
Article

The Association of Media and Environmental
Variables with Transit Ridership

Daniel L. Mendoza 1,2,3,* , Martin P. Buchert 1, Tabitha M. Benney 4 and John C. Lin 2

1 Department of City & Metropolitan Planning, University of Utah, Salt Lake City, UT 84112, USA;
martin.buchert@utah.edu

2 Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112, USA; john.lin@utah.edu
3 NEXUS Institute, University of Utah, Salt Lake City, UT 84112, USA
4 Department of Political Science, University of Utah, Salt Lake City, UT 84112, USA;

tabitha.benney@poli-sci.utah.edu
* Correspondence: daniel.mendoza@utah.edu

Received: 4 July 2020; Accepted: 11 August 2020; Published: 12 August 2020
����������
�������

Abstract: Transportation systems are central to all cities, and city planners and policy makers take
special interest in assuring these systems are efficient, functional, sustainable, and, increasingly,
that they have a positive impact on human health. In addition, vehicular emissions are increasingly
costly to cities due to congestion and its impact on public health. This study aims to show
the associations between the media and environmental variables and associated transit ridership.
By tracking media influence, we illustrated how media coverage and attention to an issue over time
may impact public opinion and ridership outcomes, especially at the local level where the issues
are most salient. The relationship between air quality and transit ridership shown can be generally
explained through a combination of infrastructure and human behavior. The media key terms
examined in this analysis show that ridership is associated with favorable weather conditions and air
quality, suggesting that ridership volume may be influenced by an overall sense of comfort and safety.
Based on this analysis, we illustrated the role of media attention in both increased and decreased
transit ridership and how such effects are compounded by air quality conditions (e.g., green, yellow,
orange, and red air quality days).

Keywords: public transit; media influence; meteorological variables; ridership variability;
discretionary trips; commute trips; transit ridership; perception; public transportation; air quality

1. Introduction

1.1. Motivation

Transportation systems are central to all cities because of the various functions they provide.
Public transit in particular encourages economic activity by enabling the mobility of consumers and
lower income workers. Public ridership can also reduce environmental externalities such as congestion
and pollution by offsetting personal vehicle usage. In addition, vehicular emissions are increasingly
costly to cities due to congestion and a range of health-related impacts. For instance, transportation
makes up about 75 percent of all CO2 emissions and around 28 percent of total greenhouse gas emissions
found in US cities [1]. Public transportation, therefore, is critical for the long-term viability of any large
urban area, and policy makers take special interest in assuring these systems are efficient, functional,
sustainable, and, increasingly, that they have a positive impact on human health. Subsequently,
a range of work has emerged on policy determinants and incentives to encourage public ridership.
One determinant of increasing interest is the role that media can play in both promoting and deterring
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ridership. We intend to contribute to this discussion by exploring whether media attention to local air
quality and meteorological conditions have any impacts on transit ridership.

To explore this relationship, we study media key term usage across a range of meteorological
and air quality conditions and their association with ridership on the Utah Transit Authority (UTA)
service area in Utah (USA) from 1 January 2014 to 31 December 2016. We also aim to understand if
ridership is further associated with the Utah Division of Air Quality’s (UDAQ) “air quality (AQ) days”
systems that rate local air quality by red (worst), orange, yellow, or green air quality each day. Based on
this analysis, we hope to understand if strong media attention on an upcoming meteorological event
(e.g., winter storm) has a relationship with UTA ridership and whether this effect varies across green,
yellow, orange, and red AQ days.

UTA provides public transportation to a seven-county area, primarily within Utah’s Wasatch
Front (Figure 1). This area faces significant air quality challenges both in winter, due to elevated fine
particulate matter (PM2.5) [2–4], and summer due to elevated ozone levels [5,6]. Other pollutants,
including carbon monoxide (CO), sulfur dioxide (SO2), and coarse particulate matter (PM10), have also
been found to be in excess of national ambient air quality standards (NAAQS) by the Utah Division of Air
Quality (DAQ) (Figure 1) [7]. Among the mitigation strategies, the Utah Department of Transportation
(UDOT) has implemented the “Clear the Air Challenge” during periods of elevated pollution [8] to
encourage a reduction of personal vehicle use and increase in transit use or telecommuting. Efforts to
incentivize ridership further during poor air quality events is of great importance to the effective
management of the local transportation system.

