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Abstract: This paper presents a novel framework to enable automatic re-training of the supervisory
powertrain control strategy for hybrid electric vehicles using supervised machine learning. The aim
of re-training is to customize the control strategy to a user-specific driving behavior without human
intervention. The framework is designed to update the control strategy at the end of a driving task.
A combination of dynamic programming and supervised machine learning is used to train the control
strategy. The trained control strategy denoted as SML is compared to an online-implementable
strategy based on the combination of the optimal operation line and Pontryagin’s minimum principle
denoted as OOL-PMP, on the basis of fuel consumption. SML consistently performed better than
OOL-PMP, evaluated over five standard drive cycles. The EUDC performance was almost identical
while on FTP75 the OOL-PMP consumed 14.7% more fuel than SML. Moreover, the deviation from
the global benchmark obtained from dynamic programming was between 1.8% and 5.4% for SML
and between 5.8% and 16.8% for OOL-PMP. Furthermore, a test-case was conducted to emulate a
real-world driving scenario wherein a trained controller is exposed to a new drive cycle. It is found
that the performance on the new drive cycle deviates significantly from the optimal policy; however,
this performance gap is bridged with a single re-training episode for the respective test-case.

Keywords: machine learning; powertrain control; automatic re-training; hybrid electric vehicles;
dynamic programming; transmission; energy management

1. Introduction

In the late 1970s, the European Union (EU) established the link between air quality and automotive
emissions, thereby setting in motion policies to reduce air pollution. In 1992, the Euro norm for
passenger cars was introduced that set a ceiling for concentration of pollutants [1]. These norms
are made more stringent with time [2] and enforces companies to adopt more efficient automotive
powertrains. This can be illustrated with the growth in hybrid electric vehicle (HEV) market share
and the estimated increase in sales over the next decade [3]. In line with the efforts to improve overall
powertrain efficiency, significant strides have been made in transmission development. As a result,
the continuously variable transmission (CVT) with a steel pushbelt is predicted to achieve an efficiency
of 97% [4].

Based on these automotive trends and the superiority of HEV topology P2 over P1 [5], a P2 plug-in
hybrid electric vehicle (PHEV) with a CVT is considered as the system, wherein an electric motor (EM)
is directly connected to the drive shaft while the internal combustion engine (ICE) is connected in
parallel via a clutch, depicted in Figure 1. An energy source, in this case a battery (BAT), supplies
power to the EM. The combined power from the EM and the ICE is transmitted by the CVT to the
wheels, with an intermediate speed reduction through a fixed differential gear. The addition of an
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EM introduces a torque-split control variable that is strongly inter-coupled with the control of the
transmission. Strategic control of the torque-split, transmission gear ratio, clutches, engine on/off, etc.,
can reduce the combined energy consumption of the EM and ICE. Several strategies exist that seek to
minimize this energy consumption, and these strategies are reviewed in Section 1.1.

Clutch

CVT

BAT

EMICE

To

Wheels

Figure 1. Schematic of a P2 hybrid layout with a CVT.

1.1. Literature Review

The clutch in the P2 configuration disengages the ICE from the powertrain to reduce engine drag;
however, it is not considered as a control variable in this study. The clutch is assumed to be activated
when there is no demand for ICE power and while activated the ICE is assumed to be idling. Therefore,
in this study, only the gear ratio and torque split are considered as control variables and the state of
charge of BAT (ζ) is considered as the state of the system.

Accounting for the system dynamics, boundary conditions, constraints on states and control
spaces, the two-point boundary value problem can be solved using dynamic programming (DP)
that guarantees optimality through an exhaustive search of all control and state grids based on the
Bellman’s principle of optimality [6,7]. With respect to the considered system, this implies that, for an
a priori drive cycle with known boundary conditions, the optimal gear ratio and optimal torque split
can be found offline using DP, thereby serving as a benchmark for all other control strategies. This
optimal policy is drive cycle dependent, thereby rendering DP unsuitable for online implementation [8].
Online-implementable control strategies exist; however, they are sub-optimal and generally decouple
the control variables. Therefore, these online implementable control strategies are reviewed separately
as gear ratio control for CVTs in Section 1.1.1 and torque split control in Section 1.1.2.

1.1.1. Gear Ratio Control

CVTs offer a wide range of gear ratios. The classical optimal operating line (OOL) strategy is
found to be the most economical method for the conventional drive-train [9]. Subsequently, a modified
optimal operating line (M-OOL) strategy that accounts for the CVT system loss is shown to marginally
improve over the OOL [10]. A similar method using the equivalent consumption of the electric energy
to fuel energy is used to build a hybrid optimal operation Line (H-OOL) [11]. Apart from these standard
rule-based methods, another method uses sub-optimal feedback controllers to approximate the optimal
control policy and achieves almost optimal performance at a substantially reduced computational
effort [12].

