in Figure 4), whose mixed-model approach does not have the
same estimation challenges of wide-format data.
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Figure 4. D-coefficients for cut-scores on ACP-CAT scale totals, using p × r data from Task 1,
estimated with ML in lavaan (vs. REML in gtheory).

4.3. IFAs for Discrete Scale Items

IFA models yielded additional challenges associated with estimation of thresholds.
In order for estimated thresholds to have the same interpretation across facets of general-
ization (i.e., columns of wide-format data), the same thresholds—and therefore the same
categories—must be observed across facets of generalization. To illustrate this, I use a
single binary item provided in the data on OSF. (The eighth ACP-CAT item reads “Encour-
aged discussing goals/wishes with HCP/family” and is answered “yes”, “no”, or “not
applicable”. In this sample, no “not applicable” categories were observed for this variable.)
An IFA model cannot be fitted to all these data because in Task 1, lavaan returned an error
due to Rater 1 only checking "yes" across all nine subjects (s)he observed. Thus, I could
only fit an IFA to the p × r measurements in Task 2. Using the default DWLS estimator,
lavaan warned that “Model estimation FAILED! Returning starting values”, along with
several repeated warnings about low coverage (i.e., lots of missing data), empty cells in
bivariate contingency tables (i.e., joint observations between pairs of raters), correlations
= ±1 (i.e., a pair of raters (dis)agree perfectly), and SDs = 0 (i.e., no variability within a
single rater among joint observations with another rater).

As an alternative to DWLS, and in contrast to FIML (which sums casewise multivariate
log-likelihoods of all variables), pairwise maximum likelihood (PML) estimates parameters
by summing casewise uni- and bivariate log-likelihoods among pairs of variables [57].
Despite issuing the same warnings, lavaan converged on a ML solution. The G-coef
(0.813) was estimated with notably less precision for the binary item than for the scale
total, resulting in Monte Carlo 95% confidence limits [−0.906, 2.629] that were out of
bounds. Although generalizability of this ACP-CAT scale item appears high in Task 2, it is
naturally lower than the generalizability of the ACP-CAT scale total in Task 1. Absolute
decisions made using this ACP-CAT scale item would also be less dependable across raters
within Task 2 (D-coef = 0.777, with out-of-bounds confidence limits) than the scale total in
Task 1 was.

Returning to lavaan’s warning messages for these data, a single rater can be expected
to use only one response category (which led to the warning about SD = 0) less frequently
when rating more subjects, as well as when using scales with more ordered categories (in
this case, the ability to distinguish different degrees of “yes”). However, more ordinal
categories should increase the probability that a pair of raters do not jointly use the same
categories, which would not allow the same thresholds to be estimated (under equality
constraints) across raters. Using the summative Likert-scale item (for which five ordinal
categories were observed) as an example, Rater 1 only used categories 2–5 across nine
observed subjects, whereas Rater 2 used all 1–5 categories across 10 observed subjects. This
problem even occurred with binary data in the Task-1 example, where Rater 1 only checked
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“yes” for all (nine) subjects, illustrating the problem of small samples, particularly when
planned missingness is used to relieve raters’ burden.

5. Discussion

This article demonstrated how to extend previously proposed SEMs for modeling
GT [14–18] by estimating variance components of facets of generalization (i.e., their main
effects and interactions, which do not vary across subjects) as functions of mean-structure
parameters, given the appropriate constraints (Table 1). Thus, absolute-error components
can be used to calculate D-coefs from SEM parameters, which can assist researchers in
quantifying the dependability of measurements—for example, when determining which
diagnostic category a person should be assigned to. Furthermore, defining G- and D-coefs
as new parameters in popular SEM software [21,27] syntax enables their uncertainty to
be quantified using easily obtained interval estimates, as demonstrated in the R syntax
on OSF.

5.1. Advantages of SEM for GT

Relative to traditional mixed-model/GENOVA estimation of GT variance components,
the SEM approach has some notable advantages. Given the frequent use of factor analysis
in scale development, specifying GT models as CFAs brings together two very useful
frameworks for evaluating measurement instruments and procedures. When measure-
ments include unplanned missing data—for which the MCAR assumption is unlikely to
be met—incorporating auxiliary variables into a saturated-correlates model can make the
less restrictive missing-at-random (MAR) assumption easier to justify [19]. Although the
examples in this article have respected GT’s traditional assumption of randomly parallel
measures, SEM enables assumptions to be relaxed or tested against the data, such as ho-
moskedasticity across measurement conditions [16,17] and congeneric measurement [25]
(i.e., unequal factor loadings). Relaxing these assumptions can link GT to related SEMs
such as multitrait–multimethod and trifactor models [58].

Additional practical advantages that come with using SEM software for GT in-
clude automatic calculation of delta-method SEs and CIs for functions of model pa-
rameters [21,27]. For lavaan models, semTools::monteCarloCI() can be used to eas-
ily obtain Monte Carlo CIs [59], which are more robust in smaller samples [22]. SEM
can also more easily accommodate multivariate GT models than mixed-model software,
and disattenuated correlations among constructs can be obtained with standard SEM
output [17]. Given the equivalence of the CTT coefficient omega (ω) to G-coefs for con-
generic measurement models [16], G-coefs can be automatically calculated in R using
psych::omega() [60] or semTools::reliability() [59]; the R syntax on OSF demon-
strates how to use semTools::reliability() for each example.

