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Abstract: International large-scale assessments (ILSAs) provide invaluable information for researchers
and policy makers. Analysis of their data, however, requires methods that go beyond the usual
analysis techniques assuming simple random sampling. Several software packages that serve this
purpose are available. One such is the R Analyzer for Large-Scale Assessments (RALSA), a newly
developed R package. The package can work with data from a large number of ILSAs. It was designed
for user experience and is suitable for analysts who lack technical expertise and/or familiarity with
the R programming language and statistical software. This paper presents the technical aspects of
RALSA—the overall design and structure of the package, its internal organization, and the structure
of the analysis and data preparation functions. The use of the data.table package for memory
efficiency, speed, and embedded computations is explained through examples. The central aspect of
the paper is the utilization of code reuse practices to the achieve consistency, efficiency, and safety
of the computations performed by the analysis functions of the package. The comprehensive output
system to produce multi-sheet MS Excel workbooks is presented and its workflow explained. The
paper also explains how the graphical user interface is constructed and how it is linked to the data
preparation and analysis functions available in the package.

Keywords: large-scale assessments and surveys in education; complex sampling design; complex
assessment design; data analysis; R programming; code reuse; GUI programming

1. Introduction

The international Large-Scale Assessments and Surveys (ILSAs) are becoming increas-
ingly important for research and policy-making in education. Their methodology, however,
is rather complex, and the analysis of ILSAs’ data does not comply with the usual statistical
procedures, which assume Simple Random Sampling (SRS). Thus, a specialized software
for analyzing ILSAs’ data is needed, taking into account all the statistical complexities
(see the next section) that stem from their design. Several such software products exist.
The IDB Analyzer [1] is a software providing a user interface that interacts with SPSS [2]
and SAS [3] to perform the computations. Few packages for the R programming language
and statistical software [4] exist: intsvy [5], BIFIEsurvey [6], and EdSurvey [7]. All of
these applications take into account the issues for the analysis related to ILSAs’ design
complexities. The number of studies that cover them varies, as does the different types of
statistics they can compute.

Recently, a new R package for analyzing ILSAs’ data was released—the R Analyzer
for Large-Scale Assessments (RALSA) [8]. The package can work with data from all cycles
of a large variety of ILSAs. As of now, RALSA has the following functionality, which will be
extended in the future:

• Prepare the data for the analysis:

– Convert the SPSS data (or text in the case of the Programme for International
Student Assessment (PISA) prior to 2015) files into native R datasets;

– Merge the study data files from different countries and/or respondents;
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– View variable properties (name, class, variable label, response categories/unique
values, and user-defined missing values);

– Data diagnostic tables (quick weighted or unweighted frequencies and descrip-
tives for data inspection and hypothesis elaboration);

– Recode variables.

• Perform analyses:

– Percentages of respondents in certain groups and averages on variables of interest;
– Percentiles of continuous variables;
– Percentages of respondents reaching or surpassing benchmarks of achievement;
– Correlations (Pearson or Spearman);
– Linear regression, with the option for contrast coding for categorical variables;
– Binary logistic regression, with the option for contrast coding for categorical

variables.

RALSA brings the following benefits compared to other R packages:

1. RALSA brings support for a larger range of large-scale assessments and surveys sup-
ported by other available R packages. For example, the R package intsvy can work
with data from the Trends in International Mathematics and Science Study (TIMSS),
the Progress in International Reading Literacy Study (PIRLS), PISA, the International
Computer and Information Literacy Study (ICILS), and the Programme for the Inter-
national Assessment of Adult Competencies (PIAAC) [5]. RALSA brings support for
all cycles of the following ILSAs:

• Civic Education Study (CivED);
• International Civic and Citizenship Education Study (ICCS);
• International Computer and Information Literacy Study (ICILS);
• Reading Literacy Study (RLII);
• Progress in International Reading Literacy Study (PIRLS), including PIRLS Liter-

acy and ePIRLS;
• Trends in International Mathematics and Science Study (TIMSS), including

TIMSS Numeracy;
• TIMSS and PIRLS joint study (TiPi);
• TIMSS Advanced;
• Second Information Technology in Education Study (SITES);
• Teacher Education and Development Study in Mathematics (TEDS-M);
• Programme for International Student Assessment (PISA);
• PISA for Development (PISA-D);
• Teaching and Learning International Survey (TALIS);
• TALIS Starting Strong Survey (also known as TALIS 3S);

2. RALSA is built for user experience. All functions in the package have a clear and
parsimonious syntax. All package functions “recognize” the study design and apply
the pertinent statistical algorithms without requiring design specification by the user,
unless the user wants it. A unique feature in terms of user experience compared to
other R packages for analyzing ILSAs’ data is that it also brings a Graphical User
Interface (GUI), which adds convenience for the users, especially the non-technical
ones, and those who have limited experience with R. The GUI is written in R as well,
and does not rely on any external platform or programming language;

3. The package has the capability to convert SPSS data files, as they are provided by
the organizations conducting ILSAs, into native R data files. PISA files prior to its
2015 cycle were provided in the ASCII text format along with SPSS import syntaxes.
RALSA can convert these into .RData files as well. R has the capability of importing
SPSS and SAS files through packages, such as foreign [4], although occasionally,
some variables will be imported improperly. The availability of the data in the native
R file format provides greater convenience for the analyst. RALSA also imports the
user-defined missing values and assigns them properly as user-defined missing codes
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in the converted datasets. This is quite different from the basic handling of missing
values in R, which supports only one missing value type (NA), and from other packages
for analyzing ILSAs’ data. For more details, see Section 3.1;