1.1.2. Torque Split Control

A comprehensive review of torque split control strategies is given in [13]. Common heuristic
based control strategies can be divided into rule-based [14] and fuzzy-logic approaches [15–17].
Fuzzy-logic based approaches are preferred for their robustness and suitability to multi-domain,
nonlinear, time-varying systems such as PHEVs [13]. Model predictive control (MPC) methods are
also found to be computationally efficient for online implementation [18,19]. However, MPC is
heavily dependent on the prediction accuracy and therefore online optimization methods based on
Pontryagin’s minimum principle (PMP) are preferred [20,21]. An added advantage of PMP is that it is
governed by only one costate variable [22]. Similar control strategies, like equivalent consumption
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minimization strategy (ECMS) first introduced in [23], utilizes the efficiency of the battery and the
operating mode to determine the equivalence factor. This ECMS was adapted to PMP [24] and
a comparative study with DP was done in [25]. In principle, a good estimation of the costate or
equivalence factor can result in near optimal performance [26,27] and therefore online optimization
methods are preferred to heuristics [28].

Meanwhile, machine learning (ML) techniques have gained popularity for their ability to
control complex tasks by deriving patterns or rules from a data-set or through experience [29,30].
These techniques have also been extended to automotive applications, for example, drive cycle
prediction [31], drive cycle recognition [32], training the torque split controller from DP using
supervised machine learning (SML) [33], reinforcement learning (RL) for power distribution between
the battery and the capacitor [34], etc. In certain tasks, controllers trained using ML have outperformed
the controllers based on classical control theory [35].

In the case of supervisory control strategies for an HEV, certain learning based strategies are shown
to be comparable to the commonly used control strategies [31]. For continuous-spaces, the actor–critic
method was used for the power management in a PHEV [36]. A qualitative study on RL techniques on
HEVs and PHEVs shows potential for RL controllers to replace rule based controllers [37]. Similarly,
learning based techniques have been used to train neural networks to predict the driving environment
and generate an optimal torque split, achieving fuel savings [33]. However, further improvement can
be made by customizing the strategy to a specific driving behavior as driving behavior can influence
vehicle fuel consumption [32,38]. This driving behavior could be based on the geographic-location,
traffic congestion, personal style, etc. In practice, automotive companies offer driving modes such as
eco, sport, normal, etc., to address these driver preferences but cannot fully encapsulate the driving
behavior. Therefore, the potential of ML can be exploited to bridge the gap to the global optimal
without human intervention and thus forms the basis of this research.

Research Question: How can ML be incorporated into supervisory powertrain control in order to
adapt to a specific driving behavior?

1.2. Objectives

Apart from the main objective of minimizing overall energy consumption, ML can be extended
to improve upon existing practices. In the existing practices for HEVs and conventional powertrains,
the control strategy is tuned by experienced calibration engineers through iterative real-time vehicle
tests (calibration time) before online implementation, resulting in a strategy that caters to the average
driver. Therefore, the objectives (O1 and O2) of the study are to combat the drawbacks of conventional
practices, i.e., calibration time and the inability to customize the control strategy to a specific driver.
Furthermore, as suggested in literature [37], RL methods can improve fuel economy when compared
to the rule based methods. However, these RL techniques come at the cost of learning time and this
forms the third objective (O3), wherein the learning time must be minimized:

• O1: customize the control strategy to a specific driver,
• O2: reduce the time consumed for calibration,
• O3: improve learning efficiency.

In order to address O1, the controller must be able to account for the driver behavior. In this
study, the vehicle velocity and its acceleration are considered as a representation of the driver behavior.
In practice, the throttle position is considered; however, with a backward facing model, it is replaced
with vehicle acceleration. In order to address O2, a learning algorithm must be present to adapt to this
driver behavior. Several algorithms are available that can learn in real-time or from past data and are
discussed in Section 1.1. Real-time learning algorithms like RL require an exploration phase (trial and
error) to determine the optimal control respective to the vehicle state, which suggests that it needs to
repeatedly encounter identical vehicle states in order to determine the best possible control. However,
real-world driving will seldom encounter the identical vehicle states, i.e., identical combination of
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velocity, acceleration, state of charge, etc. Hence, real-time learning solutions could require thousands
of kilometers of driving in order to learn a good control strategy. Objective O3 is to improve learning
efficiency thereby reducing training time. In order to address O3, it must be understood that for a
given driving trajectory, with boundary conditions, there exists an optimal control policy. Therefore,
utilizing this optimal control policy for training would reduce the training time drastically, as there is
no requirement of an exploration phase. This would entail that the training occurs after the driving
task is completed, in order to find and learn the optimal control policy.