5.2. Limitations Due to Missing Data

There are also practical limitations that can make the SEM approach disadvantageous,
relative to using mixed-models to estimate variance components. Although all standard
SEM software packages include FIML estimation, which can accommodate incomplete
data under a MAR assumption, FIML is unavailable when using DWLS or PML estimation
of IFA models that allow an LRV interpretation. Pairwise deletion in conjunction with
DWLS or PML makes the more restrictive MCAR assumption, although a computationally
intensive “doubly-robust” method only assumes MAR when using PML [61]. FIML is
also available for IFA (or IRT) models using marginal MLE, but the numerical integration
algorithms would make it infeasible for models with many common factors (i.e., more than
one facet of generalization).

Furthermore, the real-data example revealed many potential estimation problems in
cases of extremely sparse data, such as documented in PMD designs that minimize the
observational burden on raters [52–55]. Because PMD are missing by design (random
assignment), the MCAR assumption is met, so the problem of sparsity is due only to using
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wide-format data with the SEM approach. When SEM becomes infeasible for modeling GT,
the mixed-model approach would be preferable to estimate variance components [45,62].

5.3. Future Directions for Discrete Data

Using IFA to model discrete data [17,18], G- and D-coefs can be interpreted on an
arbitrary LRV scale, which can be advantageous (see Section 2.4.2). The examples in this
article [17] showed how to calculate D-coefs for a cut-score in units of SD (i.e., a z score),
which could indicate the dependability of cut scores on an observed response scale (used
in practice) that are similarly far from the mean. Actual absolute decisions (e.g., diagnostic
classifications) could only be made with reference to a nonarbitrary scale of reference, even
when using a more approximately continuous composite variable (e.g., by averaging or
summing across facets of generalization). Composites would be bound within the range of
the observed ordinal response scale when averaging measurements (e.g., within 1–5 for
a 5-point Likert scale) or within the number of measurements summed (e.g., the number
of “yes” responses on a binary scale sum). No method has yet been proposed to quantify
absolute agreement among measurements while both accounting for an ordinal response
scale and relying on the LRV interpretation.

As with G-coefs from IFA parameters, global D-coefs on a LRV scale can be interpreted
as a hypothetical upper bound if a more continuous response scale were used [17,42],
but a cut-score on an observed discrete response scale would currently require analyzing
discrete data using continuous-data methods. This would provide a more conservative
estimate, which could be considered a hypothetical lower bound in contrast to the LRV-
scale’s upper bound. Although this approach has been frequently criticized, particularly
when ordinal scales have <5–7 categories [63–65], the LRV interpretation necessarily relies
on a distributional assumption (typically normality, particularly in SEM) that could be
violated just as easily as with observed variables. The bivariate normality of pairs of LRVs
can be tested against observed ordinal data when at least one of the variables has ≥3
categories [66], but there are no nonnormality corrections for normal-theory estimators that
could accommodate nonnormal LRVs, as there are for nonnormal observed indicators [67].
Arguably, assuming continuity of ordinal data rather than assuming their LRVs are normal
simply trades off one tenuous assumption for another [68], and the latter can have less
predictable consequences.

A promising avenue for future development can be found in the SEM literature
on this topic. The ω coefficient for estimating scale-composite reliability in CTT was
adapted using IFA parameters [48]—not only estimated variance components on the
LRV scale but also thresholds to account for the observed ordinal response scale’s role
in calculating a composite. As shown for each IFA example in the R syntax on OSF, G-
coefs can be calculated from IFA models simply by passing a fitted lavaan model to the
semTools::reliability() function, thus accounting for the ordinal response scale. The
bottom row of Table 2 shows that these G-coefs are more conservative than those on the
idealized LRV scale, yet they are not as affected by discretization as the G-coefs estimated by
treating the ordinal data as continuous. Analogous D-coefs (using absolute error), however,
have yet to be proposed. Doing so would allow researchers to utilize the advantages of the
LRV interpretation without sacrificing the ability to determine dependability when using a
(nonarbitrary) cut-score to make criterion-referenced decisions.

6. Conclusions

SEM is a flexible technique whose value has been successfully exploited to model
GT [14–16] and more recently to accommodate discrete scales of measurement [17,18]. This
paper has shown using real and simulated data how SEM can more fully model three
common types of GT design, so that both G- and D-coefs can be calculated from a single
SEM. The methods presented here can be extended to more complex GT designs. SEM
was shown to be potentially infeasible with certain PMD designs, but the limiting factors
would be irrelevant using (generalized) linear mixed models to estimate GT variance
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components. Finally, a clue about how to calculate D-coefs for cut-scores on an observed
discrete response scale was noted in the SEM literature on scale reliability [48], which
could potentially be extended to incorporate absolute-error components. The future of GT
research could benefit substantially from these explorations.
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