4. All other R packages print the outputs as text directly in the R console. This is not
convenient for the analyst who has to copy the output and convert it into a tabular
output. The only exception is intsvy [5], where the output can be written into a very
basic comma-separated values file. Different from other R packages, RALSA brings a
comprehensive output system, which exports the results into an MS Excel workbook
with multiple sheets grouping different kinds of estimates together by type with cell
formatting (for more details, see Section 3.4). This feature is of great help for the
analyst, who can use the output tables directly in a publication;

5. The IEA IDB Analyzer is very convenient to use and has all of the features listed
above. However, it is not open-source and is a proprietary software with a restrictive
license. Although it is distributed for free, it actually uses SPSS and SAS to perform
the computations, and these come with a very steep price. It also works only under
MS Windows. RALSA is open-source and free of charge, and works on any operating
system where R can be installed.

All of the features listed above reflect the main advantage RALSA has over other soft-
ware packages for analyzing ILSAs’ data—a free and open-source tool, built for user
experience, which is the main advantage RALSA has over other solutions. RALSA also has
an accompanying website [9] with help pages. The help pages provide extensive and detailed
step-by-step guides and provide examples for each functionality that RALSA has, along with
examples using both the command line or the GUI.

The purpose of this technical article is to present the design of the RALSA package,
along with the workflow of its functions with a focus on the following aspects:

• The general internal organization of the package’s functions and their interdependence;
• The common internal structure of the analysis functions and the code they reuse from

common objects and functions;
• The use of the data.table package for speed and simplicity of the computations through

its capability to compute statistics by group with an internal sub-setting simultaneously;
• The structure and workflow of the output system;
• The GUI design, its structure and the way it is linked to the data preparation and

analysis functions.

The article presents illustrative examples with some of the functions of RALSA. It also
provides simplified code snippets to demonstrate the basic concepts used in building the
package’s functionality.

2. Background

ILSAs possess a complex methodology where data analysis requires methods different
from what basic statistics offers. There are two major design issues related to the analysis
of ILSAs’ data: sampling and assessment. ILSAs’ purpose is to draw inferences about
populations of interest [10]. SRS is traditionally used in social sciences to sample elements
from a population. It is, however, not applicable in ILSAs because of a number of operational
and statistical complexities. First, exhaustive lists of all students in the target population
may not exist to draw an SRS. Second, linking students to their schools and teachers would
not be possible. Third, it is not efficient in terms of organizing and conducting a study for
populations that can be quite dispersed [11]. This is why ILSAs use multistage stratified
cluster sampling where, first, schools are selected with a probability proportional to their size
(PPS sampling) within explicit and/or implicit strata, then intact classes with students in the
target population are sampled at random within each school. This is the common scenario
in studies conducted by the International Association for the Evaluation of Educational
Achievement (IEA), such as the Progress in International Reading Literacy Study (PIRLS)
(for more details, see [12], for example). PISA, conducted by the Organisation for Economic
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Co-operation and Development (OECD), takes a slightly different approach where schools
are sampled with PPS (with explicit and/or implicit stratification), and the number students
in the target population is sampled at random within each school regardless of to which
class they belong [13]. This concise description clarifies the main differences between SRS
and the sampling strategy used in ILSAs. The main difference is that SRS assumes equal
probabilities of selection, while ILSAs use PPS, i.e., unequal probabilities. Another difference
is that, with SRS, individual students are sampled from the entire population completely at
random, regardless of the school they belong to, while in ILSAs, entire clusters of students
within initially selected schools are sampled.

The assessment designs used in ILSAs are complex as well. The usual practice is to
collect data on all test items from all students. This can be rather inefficient with complex
constructs, especially when the study tests students on multiple constructs. For example,
PISA collects data on reading, mathematics, and science literacies [14], which are quite broad
content domains. PIRLS’ only construct is reading literacy [15], but this content domain is
very broad and versatile. In addition, besides the content domains, these studies also collect
data on different cognitive domains. To assess student achievement reliably and validly,
a large number of items is required. For example, PIRLS 2016 uses a total of 175 items to
estimate reading literacy for different purposes of reading and different comprehension
processes [16]. Administering all of the items to all of the students in the sample would take
a long time (both physical and psychological) and would result in poor student performance
on the items due to student fatigue [17]. Parsimonious, yet efficient, design is needed. Thus,
ILSAs use the so-called Multiple Matrix Sampling (MMS) of items where some students
take some items. Items are grouped into blocks, and blocks are rotated across a number of
booklets where every next booklet has a block in common with the previous booklet, so
that a link across booklets is ensured. In the newly developed Computer-Based Assessment
(CBA) delivery mode (e.g., in PIRLS), the logic is the same, although not individual items
in blocks, but complex tasks are constructed and grouped into task combinations. Every
task combination is linked with the next one through a common task [15]. This way, no
student takes all items/tasks, and no item/task is delivered to any of the students. This way,
a parsimonious and “short” design is ensured.