1.3. Contributions

In this paper, a framework is presented that consists of three segments; in segment 1, the route
planner analyzes the drive cycle and the end-point condition for the state of charge (ζ) is derived.
Under the assumption that the drive cycle is representative of the driving behavior, O1 is addressed.
In segment 2, based on the end-point condition on the state of charge (ζ f ), DP finds an optimal control
policy for the a priori drive cycle. Finally, in segment 3, the input parameters from segment 1 and the
optimal control policy from segment 2 are used to train a controller using SML algorithms. The absence
of human intervention to learn a strategy that addresses O2 and utilizes the optimal control policy that
addresses O3.

This trained controller is validated by comparing its performance in terms of fuel consumption,
to the global optimal solution derived from DP and an online-implementable control strategy based
on literature that uses a combination of OOL and PMP. It should be noted that DP in this study refers
to the approximate dynamic programming, wherein the state and control spaces are discretized.

Organization: The paper is organized as follows, Section 2 describes the mathematical modeling
of the system. Section 3 formulates the control problem and introduces the proposed framework to
solve the problem. Section 4 elaborates on the experimental setup, discusses the results, and presents a
test-case. Finally, Section 5 concludes this study and suggests future propositions.

2. Modeling of the System

In this section, the HEV powertrain components are described and the energy flow illustrated
in Figure 1 is mathematically modeled. The system is modeled as backward quasi-static, which
approximates the system to be static at a given time instance, depicted in Figure 2. Only longitudinal
dynamics of the vehicle are considered, and it is assumed that the vehicle only moves forward or is
stationary. The equations are taken from [39] and the parameter values are given in experimental design
setup is Section 4. Energy losses within each component are taken from manufacturer specifications
or modeled from test-bench data.
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Figure 2. Model overview (DC—Drivecycle, WH—Wheel, FD—Fixed differential, CVT gearbox,
ICE—Internal combustion engine, EM—Electric motor, BAT—battery).
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Input parameters: The input to the system is the drivecycle, specifically the vehicle speed and
the vehicle acceleration, recorded at 1 Hz. To physically achieve this acceleration at a given velocity,
the resisting forces must be equal to the driving force applied by the wheel on the road. The resisting
forces taken into account are aerodynamic drag (Fa), rolling resistance (Fr), gravity (Fg) and inertia (Fi),
given respectively by Equations (1)–(4):

Fa =
1
2
· ρ · cd · A f · v2 (1)

Fr = mv · g · µr · cos(α) f or (v > 0) (2)

Fg = mv · g · sin(α) (3)

Fi = mv · (1 + mr) · v̇ (4)

where ρ is the density of air, cd is the aerodynamic coefficient, A f is the frontal surface area, v is
the vehicle speed, mv is the mass of the vehicle, g is the acceleration due to gravity, µr is the static
rolling coefficient, α is the road inclination, mr is the mass of rotating parts, and v̇ is the acceleration of
the vehicle.

Wheel: The driving force (Fw) required at the point of contact of the wheel with the road is the
sum of the resisting forces. Subsequently, the torque of the wheel axle is calculated as a factor of the
wheel radius. The wheel speed and wheel acceleration can be calculated from the vehicle speed and
the vehicle acceleration respectively, as shown in Equations (6) and (7):

Fw = Fa + Fr + Fg + Fi

τw = Fw · rw (5)

ωw =
v

rw
(6)

ω̇w =
v̇

rw
(7)

where τw is the torque at the wheel axle, rw is the radius of the wheel, ωw is the rotational speed of the
wheel, and ω̇w is the rotational acceleration of the wheel.

Differential: The fixed differential factors in the fixed gear ratio, resulting in the required torque
and rotational speed at the secondary pulley:

τs =
τw

γ f d
(8)

ωs = ωw · γ f d (9)

where γ f d is the ratio of the fixed differential gear, τs is the torque at the secondary pulley and ωs is
the rotational speed of the secondary pulley.

Gearbox: The gearbox used in this study is a push-belt CVT type P920 [40], with an under-drive
ratio of 0.416 and an over-drive ratio of 2.149. Transmission of speed and torque from the secondary
pulley to the primary pulley is dependent on the selected gear ratio; this relation is shown in
Equation (11). The loss in transmission of power is attributed to the mechanical loss and pumping
loss, modeled from experimental data [40]. An example of the mechanical loss is illustrated in Figure 3
for seven different gear ratios for the vehicle speed of 40 kmph. These losses are measured at the
test-bench for the full range of gear ratios at various vehicle speeds and stored in a lookup-table:

τp = τs · γg + τlo (10)
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ωp =
ωs

γg
(11)

where τp is the torque at the primary pulley, γg is the selected gear ratio of the CVT, τlo is the torque
loss within the CVT that is the sum of the mechanical and pumping losses, and ωp is the rotational
speed of the primary pulley.