Vehicles 2020, 2, FOR PEER REVIEW 2 

 

encourage public ridership. One determinant of increasing interest is the role that media can play in 
both promoting and deterring ridership. We intend to contribute to this discussion by exploring 
whether media attention to local air quality and meteorological conditions have any impacts on 
transit ridership. 

To explore this relationship, we study media key term usage across a range of meteorological 
and air quality conditions and their association with ridership on the Utah Transit Authority (UTA) 
service area in Utah (USA) from 1 January 2014 to 31 December 2016. We also aim to understand if 
ridership is further associated with the Utah Division of Air Quality’s (UDAQ) “air quality (AQ) 
days” systems that rate local air quality by red (worst), orange, yellow, or green air quality each day. 
Based on this analysis, we hope to understand if strong media attention on an upcoming 
meteorological event (e.g., winter storm) has a relationship with UTA ridership and whether this 
effect varies across green, yellow, orange, and red AQ days. 

UTA provides public transportation to a seven-county area, primarily within Utah’s Wasatch 
Front (Figure 1). This area faces significant air quality challenges both in winter, due to elevated fine 
particulate matter (PM2.5) [2–4], and summer due to elevated ozone levels [5,6]. Other pollutants, 
including carbon monoxide (CO), sulfur dioxide (SO2), and coarse particulate matter (PM10), have 
also been found to be in excess of national ambient air quality standards (NAAQS) by the Utah 
Division of Air Quality (DAQ) (Figure 1) [7]. Among the mitigation strategies, the Utah Department 
of Transportation (UDOT) has implemented the “Clear the Air Challenge” during periods of elevated 
pollution [8] to encourage a reduction of personal vehicle use and increase in transit use or 
telecommuting. Efforts to incentivize ridership further during poor air quality events is of great 
importance to the effective management of the local transportation system. 

(a) (b) (c) (d) 

Figure 1. Utah nonattainment and maintenance air quality areas. The black border outlines areas 
within one mile of the Utah Transit Authority (UTA) service area and white lines show county 
boundaries: (a) UTA service area (yellow), (b) PM2.5 nonattainment (green) and CO maintenance (dark 
green), (c) ozone nonattainment (blue), and (d) SO2 (yellow), PM10 (red), both SO2 and PM10 (orange) 
nonattainment areas. Reproduced from Mendoza et al. [9]. 

1.2. Previous Work 

The relationship between public transit ridership, air quality, and human behavior is becoming 
progressively more connected. For example, the type and design of transportation systems are 
increasingly studied due to the insights they provide for greater ridership. Sun et al. [10] used city-
level data from China to show how increased public ridership is an efficient policy intervention and 
also a cost-effective way to reduce urban air pollution. This causal influence may be circular in some 
circumstances, as shown by the impact of strict driving restrictions on acceptance of public transport 
[11]. However, the authors found that attitudes toward ridership, and public transit more generally, 

Figure 1. Utah nonattainment and maintenance air quality areas. The black border outlines areas
within one mile of the Utah Transit Authority (UTA) service area and white lines show county
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1.2. Previous Work

The relationship between public transit ridership, air quality, and human behavior is becoming
progressively more connected. For example, the type and design of transportation systems are
increasingly studied due to the insights they provide for greater ridership. Sun et al. [10] used
city-level data from China to show how increased public ridership is an efficient policy intervention
and also a cost-effective way to reduce urban air pollution. This causal influence may be circular in
some circumstances, as shown by the impact of strict driving restrictions on acceptance of public
transport [11]. However, the authors found that attitudes toward ridership, and public transit more
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generally, have a large impact on policy acceptance. Inefficiencies in the transportation system, such as
longer commutes and extensive connections, can also result in greater policy pushback and can lead
to policy underperformance. Finally, public transit vehicles are increasingly used as a platform for
on-board mobile sensing networks. Such networks can produce real-time environmental and road
traffic information along with guidance for passengers and fleet managers, which drastically improves
overall system efficiency [12]. The additional information provided to customers, therefore, can have
significant impacts on ridership—for better or worse.