The parsimony of the sampling and assessment designs described above comes at the
expense of increased complexity and the necessity to use analytical methods other than
the ones found in statistical textbooks due to the consequences such designs have for the
estimation of population parameters and their standard errors. Sampling is not with equal
probability, and students are nested in classes (selected clusters) and schools; thus, sampling
variance in ILSAs will not be the same as with SRS. Unbiased or consistent estimation of the
sampling variance is achieved by using Jackknife Repeated Replication (JRR), as in PIRLS
and other studies, or Balanced Repeated Replication (BRR) with Fay’s modification, as in
PISA and other assessments and surveys. These are sampling replication techniques where
the sampled schools are coupled into sampling zones and each school within a zone is
assigned a replication indicator, which determines if a school’s weight shall be increased
or decreased. In studies using JRR, respondents in one of the schools in a zone receives
the weight doubled, and in the other, the weight is set to zero. In studies using BRR with
Fay’s modification, the decision about which school shall have its weight increased or
decreased for a given replicate is taken after applying a Hadamard matrix. The weights in
this case are not doubled, nor set to zero, but increased or decreased by 50%. Regardless of
the resampling technique (JRR or BRR), any population parameter is estimated using each
replicate, and the sampling variance is then calculated using special formula [11].

The estimation of the measurement variance is more complex. Given that not all
students take all test items, there are many missing data on student performance that are
missing by design. The traditional use of Item Response Theory (IRT) can derive test scores
with such a design. Although IRT can derive scores through Expected A Posteriori (EAP),
Multi-Group Expected A Posteriori (EAP-MG), Maximum Likelihood Estimation (MLE),
and Warm’s Weighted Likelihood Estimation (WLE), their variance estimation can be rather



Psych 2021, 3 237

biased [18]. Some of these are suitable for individual- and not for group-level proficiency
estimation [19], and they are inferior to the scaling methodology used in ILSAs [18,19],
which will be outlined rather briefly here. ILSAs use the so-called “plausible values”
(PV) methodology where student proficiency is treated as unknown and latent regression
population models are used [17]. The achievement items’ IRT parameters are estimated
using one-, two- or three-parameter logistic models (1PL, 2PL, and 3PL) for multiple-choice
items and a partial-credit model for the open-ended items. The item parameters are then
used together with the components extracted by Principal Component Analysis (PCA) from
the background data. Only components that account for 90% or more of the variance are
used in a process called “conditioning” to obtain the ability distribution. This way, a number
of groups is formed based on the student characteristics. The final scores are derived by
making five (as in PIRLS) or ten (as in PISA) random draws in the distribution of the group
to which each student belongs, that is, each student receives not just one, but several scores.
This is because the responses missing by design are imputed in the process, and hence,
the measurement variance in ILSAs is often referred to as “imputation variance”. For an
overview of the PV methodology, see [17–19], and for the actual implementation in PIRLS
and PISA, for example, see [20,21]. As a result, when using PVs in an analysis, any statistic
has to be estimated with each PV and then averaged.

The computation of the standard error of an estimate is computed taking the sampling
and measurement variance. When an estimate does not involve PVs, the standard error
equals the sampling variance. When PVs are involved, both the sampling and measurement
variances are used. The measurement variance is computed for a set of PVs using the full
weight and each of its replicates (see [21,22]).

Given all of the above, it is important to note that each study has its own implementa-
tion of the sampling and assessment methodologies and variance estimation techniques.
For example, although both PIRLS and the International Civic and Citizenship Education
Study (ICCS) use JRR for estimating the sampling error, they differ in the actual imple-
mentation. PIRLS uses “full” JRR, where each zone is jackknifed twice, each school in a
zone is first added with a double weight, and then, the weight is set to zero, resulting in
150 replicated weights [22]. ICCS, on the other hand, uses “half” JRR, where one school
receives a double weight, and the weight of the other one is set to zero, without switching
once more, resulting in 75 replicated weights [23]. Many other differences exist across the
studies in their computational routines, which is beyond the scope of this paper. For more
details, see the technical documentation of the corresponding study.

3. RALSA Internals
3.1. General Internal Organization of Functions in RALSA

Functions in the RALSA package are organized in files—one file per function. Each file
contains one function definition. However, a function’s file does not contain all the code and
data objects used in all the computations a function performs. Some of the core computations
a function performs are organized into a file of common functions and auxiliary objects
(common.r), and every time a function is executed, it looks for certain objects and functions
located in this file. This approach saves much time for development and prevents code
repetition, redundancy, and errors. More details on this can be found in the next subsection.

The package, as mentioned earlier, also brings a GUI. The GUI is built entirely using
the R shiny [24] package and some other R packages that add extra functionality to its
framework. The GUI is linked to the data preparation and analysis functions. When the
user interacts with the keyboard and the mouse to select folders, data files, and select and
move variables across the fields, the GUI prepares an internal representation of a calling
syntax to a function. In every step, internal checks of whether all conditions are satisfied
are performed, and decisions are made to display or hide certain elements from the user
and display warnings. As a result, from all user settings, a calling syntax is constructed
and passed to a function (data preparation or analysis) to perform the computations. Just
as the RALSA data preparation and analysis functions use common objects and functions in
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the “common.r” file, the GUI ui.r (contains the definitions of the interface objects) and the
server.r (instructions on how to build the application and render its elements, display,
and process data) also contain common objects and functions pertinent to the GUI. These
are used to repeat common operations, display objects and messages in the GUI, or even
select default values (see Section 3.5).