0 100 200 300

Torque at primary pulley [Nm]

0

20

40

60

80

100

120

T
o
rq

u
e
 l
o
s
s
 [
N

m
]

CVT losses at 40kmph

0.416

0.600

0.775

1.000

1.291

1.665

2.149

Gear ratio (R
p
/R

s
)

Figure 3. CVT mechanical loss at vehicle speed of 40 kmph [40].

Torque split: The torque at the primary pulley of the CVT is the combined torque delivered by the
EM and ICE:

τp = τe + τm (12)

where τe is the ICE torque and τm is the EM torque
Engine: The ICE is a 1.6 L, 82-kW unit producing a maximum torque of 143-Nm and is taken from

the Peugeot 206 model year 2005. The instantaneous ICE torque and speed are used to determine the
fuel consumption from the brake specific fuel consumption (BSFC) map, depicted in Figure 4. The BSFC
map expresses the fuel consumed in [g/kWh] that is taken from the manufacturer’s specification and
is converted to [g/s] using Equation (13):

ṁ f =


τe ·ωe · BSFC(τe, ωe)

3600 · 1000 if τe > 0

m f ,idle if τe ≤ 0
(13)

where ṁ f is the instantaneous fuel mass flow in [g/s], BSFC is the fuel consumed in [g/kWh], τe is the
ICE torque, ωe is the ICE rotational speed, and m f ,idle is the fuel consumption at idling.
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Figure 4. Engine BSFC map.

Electric motor: The 30-kW permanent magnet EM is taken from the 1999 Toyota Prius PHEV
(Aichi, Japan). The efficiency of the EM (ηm(τm, ωm)) can be determined from the efficiency map in
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Figure 5 and the output power of the battery (Pb) can be calculated as in Equation (14). The data for
the efficiency map are taken from test bench measurements [41]:

Pb =


τm ·ωm · ηm(τm, ωm) generating

τm ·ωm
ηm(τm, ωm)

motoring
(14)
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Figure 5. Motor efficiency map [41].

Battery: The 288-V and 6-Ah nickel metal hydride (NiMH) battery pack is taken from the Toyota
Prius 2000 model. It is modeled as a voltage input with an internal resistance for simulation and as an
equivalent resistance circuit to achieve convexity in the Hamiltonian. The test bench measurements
from the Insight battery pack are scaled up to the Prius battery pack [42]. The coulombic efficiency (ηc)
is assumed to be 0.905 for charging and discharging. The current within the battery can be calculated
from the output power of the battery, and is given in Equation (15):

Ib =

(
Uoc −

√
U2

oc − 4 ·Ω · Pb

)
· ηc

2 ·Ω (15)

Subsequently,

ζ(t) = ζ(t− 1)− Ib
Q0 · 3600

, (16)

where Ib is the battery current, Uoc is the open circuit voltage, Ω is the internal resistance of the battery
circuit, Pb is the power output of the battery, ηc is the coulombic efficiency of the battery, ζ is the state
of charge, t is the time instance, and Q0 is the nominal battery capacity.

With the system modelled, the next section describes the formulation and solution of the
control problem.

3. Methodology

In this section, the control problem is formulated in Section 3.1. Subsequently, the solution for
this control problem using the proposed SML framework is described in Section 3.2. In order to
evaluate the performance of the proposed SML framework, conventional solutions such as DP is
elaborated upon in Section 3.3 and an online implementable control strategy OOL-PMP is introduced
and described in Section 3.3.
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3.1. Control Problem

The objective of the control problem is to minimize energy consumption over the drive cycle,
while satisfying the physical constraints of the system. Considering the practical application of a
PHEV, the boundary conditions for state of charge (ζi,ζ f ) is fixed for a given drive cycle and the fuel
consumption (m f ) is minimized:

J =
∫ t f

t0

ṁ f dt (17)

where t0 is the initial time and t f is the final time.
The control problem can be formulated as:

min
x,u

J(x, u)

subject to

h1 := ẋ(t)− f (x(t), u(t), t) = 0

h2 := ζi − ζ(t0) = 0

h3 := ζ f − ζ(t f ) = 0

h4 := γg,min − γg(t0) = 0

g1,2 := γg,min ≤ γ(t) ≤ γg,max

g3 := Pe(t)− Pe,max ≤ 0

g4,5 := ωe,min ≤ ωe(t) ≤ ωe,max

g5,6 := Pm,min ≤ Pm(t) ≤ Pm,max

g7,8 := ωm,min ≤ ωm(t) ≤ ωm,max

g9,10 := Ib,min ≤ Ib(t) ≤ Ib,max

g11,12 := ζmin ≤ ζ(t) ≤ ζmax

g13,14 := −1 ≤ uts(t) ≤ 1

g15 := −p(t0) ≤ 0

State space; x = {ζ} where ζ = [ζmin, ζmax] ⊂ R with ζmin = 0.1 (10% of battery capacity) and
ζmax = 0.9 (90% of battery capacity). Control space; u = {uts, ug} where uts = [−1, 1] ⊂ R and
ug = [γg,min, γg,max] ⊂ R with γg,min = 0.416 and γg,max = 2.149. p(t0) is the costate that satisfies the
boundary conditions for PMP.