The wider literature on transit ridership has also focused in depth on the factors that can influence
the level of transit ridership (e.g., physical environment, weather conditions, type of transit and stations,
and various seasonality issues—season, year, month, day of week, specific holidays). Population
density, levels of private vehicle ownership, topography, freeway network extent, parking availability
and cost, transit network extent and service frequency, transit fares, and transit system safety and
cleanliness all play a role. However, the relative importance of these various factors and the interaction
between them are not well understood. In a meta study of ridership factors, Taylor and Fink [13]
found that due to the extensive heterogeneity of cities worldwide, the list of factors that impact
ridership were extensive, but not uniformly applied to each case. Other authors have focused on
single factors such as population density, levels of private vehicle ownership, topography, freeway
network capacity, parking availability and cost, transit network infrastructure and service frequency,
transit fares, and transit system safety and cleanliness. For instance, Gutiérrez et al. [14] studied transit
ridership at the station level to calculate a measure for “distance-decay”, which illustrates how poorly
managed time tables, excessive connections, and distance to a local station can diminish ridership.
Similarly, Mendoza et al. [9] explored the impact of air quality on ridership in urban settings.

Another important factor in explaining ridership outcomes is media effects or influence.
Media influence occurs when mediated communication implicitly or explicitly shapes social and
behavioral outcomes. The role of media influence on society is well established across a range of
disciplines and topics [15,16]. Wakefield et al. [17], for instance, reviewed the outcomes of mass media
campaigns in the context of various health-risk behaviors (e.g., use of tobacco, alcohol, and other
drugs, heart disease risk factors, sex-related behaviors, road safety, cancer screening and prevention,
child survival, and organ or blood donation) and concluded that mass media campaigns can produce
positive changes or prevent negative changes in health-related behaviors across large populations.
Through their work, Wakefield et al. [17] highlighted the direct and indirect mechanisms by which
media can be used to change individual behavior. Directly, media influences individuals by providing
information on the new norm of desirable behavior [18]. This information can be descriptive or
prescriptive [19]. By doing so, the media shape individuals’ attitude and beliefs about certain actions
and therefore creates societal norms [20–22]. Additionally, the media provide individuals with the
tools to properly conform to the newly advised behavior [23].

Indirectly, media impact human behavior through two pathways. First, the media have an
agenda-setting influence on institutions, which then directly influences the public [24–26]. Institutions
such as legislative bodies (e.g., Congress), enforcement agents (e.g., the police), or religious institutions
influence behavior by disseminating the message to social circles and ensuring compliance by placing
material constraints and incentives. Second, the media promote social diffusion of the norms on
correct action [27]. This occurs explicitly, when the media promulgate individuals to spread the
important message to their social circles [23]. It also occurs tacitly as the norm naturally diffuses
through interpersonal communication within families and social networks [28,29].

Media impacts on ridership specifically can be both positive and negative. For instance,
Liu et al. [30] found that positive social media campaigns can greatly increase ridership,
while Boisjoly et al. [31] found that transit messaging in the media and unreliable transportation
scheduling websites could both lead to reduced ridership in some cases. Media influence, as a two-part
framework with information selectivity, can also be used to explain mob mentality in online media
platforms [32]. Media impacts on ridership and other forms of human behavior are most effective
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when the desired action is a “one-off” demand rather than a habitual, life-style change [17]. There is
debate in the literature on whether media as a direct mechanism of behavioral change or media as an
agenda setting tool on the institutions are more effective [25]. Outside of ridership, the scholarship on
health-related behavioral change has focused on issues such as drug use, smoking, and preventable
diseases [33,34]. Additionally, there is specific research that focuses on the media’s ability to mitigate the
spread of pandemics [35,36]. Overall, media can be an effective, inexpensive tool to influence human
behavior in a majority of the population, although sustained efforts are required for the intervention to
be lasting.

As described further below, to measure media influence on ridership in this research, we use
daily media counts as a percentage of total media, which are drawn from regional media sources for
key terms related to air quality and meteorology. To better understand ridership behaviors, we use
data drawn from the UTA system. In addition to cash and voucher payments, UTA services use an
on/off electronic fare collection system where a user “taps on” with their transport card when boarding
and “taps off” when alighting. These data are collected for each passenger trip and provide necessary
information, such as temporal and spatial demand, to inform UTA for service improvement decisions
and have been used in a previous study to estimate the impact of UTA vehicles on air quality in its
service area [9].