The first-time use of the package starts with converting the original data provided by
the organization into native .RData data files, which will be used further with any other of
the package functions. In the case of IEA and most of the OECD studies, the lsa.convert.data
function takes the SPSS (files are also provided in SAS file format; RALSA uses the SPSS
files) files in a folder, imports them, applies common operations and some transformations,
and saves them into .RData files with their original names. In case the data are from PISA
cycles prior to 2015, the data files are provided as ASCII text files with SPSS and SAS
import syntaxes. RALSA uses the text files and the SPSS syntaxes to read and convert the
text files in the native .RData format. The user may decide to convert the data from just
a few countries available in the folder instead of the entire database. This can be done
using the ISO argument, passing a vector of country ISO codes to it (fourth, fifth, and sixth
character in a file name). This is possible only for studies other than PISA where the data
for all countries are provided in one large file per respondent type, as opposed to files per
country and respondent type, as in other OECD studies and IEA studies.

Before saving the converted data files, the lsa.convert.data function attaches the
following attributes to the data:

• Study name (study)—the name of the study (e.g., PIRLS, PISA, ICCS, etc.);
• Study cycle (cycle)—the year when the cycle was conducted (e.g., 2016 for the PIRLS

2016 cycle);
• Respondent type (file.type)—whose respondent type data (e.g., student, teacher,

parent, etc.) is in the file.

In addition, it attaches the variable label as an attribute to each variable. The user
may decide to keep the user-defined missing codes for each variable; this is the default
option (the missing.to.NA argument is FALSE). At the end, the dataset is converted to a
data.table object and keyed by the country ID variable (see Section 3.3). The object in the
file has the same name as the file name.

Another important data preparation function is lsa.merge.data. It helps the user
merge data from different countries and respondent types. In doing so, it will prevent
the user from trying to merge file types that are not supposed to be merged. These checks
are performed per study. For example, teacher and student data in PIRLS can (and have
to be) merged together in order to use teacher data in an analysis, where the teacher
characteristics become attributes of the students. In ICCS, on the other hand, there is no
link between the sampled students and the sampled teachers; this is an issue related to the
sampling design of the study (see [25] for more details), and teacher data can be analyzed
on their own. The lsa.merge.data function recognizes the study and stops with a custom
error message if the user attempts merging file types that shall not be merged. When the
data are merged, the resulting object is written to a file. The object file.type attribute is
updated, adding together the respondent types from the different file types being merged.
This is very important, as the analysis functions will read and use the information stored in
this attribute to make decisions how the computations shall be performed depending on
the study’s design.

The functions’ arguments have unified names and follow the same logic; this makes
the user become easily acquainted with the functions’ syntax and apply the arguments
consistently regardless of which function is in use. Many of the arguments do not have to
be specified explicitly. Some of them have a fixed default value; for example, all analysis
functions have the include.missing argument with FALSE as its default value. Others
have a default value that is not fixed, i.e., it is dynamically defined based on the properties
of the data. More on this can be found in the next subsection.
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3.2. Structure of the Analysis Functions and Common Code Reuse

The structure and workflow of any analysis function is summarized in Figure 1.
As the figure shows, in many steps of the computational process, an analysis function calls
functions from the set of common functions and auxiliary objects located in the common.r
file. The common functions process the data or perform computations on them and return
the results to the analysis function.

Import data Perform checks / 
Stop on exceptions

Produce JK weight 
replicates*

Determine the study 
design, identify 

sampling variables

Remove unnecessary 
variables

Perform checks / 
Remove countries / 

Collect warnings

Compute raw 
statistics by country 
and split variables

Reshape results, 
compute variance 

components and SEs
Add table average

Add analysis 
information

Add model statistics**

Export outputs in MS 
Excel

Common functions
and objects

Print warning 
messages

Assemble outputs

* Only for studies using JRR
** Only for linear and logistic regression functions

Figure 1. Structure and workflow of an analysis function.

For example, when using the lsa.bench function to compute the percentage of stu-
dents reaching or surpassing a certain performance level, a vector of values for the bench-
marks needs to be specified in bench.vals. If left blank, the function will automatically
select all benchmark values specified in the study. In PIRLS, for example, these are 400
(Low International Benchmark), 475 (Intermediate International Benchmark), 500 (High In-
ternational Benchmark), and 625 (Advanced International Benchmark) [26]. However, not
all studies have the same benchmarks. ICCS has a different number of performance levels
in the different cycles. PISA has different values for the same performance levels in some
cycles. Thus, a common object is available in the common.r file (default.benchmarks).
If the user does not specify any values for the bench.vals argument (i.e., omits the ar-
gument) the lsa.bench function checks the study and cycle attribute of the data (see the
previous subsection), matches it against the default.benchmarks object to select the proper
benchmark values, and passes them to the bench.vals argument. As mentioned in the
previous subsection, this is the dynamic selection of default arguments: if the user does
not specify benchmark values, then default values will be determined for the study data in
the file or the object in the memory used for the analysis.