The following subsection introduces the machine learning framework that is proposed as a
solution for the control problem.

3.2. Solution Using Supervised Machine Learning

A few comments are in order, and it is assumed that a robust baseline strategy exists while training
data are being accumulated. Secondly, in order to satisfy the objective (O1), the controller training is
performed from scratch. Thirdly, in the specified framework, training occurs on completion of the
driving task. Therefore, it is assumed that the vehicle is equipped with sufficient memory to store
vehicle states.

Proposed Framework: The framework is divided into three segments, namely, Route Planner (RP),
Dynamic Programming (DP), and Supervised Machine Learning (SML). The flow of events and
parameters are illustrated in Figure 6:
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• Route Planner records the drive cycle and the initial condition (ζi) for the respective drive
cycle. The velocity trajectory depicted in the route planner segment in Figure 6 is an example
of the recorded drive cycle. Based on this drive cycle, an end-point condition ζ f is determined.
In this study, ζ f is calculated assuming 1.1% battery charge is available for the distance of 1
km. The assumption is made based on the average driving and charging cycles of HEVs in the
Netherlands [43]. The requirement of the route planner is to set the boundary condition for the
a priori drive cycle. There are more sophisticated planners based on traffic congestion, terrain,
charging stations, etc. but do not add value to this study, hence neglected.

• Secondly, Dynamic Programming solves the two-point boundary value problem satisfying ζ f
resulting in the optimal control policy (u∗ts, u∗g) and optimal state trajectory (ζ∗, γ∗g), for the given
drive cycle. The discretized state and control spaces are elaborated in Section 3.3.

• Thirdly, Supervised Machine Learning segment develops a control strategy by mapping the input
parameters from the drive cycle to the optimal control policy from DP, using SML algorithms.
The rules derived from this mapping represent the control strategy and make predictions for a
new input as shown in Figure 6. No universal algorithm exists to model the system; therefore, an
SML algorithm is selected based on an exhaustive search. The SML algorithm is selected with a
five-fold cross validation based on its accuracy of predictions, deviation of false predictions from
the optimal value, and computational time for each prediction. The various algorithms are shown
in Table 1 along with their prediction accuracy and the number of predictions the algorithm is
capable of every second. Both characteristics are desired to be as high as possible and based
on this, the selected algorithm is highlighted. Additionally, a memory module is used to store
previously recorded data for the purpose of re-training the controller.

Table 1. Performance of Supervised Machine Learning Algorithms for the NEDC case.

Algorithm Gear-Ratio Control Torque-Split Control

Accuracy (%) Prediction/Sec Accuracy (%) Prediction/Sec
Decision Tree-Fine 96.8 6700 98.0 68,000
Decision tree-medium 94.3 24,000 96.6 100,000

Linear discriminant 70 16,000 78.7 75,000

Quadratic discriminant 78.0 30,000 - -

SVM-cubic 93.4 6500 94.9 3800

SVM-fine Gaussian 96.5 3500 93.8 3200

KNN-fine 94.8 15,000 93 41,000

KNN-medium 94.6 12,000 90.9 27,000

KNN-cubic 94.5 12,000 91.1 39,000
KNN-weighted 97.0 18,000 93.3 39,000
Ensemble-bagged trees 97.0 3300 98.0 7800

Ensemble boosted trees 96.7 3300 97.3 9100

The learning algorithms used for individual control strategies are discussed in Section 3.2.1 and
the parameters with which the algorithm achieved the accuracy and prediction speed highlighted in
Table 1 are introduced.
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Figure 6. Proposed framework.

3.2.1. Supervised Machine Learning Algorithms

Decision Tree: As the name suggests, decision tree (DT) builds a model for the data to go from
observation to prediction through branches. It is representative of a root system beneath a tree and is
also representative of human decision-making. Each node represents binary logic and filters down to a
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prediction based on this set of binary logic gates. The nodes of the tree are split based on impurity
gain (δI), given by Equation (18):

δI = P(T)it − P(TL)il − P(TR)iR (18)

where P(T)it is the probability of the splitting candidate or node t in the set of all observations T,
P(TL)itL is the probability that left child node (tL) is present in the left observation set TL and P(TR)i(tR)

is the probability that the right child node(tR) is present in the right observation set (TR). In essence,
a node is selected and all the observations are partitioned at the node. The impurity gain checks the
number of instances of a class that are common on both sides of the partition, thereby the impurity of
the class.