1.3. This Study

This study aims to show the associations between the media and environmental variables and
associated transit ridership. By tracking media influence, we intend to illustrate how media coverage
and attention to an issue over time may affect public opinion and ridership outcomes, especially at the
local level where the issues are most salient.

2. Materials and Methods

The study period for this analysis is 2014–2016, and the study location is the entirety of the UTA
service area (Figure 1).

2.1. Media Data

To study media influence, we tracked key terms related to air quality (e.g., ozone, red air day)
and meteorology (e.g., sunny, winter storm) to better understand if they influenced ridership. Table 1
provides a list of key terms that were included in this analysis. Media influence is measured using
media daily topic counts of the specified terms from 40 online, Utah media sources. Our analysis uses
the percentage of total news attention of the search term, which is normalized by total daily news.
We chose percentage of news over absolute daily counts to avoid data effects from the weekly news
cycle and to allow more consistent comparison across topics and time periods.

Table 1. List of media influence search terms.

Air Quality Higher Temperature Orange Air Day Storm

Bad weather Hot Ozone Summer

Cloudy Hotter Particulate matter Sun

Cold Hotter weather PM2.5 Sunny

Freezing Inversion Rain Winter

Green air day Low temperature Red air day Winter storm

Heat wave Lower temperature Snow Yellow air day

To gather media attention and coverage data on the proposed search terms across a range of
media sources, we used Media Cloud, which is an open-source platform that tracks the contents of
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online news and enables researchers to track the spread of memes, media framings, and the tone of
coverage of different stories [37]. This platform for studying media ecosystems was created through
a joint project between the MIT Center for Civic Media and the Berkman Klein Center for Internet
& Society at Harvard University. Media Cloud aggregates data from over 50,000 news sources from
around the world and in over 20 languages including Spanish, French, Hindi, Chinese, and Japanese.
Terms for this research were searched using the Media Cloud’s open-source database, which covered
40 Utah based media sources from 1 January, 2014 to 31 December, 2016. Media types include print
native, video broadcasts, and digital native formats and cover a range of political spectrums. Table 2
and the Supplementary Materials Table S1 list the media sources and characteristics of the sources
used in this research.

Table 2. List of media sources used in this study.

Media Type Count Description

Digital Native 4 Internet based source. Includes news sources that began on the internet such as
organizational websites and blogs. Examples: CDC, Vox, Scroll

Print Native 24 Primarily print-based publication. Includes newspapers and magazines.
Examples: New York Times, The Economist.

Video Broadcast 12 Primarily broadcast TV station media such as video transcriptions or closed
captions. Examples: CNN, Fox News.

2.2. Meteorological and Air Quality Data

The meteorological data were obtained from the MesoWest network [38] using the Salt Lake City
Airport (KSLC) as a reference point for daily high and low temperatures as well as 24-h precipitation.
The Air Quality Index (AQI) [39] data were retrieved from the United States Environmental Protection
Agency’s (USEPA) air quality database [40].

2.3. Public Transit Data

The transit data were obtained from UTA for the study period and included fields identifying
the mode of transit used, day, time, and location, for both the starting and end points for each
trip. UTA operates seven transit modes: (1) regular bus, (2) Express Bus, (3) Ski Bus, (4) Park City
Bus (connecting Salt Lake City and Park City), (5) FrontRunner (commuter rail extending from the
northernmost to southernmost service areas, (6) TRAX (electric light rail serving only Salt Lake
County), and (7) Streetcar (limited service central light-rail line). The regular bus (“bus”), FrontRunner,
and TRAX were used in this analysis as they account for the majority of the ridership, are not seasonal,
and operate throughout the day.

Trips were classified into commute and non-commute trips, during weekdays, and weekend trips.
The commute time period was defined as trips boarding between 6:00 and 8:59 a.m. and 3:00 and
6:00 p.m., with non-commute trips taking place outside these hours. This distinction follows previous
studied time periods [9] and allows for a differentiation between non-discretionary (i.e., commuting)
and discretionary trips. Transit ridership showed consistent drops during state and federal holidays
(both actual and observed days), as well as during the weeks of Christmas and New Year’s Day,
so these data were removed from the analysis.