Another example of dynamic argument value selection is related to the sampling
variables for all analysis functions. The get.analysis.and.design.vars function is called
from an analysis function after the data are imported and initial checks are performed.
The function checks the attributes (study, cycle, and respondent type; see the previous
subsection) of the imported dataset and uses data stored in another common object
(design.weight.variables) to determine the correct sampling design variables: default
weights, JK zones, and JK replicate indicators (or the available BRR replicated weights in
the case of PISA or any other study where BRR design is used). Otherwise, if the user
explicitly specifies the weight variable, the analysis function will pass this weight directly,
but will still choose the right JK zone and replicate indicator variables (or the BRR replicated
weight variables for PISA and other studies with BRR design). Thus, the calling syntax
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for computing percentages of male and female students and their average overall reading
performance can look as simple as in Code Listing 1.

Listing 1: Example syntax for computing percentages and means.

lsa.pcts.means(data.file = "C:/ Merged/Merged_PIRLS _2016 .RData",
split.vars = "ASBG01",
PV.root.avg = "ASRREA")

The weight variable is not specified; as described above, it (and all other necessary
sampling variables) will be determined automatically. The definition of the PVs for the
overall reading achievement takes only the root of their name, ASRREA, and the function
will automatically include all PV variables (ASRREA01, ASRREA02, ASRREA03, ASRREA04,
and ASRREA05) in the computations. All estimates are computed by country (the country ID
variable is added automatically) and student sex (variable ASBG01). If no splitting variables
are specified, all statistics will be computed by country only, although the country ID
variable is not specified as split.vars. The syntax also does not specify an output file
name. In this case, all analysis functions will save an MS Excel file named Analysis.xlsx
in the current working directory.

Further, all variables from the imported data that are not relevant for the analysis are
removed. This does not only save space in the memory, but also reduces the processing
time because the functions (analysis or common) do not have to scroll through all variables
initially loaded from the full dataset. If the study uses JRR, the jackknifing replicates are
produced. Their number will differ, depending on the design. For example, in ICCS, the
number of replicates is 75 with the “half” method, while in PIRLS, the number is 150
with the “full” method, and RALSA will automatically produce them correctly, depend-
ing on the study in scope. These two last steps (removing unnecessary variables and
producing the replicates) are performed using the produce.analysis.data.table and
produce.jk.reps.data functions from the common.r file.

Similarly, when the raw statistics with the full weight in an analysis are computed,
a call from the analysis function to a function in the common.r will be made, passing
all necessary arguments to it. When the raw statistics are computed, these are passed
to another function in common.r to process them further. When using only background
variables to compute the means, for example, the raw computed statistics will be passed
to the reshape.list.statistics.bckg function. The raw statistics are organized in a list
where each component contains the estimates split by country ID, as well as all splitting
variables, if provided. The reshape.list.statistics.bckg function from the common.r
is called within an analysis function to change the shape of the tables, rename the columns,
and compute the sampling and imputation variance and the final standard errors. This
common function is called with certain arguments by all analysis functions where statistics
involving background variables are computed.

This approach is known as “code reuse” or “software reuse” and is not new: “Software
reuse has been practiced since programming began” [27] (p. 529). The purpose of code
reuse is to improve software productivity, quality, reliability, and safety [27,28], reduce the
development time and, hence, cost [29], and also provide a better maintainability [28]. At the
end, even R itself uses this approach through its repository of user-contributed packages
using the same idea—written once an R package functionality can be used elsewhere, even
in other packages. The implementation of code reuse in RALSA is not just copying and
pasting code fragments, but using pre-defined functions that are stored centrally and to
which all other functions have access. This reduces code repetition, redundancy, and errors.
Any of these common functions is written once and made available elsewhere. If any
changes or additions are needed, they are implemented once only without modifying all
data preparation and analysis functions.

A relevant question, however, would be why the functions for computing raw
statistics, such as linear regression coefficients or means, for example, are located in the
common.r file and not nested directly within the analysis function itself (lsa.lin.reg or
lsa.pcts.means, respectively) because they are used by these functions only. The locations
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of any function for computing the raw statistics is in the common.r file for convenience,
shorter and clearer analysis functions’ code, and for further developments of the package
that may need these. For example, the lsa.prctls function computes percentiles for
continuous variables (background or PVs), but the function performing the actual com-
putations is in the common.r file. The lsa.pcts.means computes the arithmetic average of
continuous variables. What if the lsa.pcts.means function needs to be extended in the
future, so that the user can choose the median as a measure of central tendency instead of
the arithmetic average? As we know from basic statistics, the median is the 50th percentile,
and wgt.prctl, written to estimate weighted percentiles and located in the common.r file,
can be used to compute the 50th percentile as a shortcut to estimate the median. Otherwise,
if the wgt.prctl function is nested directly into the lsa.prctls function, it would have
to be copied in the lsa.pcts.means file as well or a new function to be written, which
will create redundancy and create room for errors. The development of new functionality
within the package in future may use other common functions as well.

3.3. Using the data.table Package

RALSA relies heavily on the data.table package [30], not only for processing the
data, but also for computing the statistics, which is a distinctive feature of the package.
The data.table class inherits from the data.frame class and extends it. The data.table
object is very memory efficient and offers speed and easy-to-use syntax to subset data
and select and compute on columns by group [31]. The memory efficiency and speed are
provided by the internal mechanisms for modification by reference through shallow copies
instead of making a copy of the object, modifying it, and, then, overwriting the original
object as data.frame would do. Instead, data.table modifies the object by reference,
in place [32]. The general data.table syntax for the data.table package is [31] presented
in Listing 2.

Listing 2: General syntax for the data.table package.