For this study, the primary pulley speed (ωp), the torque demand at the primary pulley (τp),
and the state of charge of the battery (ζ) were used as input features, and the optimal torque split
was the desired output from the DT. The properties of the decision tree used for training are as
follows: maximum number of splits was set to 100 and k-fold cross validation is set to 5. An example
with relevance to the system model is depicted in Figure 7, wherein the decision tree is trained for
torque split control, but limited to 10 nodes. It is intuitive that, for the negative torque demand
(power flow from the wheels to the energy source), the resulting torque split is closer to 1 indicating
complete regeneration.

Figure 7. Decision tree trained for torque split control (uts) with 10 nodes.

K-Nearest Neighbors: The K-Nearest Neighbor (KNN) algorithm is non-parametric, i.e., no model
is fitted to the data and all the work is done when a prediction is required. In principle, the KNN
algorithm takes a vote of the closest neighbors to predict an output. The ‘K’ in KNN represents the
number of neighbors to consider. Therefore, the ‘K’ should be an odd number to ensure a majority in
the vote. KNN is used as the gear ratio control algorithm, wherein the input features are the vehicle
speed (v) and vehicle acceleration (v̇) and the desired output is the optimal gear ratio (γ∗g). It must
be noted that v̇ is used as a feature since the drivecycles considered do not include elevation profiles.
In case of non-horizontal drivecycles, the torque required at the secondary pulley (τs) will substitute
v̇ and in case of a forward facing model or practical applications, the throttle input will substitute v̇.
The properties of the KNN algorithm used are as follows; the closest neighbors are determined by the
Euclidean distance, the number of votes accounted for is 7, equal weighting given to all neighbors
and the k-fold cross validation is set to 5. It must be noted that to ensure effective learning with
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the limited available data points from each drive cycle, the CVT was discretized into seven equally
spaced classes for the SML case—ergo limiting the performance of the SML control strategy. However,
with the abundance of data from real-world driving, this limitation can be overcome and in turn the
full potential of the CVT can be exploited.

In order to evaluate the performance of the proposed framework, the SML controller is compared
to conventional solutions that are elaborated in Section 3.3.

3.3. Solutions Using Classical Control

To validate the SML controller, its performance is compared to the global benchmark set by DP
and the online implementable benchmark set by OOL-PMP.

Global Benchmark, DP: DP results in the global optimal control policy for the a priori drive cycle
with boundary conditions ζi and ζ f . A cost matrix is built with all possible state-action combinations
at each timestep through the drive cycle. All infeasible states or actions are penalized with a high cost.
Finding a path with minimal cost through the cost matrix results in the optimal control policy.

In order to build the cost matrix, the state and control space is discretized. The CVT is discretized
into 100 gear ratios to exploit the full potential of the CVT. The torque split control (uts ∈ [−1, 1])
is discretized into intervals of 0.05, and the implication of the torque split variable is shown in
Equations (19) and (20). For cases where ωp > 0,

τe = (1− uts) · τp (19)

τm = (uts) · τp (20)

where ωp is the rotational speed of the primary pulley and τp is the torque required at the primary
pulley. The state space x = {ζ} is discretized as follows: ζ ∈ [0.1, 0.9] in intervals of 0.005 and
γg ∈ [0.416, 2.149] discretized to 100 ratios. The time interval of 1 second is chosen since the difference
in ζ is very small for any smaller intervals of time.

Online Benchmark, OOL-PMP: The combination of OOL-PMP is based on a decoupled approach
from the literature review in Section 1.1. The OOL is constructed by using the most efficient points
of ICE operation over the entire ICE speed range and is used to control the gear ratio (ug), while the
PMP method is used to control the torque split (uts). Since the system is modeled as backward facing,
the power required at the primary pulley (Pp) is estimated and subsequently a gear ratio is selected
by OOL. It is counter-intuitive to use a torque split controller in combination with OOL, since OOL
inherently determines the operating point of the ICE and ergo the operating point of the EM based
on the power request at the primary pulley. However, to ensure that the torque split is optimal and
online-implementable, a PMP approach is used to control the torque split. The formulation of the
Hamiltonian and application of PMP is taken from [22] and given in Equation (21). The losses in the
EM are modelled as a second degree polynomial, while the ICE losses and BAT open-circuit voltage
are approximated by a linear fit. The control variable chosen is the power of the battery (Pb):

H = F− p · ẋ = Pf + p · Ps (21)

where Pf is the fuel power, x is the state of charge (ζ), ẋ = −Ps is the time derivative of ζ, and (p) is the
costate:

H = γp1(Pp −
−γm1 +

√
γ2

m1
+ 4 · γm2 · (Pb − γm0)

2 · γm2

) + γp0 ....