2.4. Statistical Analysis

We analyze the relationship between media key term frequency on transit ridership using a linear
regression between the two variables across three time scales: annual, seasonal, and monthly. To study
the association of air quality with transit ridership data, we compared ridership in a pair-wise manner
for each air quality index day using a t-test and report p-values. The media data were lagged by a day
with respect to the meteorological and ridership data. This was done because it was determined that
the public generally pays attention to weather forecasts for the following day to inform their behavior.
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3. Results

The results of our analysis focused on three separate relationships. First, we explore the association
between meteorological conditions and media attention. Next, we explore the relationship between
media influence on ridership. We conclude with results on air quality events and ridership. The total
days during the study period that correspond to each AQI level are shown in Supplementary
Materials Table S2, the results are displayed by month, season (winter = December, January, February;
spring = March, April, May; summer = June, July, August; fall = September, October, November),
as annual totals, and as an annual average of study days for each temporal bin. Each year, approximately
344 days were studied, with the majority of dropped data occurring during the winter (e.g., December
and January) because of the holiday season.

3.1. Association between Meteorological Conditions and Media Stories

The relationship between frequency of media attention and seasons, meteorological conditions,
and air quality is shown in Figure 2. The colors of the points reflect the air quality index for each
data point (study day). The key terms shown were selected to illustrate the range and variety of
findings. Summer (Figure 2a) shows a consistently seasonal cycle associated with the summer season.
Snow (Figure 2b) is also seasonal, associated with the winter months, but reflects the sporadic nature
of snowstorms. “Air quality” and “Red Air Day” (Figure 2c,d) are generally winter concerns, due to
atmospheric inversions trapping pollutants, but in 2016, the terms remained consistent through the
year. Overall, 2016 was a particularly active wildfire year with over 99,000 acres of burn, in comparison
to 2015 and 2014 that had 10,000 and 28,000 acres of burn, respectively [41]. It is also noteworthy
that while “summer”, “snow”, and “air quality” peaked at appearing in approximately 20% of news
stories, “Red Air Day” peaked at 43% underlining the concern Utah has regarding unhealthy levels
of pollution.
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Figure 2. Association between seasonality and meteorological conditions and air quality on key term
media count frequency for: (a) summer; (b) snow; (c) air quality; and (d) Red Air Day. The color of the
points illustrates the air quality index for each day. Note the different axis scale for “Red Air Day”.
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3.2. Media and Transit Ridership

Figure 3 shows the relationship between media mentions of key terms and ridership across all
transit modes the following day for all days of the year. The relationships were not found to be
statistically significant for any key term, but the linear trends are shown for each figure. Figure 3a
shows that there is a generally positive association with increased media mentions of “good weather”
and increased ridership. “Rain” seems to have no direct effect on ridership (Figure 3b). Unsurprisingly,
“summer” (Figure 3c) and “winter” (Figure 3d) show opposite trends, with the former associated with
lower ridership and the latter with higher ridership.
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The winter and summer seasonal differences in media term frequency are shown for “cloudy” and
“cold” in Figure 4. Winter and summer (Figure 4a,b) show opposite trends, with the former associated
with slightly lower ridership and the latter with higher. When “cold” is more frequently mentioned
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during the winter (Figure 4c), it is associated with lower ridership. When the term is mentioned more
frequently in the summer (Figure 4d), there is no visible change in transit ridership. The frequency of
“cloudy” and “cold” during winter is higher than during the summer also.
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3.3. Meteorological Conditions and Transit Ridership

Tables 3–5 show the p-value results of t-tests comparing the relationship between air quality
days and commute and non-commute transit ridership trips for buses, FrontRunner, and TRAX,
respectively. The tables are formatted to show results comparing air quality day ridership at different
time scales (annual, seasonal, and monthly) and cells with statistically significant p-values are marked
appropriately. The not available (NA) values reflect comparisons that could not be made due to sample
size limitations. For example, during the spring and fall (the cleanest air quality periods of the year),
there were only sufficient green and yellow air quality days to merit a statistically significant difference.
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Table 3. Bus commute and non-commuter ridership trips comparison at different timescales and between air quality indices (G = Green, Y = Yellow, O = Orange,
R = Red). For statistically significant results: * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001.