DT[i, j, by]

where:

• DT is a data.table object;
• i subsets rows using certain criteria;
• j calculates on columns;
• by groups the results by unique values of variables passed to the argument.

Note that there are many other optional arguments than the ones presented in Listing 2,
which are just the basic ones. As mentioned above, statistics can be computed directly
through the data table syntax. This can be done by group and even while subsetting the
data. Let’s say we have merged PIRLS 2016 [33] student data for Bulgaria, Malta, and
Slovenia in an object named merged_PIRLS_2016 and we want to compute the number of
female and male students in the sample, but only for Bulgaria and Slovenia, not Malta. We
can achieve this using the syntax in Code Listing 3.

Listing 3: Example syntax for computing statistics with the data.table package.

merged_PIRLS_2016[IDCNTRY != "Malta", .N, by = .(IDCNTRY , ITSEX)]

Note how parsimonious the syntax is. We excluded rows for Malta in variable IDCNTRY
in i and computed the number of cases in j using the special symbol .N, a built-in variable
that holds the number of observations in a group [31], and the groups were defined by
the unique values of IDCNTRY (country ID) and ITSEX (student sex). Listing 4 presents the
results printed to the R console.

Listing 4: Example output for computing statistics with the data.table package.

IDCNTRY ITSEX N
1: Bulgaria Boy 2162
2: Bulgaria Girl 2119
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3: Slovenia Boy 2249
4: Slovenia Girl 2250

This is a very simple example for a very powerful feature of the data.table package.
The same approach, although with a different implementation, was used for all analysis
functions. The syntax for another example that computes the weighted arithmetic mean for
two continuous variables (“Student Confidence in Reading” and “Students Like reading”
scales) by student sex, this time excluding Bulgaria instead of Malta, is presented in Code
Listing 5.

Listing 5: Example syntax for computing statistics with the data.table package.

merged_PIRLS_2016[IDCNTRY != "Bulgaria", lapply(.SD , function(i) {
weighted.mean(x = i, w = TOTWGT , na.rm = TRUE)
}), by = .(IDCNTRY , ITSEX), .SDcols = c("ASBGSCR", "ASBGSLR")]

The syntax subsets the cases, taking out the cases for Bulgaria in IDCNTRY. Further, it
loops over columns ASBGSCR and ASBGSLR (the two scales) through lapply and computes
the weighted means (using the total student weight—TOTWGT) for each one of them. Note
the .SD special symbol: it instructs data.table to take a Subset of Data. It is related to the
.SDcols argument, which specifies which columns to be subsetted [31], so all statistics are
computed just for these two scales, ASBGSCR and ASBGSLR. The weighted.mean function
is used to compute the statistics using the total student weight (TOTWGT). The result is
presented in Listing 6.

Listing 6: Example output for computing statistics with the data.table package.

IDCNTRY ITSEX ASBGSCR ASBGSLR
1: Malta Boy 9.629868 10.086711
2: Malta Girl 9.877171 10.761458
3: Slovenia Boy 9.897542 9.165084
4: Slovenia Girl 10.342967 9.881006

The above example is an oversimplification of the actual function in RALSA to compute
the weighted average for variables using the full weight and all of its replicates in one single
run. The examples above demonstrate the utility of the data.table. It is heavily used
in RALSA for its speed and memory efficiency. The latter is especially important because
of the large sizes of the data files where multiple countries and respondent types may
be merged. The concise and simple syntax is an additional advantage. This subsection
presented only some of the features RALSA uses from the data.table package. A full
presentation of the data.table features goes beyond the purposes of this article. Many
other examples demonstrating the power of the package can be found in the data.table
vignettes available for it and numerous tutorials available on the Internet.

3.4. Structure and Workflow of the Output System

Traditionally, R prints the results to the console. This is not very convenient for the
analyst who needs a tabular output that can be easily modified and laid out in a publica-
tion. RALSA has a comprehensive output system to export the final results to an MS Excel
workbook with multiple sheets containing estimates and other information related to the
analysis. The export.results function is located in the common.r file (for an overview
of the common objects and functions, see Section 3.2). The function is called by all analysis
functions. Regardless of what the analysis type is, the function exports the results, adding
row, column, and cell formatting, and freezes the top row, in a consistent manner. Each
output MS Excel workbook has two or more sheets. The first one always contains the results.
Another sheet contains the information about the analysis—which data file or memory data
object was used, which countries were in the data, which is the study, which weight variable
is applied, how many replicated weights, etc. In addition, the workbook also contains a
sheet with the calling syntax for the analysis. It can be used to reproduce the analysis if the
data changes, e.g., updated datasets or variables were recoded. In the case of linear and
logistic regression, the function also adds a sheet with model statistics.



Psych 2021, 3 243

To achieve all this, RALSA relies on the openxlsx package [34]. The package provides
many functions to shape, format, add content, and write them to MS Excel files. The func-
tion is called within an analysis function after all statistics are computed and starts with
identifying which types of outputs (estimates, model statistics, and analysis information
are available in the calling environment of the analysis function). It creates a workbook
object and adds a sheet for each type of output. Then, it identifies the different types of
columns (e.g., percentages, means, correlation coefficients, standard errors, p-values, etc.)
for each sheet and applies formatting to rows and columns—background color, font color,
number/text type, decimal points, and column widths. The function then writes all the
relevant data objects to the sheets and, finally, exports the results to a file on the disk.
By default, the MS workbook is opened in the default spreadsheet program immediately
after it is exported. If RALSA is used in command line mode, the user may omit specifying
the file name for the output. In this case, the analysis function will write the MS Excel file
under the generic name “Analysis.xlsx” in the current R working directory. If RALSA is used
via the GUI (see the next subsection), the analyst must specify a file name.