... + p · Uoc · (Uoc −
√

U2
oc − 4 ·Ω · Pb)

2 ·Ω (22)

where Pp is the power required at the primary pulley of the CVT, (γp1 ,γp0) are the coefficients of the
linear fit that models the ICE losses, (γm2 ,γm1 ,γm0 ) are the coefficients of the second degree polynomial
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used to model the EM losses, Uoc is the open-circuit voltage of the BAT, and Ω is the resistance of
the BAT.

The necessary conditions of PMP are as follows:

∂H
∂Pb

= 0

∂H
∂ζ

= ṗ

Solving the first condition results in the optimal P∗b , shown in Equation (23):

P∗b =
U2

oc(γ
2
p1 − p2 · γ2

m1 + 4 · p2 · γm2 · γm0)

4 · (Ω · γ2
p1 + p2 ·U2

oc · γm2)
(23)

Solving this as an initial value problem using a bisection algorithm results in the initial costate p(t0)

that satisfies the boundary conditions ζi and ζ f . In order to the solve this boundary value problem,
the exact velocity and acceleration profile from the respective drivecycle are considered.

With the proposed SML solution described along with the conventional solutions in order to
compare the performance of the SML control strategy, the following Section 4 discusses the results of
the study.

4. Results

This section outlines the results obtained by solving the control problem defined in Section 3.1.
The experiment setup is outlined in Section 4.1, results of which are discussed in Section 4.2 wherein
the performance of the SML controller is compared to the OOL-PMP and DP strategies. Furthermore,
a test-case is elaborated in Section 4.3 wherein the effects of re-training the SML controller are observed.

4.1. Experimental Design

As mentioned in Section 3.2, the real-world drive cycle of the user is used in the framework.
However, for experimental purposes, the real-world driving data are replaced by standard drive cycles
and each drivecycle is assumed to represent the respective individual driving behavior. The drive
cycles NEDC, EUDC, FTP75-highway, WLTP, and JP10-15 mode are used in simulation. To make a
valid comparison between the control strategies, the boundary conditions are fixed respectively for
each drive cycle as per the assumption made in the RP in Section 3.2. The parameters for the system
modeled in Section 2 are given in Table 2.

4.2. Numerical Results

The results summarized in Table 3 show the fuel consumption in liters per 100 kilometers and
the percentage loss in fuel when compared to the optimal solution. In Table 3, the proposed machine
learning solution is denoted as SML, the globally optimal solution is denoted as DP, and the online
implementable solution is denoted as OOL-PMP. It is evident from Table 3 that the SML control strategy
consistently performs better than the OOL-PMP control, thereby bridging the gap to DP. The OOL-PMP
performs well with steady state drive cycles while deviates significantly from the optimal solution
with instantaneous drive cycles. The NEDC case is elaborated to give a better understanding of the
performance figures achieved in Table 3 by illustrating the differences in control strategy operation
over the drivecycle.

NEDC Results: The NEDC case is elaborated with graphical illustrations for the comparison of
controllers. Due to legibility concerns with graphical representations, the more prominent drive cycle,
WLTP, is not illustrated. However, numerical results for all the drive cycles are tabulated in Table 3.
Figure 8 illustrates the working of the gear ratio controllers over the complete drive cycle while Figure 9
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showcases the differences in the control strategies over the last quarter of the drive cycle. Subsequently,
ICE and EM operating points are illustrated in Figures 10 and 11, and the resulting fuel consumption is
illustrated in Figure 12. It is evident from this comparison that the SML controller almost perfectly tracks
the DP control strategy, hence resulting in a 2.6% loss in optimality for the NEDC. While the OOL-PMP
controller significantly deviates from the optimal control and results in 11.5% increase in fuel consumption.

Table 2. Vehicle parameters.

Parameter Symbol Value Unit

Base vehicle weight mv 1300 kg

Wheel radius rw 0.316 m

Final drive ratio γ f d 4.695 -

Air drag coefficient cd 0.36 -

Rolling resistance coefficient µr 0.01 -

Air density ρ 1.18 kg/m3

Frontal area A f 2.5813 m2

Mass of rotating parts mr 0.05 -

Gravitational constant g 9.81 m/s2

CVT under-drive ratio γg,min 0.416 -

CVT over-drive ratio γg,max 2.149 -

Max. Engine power Pe,max 82 kW

Max. Electric motor power Pm,max 30 kW

Table 3. Fuel consumption in liters per 100 kms.

DP OOL-PMP SML

NEDC
(11.7 km) 4.25

4.74
(+11.5%)

4.36
(+2.6%)

EUDC
(7.0 km) 4.68

4.95
(+5.77%)

4.93
(+5.34%)

JP10-15
(4.2 km) 4.05

4.33
(+6.9%)

4.21
(+3.8%)

FTP
(17.7 km) 3.88

4.53
(+16.75%)

3.95
(+1.8%)

WLTP
(23.3km) 4.75

5.31
(+11.8%)

4.84
(+1.9%)
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Figure 8. Gear Ratio Controller comparison on the NEDC.
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Figure 9. Gear ratio controller comparison over the last quarter of the NEDC.
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Figure 10. Engine operating points on the NEDC.