Bus Commute Trips

AQ Ann Win Spr Sum Fall Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

G-Y 0.00 *** 0.97 0.05 * 0.41 1.00 0.20 0.72 0.89 0.90 0.69 0.11 0.87 0.31 0.39 0.01 * 0.35 0.46

G-O 0.00 *** 0.89 NA 0.61 NA 0.03 * 0.06 NA NA NA 0.00 ** 0.99 0.02 * NA NA NA NA

G-R 0.59 0.57 NA NA NA NA 0.28 NA NA NA NA NA NA NA NA NA NA

Y-O 0.27 0.85 NA 0.64 NA 0.13 0.08 NA NA NA 0.08 0.94 0.07 NA NA NA NA

Y-R 0.05 * 0.49 NA NA NA NA 0.29 NA NA NA NA NA NA NA NA NA NA

O-R 0.01 * 0.61 NA NA NA NA 0.39 NA NA NA NA NA NA NA NA NA NA

Bus Non-Commute Trips

AQ Ann Win Spr Sum Fall Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

G-Y 0.00 *** 0.33 0.04 * 0.66 0.94 0.14 0.39 0.90 0.39 0.98 0.21 0.45 0.55 0.09 0.02 * 0.31 0.56

G-O 0.00 *** 0.54 NA 0.54 NA 0.02 * 0.04 * NA NA NA 0.02 * 0.89 0.05 * NA NA NA NA

G-R 0.65 0.47 NA NA NA NA 0.09 NA NA NA NA NA NA NA NA NA NA

Y-O 0.09 0.98 NA 0.78 NA 0.20 0.05 * NA NA NA 0.21 0.71 0.07 NA NA NA NA

Y-R 0.05 * 0.27 NA NA NA NA 0.10 NA NA NA NA NA NA NA NA NA NA

O-R 0.00 ** 0.36 NA NA NA NA 0.57 NA NA NA NA NA NA NA NA NA NA
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Table 4. FrontRunner commute and non-commuter ridership trips comparison at different timescales and between air quality indices (G = Green, Y = Yellow,
O = Orange, R = Red). For statistically significant results: * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001.

Front Runner Commute Trips

AQ Ann Win Spr Sum Fall Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

G-Y 0.00 *** 0.74 0.00 *** 0.34 0.50 0.19 0.82 0.48 0.68 0.24 0.06 0.66 0.27 0.80 0.02 * 0.05 0.98

G-O 0.00 *** 0.76 NA 0.38 NA 0.12 0.13 NA NA NA 0.01 * 0.86 0.11 NA NA NA NA

G-R 0.37 0.86 NA NA NA NA 0.61 NA NA NA NA NA NA NA NA NA NA

Y-O 0.86 0.88 NA 0.99 NA 0.50 0.12 NA NA NA 0.33 0.66 0.26 NA NA NA NA

Y-R 0.74 0.73 NA NA NA NA 0.75 NA NA NA NA NA NA NA NA NA NA

O-R 0.71 0.69 NA NA NA NA 0.37 NA NA NA NA NA NA NA NA NA NA

Front Runner Non-Commute Trips

AQ Ann Win Spr Sum Fall Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

G-Y 0.00 *** 0.77 0.00 *** 0.12 0.40 0.31 0.95 0.60 0.63 0.08 0.01 ** 0.54 0.10 0.59 0.00 ** 0.11 0.78

G-O 0.00 *** 0.96 NA 0.01 * NA 0.12 0.00 *** NA NA NA 0.01 * 0.42 0.00 *** NA NA NA NA

G-R 0.65 0.90 NA NA NA NA 0.44 NA NA NA NA NA NA NA NA NA NA

Y-O 0.48 0.89 NA 0.01 NA 0.32 0.10 NA NA NA 0.78 0.31 0.02 * NA NA NA NA

Y-R 0.20 0.97 NA NA NA NA 0.48 NA NA NA NA NA NA NA NA NA NA

O-R 0.07 0.92 NA NA NA NA 0.53 NA NA NA NA NA NA NA NA NA NA
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Table 5. TRAX commute and non-commuter ridership trips comparison at different timescales and between air quality indices (G = Green, Y = Yellow, O = Orange,
R = Red). For statistically significant results: * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001.