A partial screenshot of the output from the percentages and means analysis using the
code from Listing 1 is presented in Figure 2.

Figure 2. Sample MS Excel output.

The MS Excel output from above can be used to produce a graph. Future versions of
RALSA will also include the automatic production of graphs, which will be embedded into
the MS Excel output files.

3.5. Constructing and Linking the GUI with the Functions

Traditionally, R is used in command line mode. Several R packages are available to
provide a means for constructing the GUI using different frameworks. RALSA uses the shiny
package [24]. shiny is a web application framework for R, a wrapper for different web
technologies that makes creating statistical web applications easy. RALSA uses some other
additional R packages that work with shiny to add more functionality to the GUI. This
subsection provides an overview of how the GUI is constructed and operates. The main
components are presented and explained here.

shiny is intended for developing statistical applications for the web. Statistical ap-
plications created with shiny can be executed on a local computer as well, and RALSA
uses this feature to provide a GUI in the browser. Each shiny application has two parts.
The user interface object definitions and structure of the web applications are stored in
ui.r file. The instructions on how to build the application, render its components, process
data, and display results are stored in a server logic file server.r. shiny is well known
for its utilization of the reactive programming paradigm. It achieves this through the use
of reactive values (i.e., data) and reactive events. It also uses observers to observe events
and update reactive values or rendered element in the application. Events can be user
input or a change in reactive values based on certain conditions [35]. The RALSA GUI uses
these techniques to process the imported data and define new reactive objects, which store
the user input actions. This provides a very flexible approach towards defining a system
call containing the syntax to be passed from the GUI to the data preparation and analysis
functions. These occasions will be mentioned further in this subsection.
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Usually, a shiny application has statistics computation functions (and even data)
added to the server part. RALSA does not add the analysis and data preparation to the web
application, but uses them directly once the package is loaded in R, looking directly in
the package search path and namespace. There are, however, some common objects and
functions that are relevant for the application internal flow control, defining default values,
performing checks, and dynamically displaying messages. These objects and functions are
similar to the ones in common.r, but relevant to the GUI only. For example, when the user
loads a data file in the GUI, the GUI uses common functions to check the name and cycle of
the study, as well as the respondent type stored as attributes of the dataset (see the expla-
nations on these in Section 3.1). The GUI will then use these to render them on the screen
once the data are loaded, so the user is informed which study, cycle, and respondent types
the file contains. Another example is how the PVs are displayed in the tables of available
variables and tables with user selection for different fields pertinent to a specific analysis
type. The GUI uses a common object with the list of all PVs available in all studies. When the
data are loaded, collapse.loaded.file.PV.names reads the all.available.PVs object
containing the roots of the PVs (e.g., overall reading achievement PVs are ASRREA01, AS-
RREA02, ASRREA03, ASRREA04, and ASRREA05, and their root is ASRREA). The function will
then modify the list of variables and their labels, replacing an entire set of PVs with its root
name, and a variable label will be attached to it, showing how many PVs are related to this
PV root name. The PV names and their labels will be removed from the list of variables.

The GUI handles errors and exceptions. For example, if the user tries to add a back-
ground variable in a panel that is designated for PV root names only, the GUI will display a
warning message and will hide all further elements from the GUI such as the buttons for
defining the output file name and executing the syntax to prevent the user from making a
mistake. Similarly, if the user decides to add more than one weighting variable, the GUI
will automatically remove the additional weighting variable(s), leaving only one in the
panel, and will pop up a warning message. This is achieved through reactive values and
observers, which handle such unwanted behavior on the user side. However, the major
use of reactive values and observers is to control the flow of the entire tab in an application.
For example, when the user opens the “Percentiles” analysis tab for the first time after
loading the interface in the browser, the tab displays only the button to choose the data
file. After a data file is loaded, the panel with available variables, the panels for choosing
different types of variables (splitting, background continuous, PVs, and weights), and the
selection buttons will be displayed. No other elements—input field for the percentile values,
shortcut method check box, and button for defining the output file name—will be displayed
until the user chooses either background continuous variables or PVs. After the user selects
variables to compute percentiles for, the GUI will display the aforementioned elements,
but no other until the output file name is defined. If the user removes the selected variables,
all of the aforementioned elements, except for selecting variables, will be removed from the
GUI. These behaviors are also achieved through reactive values and observers. Depending
on the content of the reactive values (blank or not) for the selected variables’ objects, which
change upon user selection, an observer notifies the server to hide or show certain elements.
This way, the entire flow of setting an analysis (or data preparation) by the user is monitored,
and the GUI prevents misspecification of the analysis.