4.3. Test Case

Evident from Section 4.2, the near perfect tracking by the SML controller is dependent on the
quality of the dataset. Additionally, the good performance is also attributed to the fact that the trained
controller was tested with the same input drive cycle. However, it seldom occurs wherein the identical
training conditions are experienced in practice. Therefore, it is critical for the proposed framework to
efficiently adapt the control strategy to the newly experienced drivecycle. A test case is conducted
wherein the control strategy trained with the EUDC is utilized on the FTP-75 (representing the newly
experienced drivecycle), and the effect of re-training is observed. It is evident from Figure 13a that the
SML controller trained with EUDC largely deviates from the optimal control strategy. In line with
the principle of the proposed framework to adapt to driving behavior, the control strategy was
then re-trained with the FTP-75 drivecycle—thereby significantly bridging the gap of SML control
strategy to the optimal strategy with a single episode of re-training. Further re-training of the control
strategy improved the performance and is illustrated in Figure 14a,b. However, as mentioned earlier,
the exact combination of vehicle states and driving conditions is not likely to reoccur in practice and
therefore the effect of re-training with a single episode is more relevant to real-world application. It is
important to note that, in this test case, the new drivecycle forms a significant portion of the training
dataset and hence resulted in a drastic change; this is analogous to early stages of re-training in the
real-world. Intuitively, a less drastic change in the control strategy occurs when the new drivecycle is a
small fraction of the training dataset, thereby capturing only the essence of the new drivecycle while
maintaining the desired control from the previous learning episodes.
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Figure 11. Electric Motor operating points on the NEDC.
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Figure 12. Fuel consumption comparison for identical ζ f on the NEDC.
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Figure 13. Comparison between EUDC trained controller and re-trained controllers on the FTP75 drive
cycle. (a) fuel consumption; (b) state-of-charge.
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Figure 14. Controller comparison for the last 20% of FTP75 drive cycle. (a) fuel consumption;
(b) state-of-charge.

5. Conclusions

The results show that the learned control strategy (SML) outperforms the conventional online
implementable strategy (OOL-PMP), tested over several standard drivecycles in terms of fuel economy.
This indicates that the proposed framework could effectively learn from past driving experiences
to reproduce close to optimal results for the identical training conditions, i.e., the same drivecycle.
However, since real-world driving will seldom experience identical training conditions, it is critical to
study the efficacy of the proposed framework in adapting the control strategy to newly experienced
drivecycles. Therefore, a test-case is conducted wherein the control strategy trained for EUDC is
utilized on the FTP-75 and the effect of re-training the control strategy with the new drivecycle is
observed. The EUDC strategy applied to the FTP-75 showed a large deviation from the optimal
trajectory and a single episode of re-training significantly bridged the gap to optimality. Therefore,
the proposed framework could be a viable alternative to the existing control strategies that adapts
efficiently to a specific driver behavior.

Downsides of this proposed framework are briefly highlighted, the requirement of on-board
computational power to perform DP is a real-world limitation but off-loading the computational
burden is a prospective solution, since modern cars already record vehicle data and upload it to a cloud
in the presence of internet connectivity. Furthermore, the algorithm properties, size of the dataset,
and quality of dataset have shown to affect the performance and require more in-depth research.

As for future applications and improvements, the current framework using past data can be
replaced with a predicted drive cycle based on geographic location, traffic congestion, terrain, weather,
etc. that is easily available with current map technology. Additional states can be added, such as a
slope sensor to consider the elevation of the road, in turn providing a more extensive control strategy
capable of accounting for dynamic environments.
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Abbreviations

Acronym Name
BAT Battery
CVT Continuously Variable Transmission
DC Drive Cycle
DT Decision Tree
DP Dynamic Programming
ECMS Equivalent Consumption Minimization Strategy
EM Electric Motor
EU European Union
EUDC Extra Urban Driving Cycle
FD Fixed Differential
FTP75 Federal Test Procedure 75
HEV Hybrid Electric Vehicle
H-OOL Hybrid Optimal Operating Line
ICE Internal Combustion Engine
JP10-15 Japanese 10–15 driving cycle
KNN K Nearest Neighbors
ML Machine Learning
M-OOL Modified Optimal Operating Line
NEDC New European Driving Cycle
OOL Optimal Operating Line
PHEV Plugin Hybrid Electric Vehicle
PMP Pontryagin’s Minimum Principle
RL Reinforcement Learning
RP Route Planner
SML Supervised Machine Learning
SVM Support Vector Machines
WH Wheel
WLTP Worldwide Harmonized Light Vehicle Test Procedure
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