Traditionally, the shiny applications display the results in the user interface as ta-
bles and graphs. Any function (data preparation or analysis) RALSA provides, however,
writes the outputs in MS Excel workbooks on the local drive. Thus, the RALSA GUI us-
ing shiny takes a different approach. When the user makes or changes settings for an
analysis (or data processing) function in the GUI, the selections are captured into reactive
values, which are updated every time the user modifies the analysis settings in the GUI.
For example, the names of the selected splitting variables are stored in the reactive values
object. The events of adding variable names to or removing them from the list of splitting
variables are observed all the time. Every time the user adds or removes splitting variables
to the list, the reactive object containing the variable names is updated. The names of the
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selected splitting variables are passed to a reactive expression. Reactive expressions in
shiny are normal expressions wrapped into reactive context whose result will change over
time [24]. The reactive expressions for the syntax compose an expression for calling a data
preparation or an analysis function and are updated in real time, following the user actions.
Once the user satisfies all conditions to specify an analysis, the GUI will render the syntax
in a read-only text field in the GUI, and an “Execute syntax” button will appear in the GUI.

The final step is to pass the composed syntax to R for execution. When the “Execute
syntax” button is pressed, the server will trigger an event handler, which will, in turn, parse
the reactive expression for evaluation to R. This step also includes rendering console output
directly in the GUI. The console in the GUI is a text output field, whose appearance is also
triggered by pressing the “Execute syntax” button. The progress messages are printed in
the GUI console using the html function from the shinyjs package [36]. When a new line
is appended to the output, the GUI console automatically scrolls down. This feature is
very helpful for the user, who does not have to switch to R to follow the progress of the
operations through the messages printed in the console.

When the package is loaded, a menu is displayed offering the user to start the GUI
immediately. Pressing 1 and Enter from the keyboard does so. Alternatively, if the package
is already loaded, the user can start the GUI by executing the command in Listing 7.
A partial screenshot of the GUI with the settings for the percentages and means analysis
equivalent to the code is presented in Figure 3.

Listing 7: Syntax for starting the GUI.

ralsaGUI ()

Figure 3. Sample analysis with RALSA using the GUI.

4. Summary and Discussion

A number of software packages for analyzing ILSAs’ data exist. This article presented
RALSA, a newly developed R package for analyzing ILSAs’ data. The package can analyze
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data from various studies using complex sampling and assessment designs. The package
was built for user experience and brings a number of features that help even the analysts
without technical skills to analyze ILSA data. The package has easy-to-use syntax, automatic
recognition of the study design and application of the proper computations, comprehensive
output export in an MS Excel workbook, and a GUI for the ease of the analyst.

The article presented the technical aspects of RALSA and its design. The package
was designed on the principle of reusing code for common operations, shared across
multiple functions to avoid code repetition, redundancy, and errors. The organization and
the entire workflow of the package lay on this principle. The analysis and data preparation
functions reuse common functions and objects to perform certain operations consistently
and safely, regardless of which study’s data are used in an analysis. Besides these benefits,
this design also brings one more big advantage—future features can be added to RALSA
more consistently, and much faster, compared to the common practice of writing new
functionality from scratch. The implementation of generic components may require an
investment, which can pay off in the long run through their reuse, which, in turn, enhances
the quality of products by using fully tested and debugged software [37]. The advantages of
this approach will allow RALSA to grow in the future, adding more studies using complex
sampling and assessment designs, as well as more analysis types, by reusing common objects
and functions. Suggestions for adding support for new studies (national or international)
are welcome. Such was the case of the OECD’s PISA for Development study (PISA-D),
which was added after a request from a researcher had been made almost immediately after
the first release of the package. Suggestions for adding new analysis types or the addition
of features to the existing ones are welcome as well.

The motivation to develop, adapt, and reuse code, however, can go beyond one’s
own needs [28], that is, code can be developed and shared with the rest of the software
developers for subsequent reuse in other software projects. At the end, “Code reuse is a
form of knowledge reuse in software development, which is fundamental to innovation in
many fields” [37] (p. 180). This relates to faster and better development of new software in
the future. For example, a study from Sojer and Henkel [28] shows that the main benefits
Open Source Software (OSS) developers see in code reuse are efficiency and effectiveness.
RALSA also uses this approach for faster and safer development by borrowing the function-
ality from other R packages, as shown earlier in the paper. RALSA is an OSS project as well,
just as R and the rest of the contributed packages’ R repository, and is licensed under the
General Public License (GPL) v2.0, which permits other developers to reuse its code in
their work, after complying with the conditions set in the license agreement.
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Abbreviations
The following abbreviations are used in this manuscript:

1PL One-Parameter Logistic model
2PL Two-Parameter Logistic model
3PL Three-Parameter Logistic model
BRR Balanced Repeated Replication
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CBA Computer-Based Assessment
EAP Expected A Posteriori
EAP-MG Multi-Group Expected A Posteriori
GPL General Public License
GUI Graphical User Interface
ICCS International Civic and Citizenship Education Study
IEA International Association for the Evaluation of Educational Achievement
ILSAs International Large-Scale Assessments and surveys
IRT Item Response Theory
JRR Jackknife Repeated Replication
MLE Maximum Likelihood Estimation
MMS Multiple Matrix Sampling
OECD Organisation for Economic Co-operation and Development
OSS Open-Source Software
PCA Principal Component Analysis
PIRLS Progress in International Reading Literacy Study
PISA Programme for International Student Assessment
PPS Probability Proportional to Size
PVs Plausible values
RALSA R Analyzer for International Large-Scale Assessments
SRS Simple Random Sampling
WLE Warm’s Weighted Likelihood Estimation
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