TRAX Commute Trips

AQ Ann Win Spr Sum Fall Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

G-Y 0.00 *** 0.68 0.01 * 0.07 0.83 0.12 0.76 0.34 0.67 0.29 0.06 0.66 0.04 * 0.87 0.02 * 0.15 0.85

G-O 0.00 *** 0.87 NA 0.00 ** NA 0.05 0.32 NA NA NA 0.70 0.18 0.00 *** NA NA NA NA

G-R 0.42 0.43 NA NA NA NA 0.83 NA NA NA NA NA NA NA NA NA NA

Y-O 0.15 0.92 NA 0.12 NA 0.43 0.20 NA NA NA 0.25 0.19 0.02 * NA NA NA NA

Y-R 0.54 0.46 NA NA NA NA 0.99 NA NA NA NA NA NA NA NA NA NA

O-R 0.23 0.46 NA NA NA NA 0.36 NA NA NA NA NA NA NA NA NA NA

TRAX Non-Commute Trips

AQ Ann Win Spr Sum Fall Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

G-Y 0.00 *** 0.27 0.01 * 0.06 0.40 0.14 0.31 0.39 0.11 0.35 0.07 0.43 0.08 0.63 0.09 0.88 0.73

G-O 0.00 *** 0.20 NA 0.00 ** NA 0.05 * 0.68 NA NA NA 0.76 0.12 0.00 ** NA NA NA NA

G-R 0.53 0.28 NA NA NA NA 0.66 NA NA NA NA NA NA NA NA NA NA

Y-O 0.03 * 0.63 NA 0.04 * NA 0.46 0.31 NA NA NA 0.11 0.04 * 0.04 * NA NA NA NA

Y-R 0.37 0.56 NA NA NA NA 0.74 NA NA NA NA NA NA NA NA NA NA

O-R 0.06 0.78 NA NA NA NA 0.41 NA NA NA NA NA NA NA NA NA NA
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Four patterns are evident across all three transit modes (Tables 3–5). Firstly, the lowest p-values are
found in the longer time scales (annual and seasonal) and primarily when comparing green to yellow
and green to orange ridership, especially at the annual level. Secondly, non-commute, or discretionary
trips show generally lower p-values than commute trips. This is most noticeable in the FrontRunner.
Thirdly, the summer months show lower p-values than the other seasons, particularly June and August.
Finally, the TRAX shows the lowest average p-values, followed by buses and FrontRunner.

4. Discussion

The following provides a brief discussion of our key findings.

4.1. Media Key Term Usage

The frequency of media key term usage was reflective of meteorological and seasonal conditions.
Interestingly, we found simple, nonscientific terms were the most accessible to the general public.
For instance, “Red Air Day” has a noticeable relationship on tested outcomes, yet names of specific
emissions (e.g., PM2.5, ozone) had little to no effect on outcomes. This likely reflects the broader reach
of simple terms for encouraging ridership.

4.2. The Relationship between Media on Transit Ridership

The media key terms examined in this analysis show that ridership is associated with favorable
weather conditions. A positive relationship between “good weather” and increased ridership could
illustrate that ridership may be influenced by an overall sense of comfort and safety. More than half of
UTA system bus stops do not have a shelter, or even seating, which is why UTA has recently been
working toward increasing amenities at bus stops, as improved stops have been shown to increase
rider experience and ridership [42]. This is contrary to FrontRunner and TRAX stops, which are all
sheltered, with at least a roof, and have plentiful seating.

The key terms of “winter” (associated with higher ridership) and “summer” (associated with
lower ridership) likely reflect the seasonal cycle of ridership. The University of Utah is the single
largest paid pass purchaser from UTA and, like other educational institutions, has lower enrollment
during the summer. Therefore, the large student population no longer forms part of the ridership.
Media will generally use seasonal key terms in-season; therefore, it is reasonable to conclude that the
ridership and key term association for “summer” and “winter” is mostly due to seasonality effects.

The opposite patterns of ridership during the summer and winter frequency of the key term
“cloudy” are likely associated with the potential comfort implications. While “cloudy” during the
winter could be associated with a storm, it is generally a heat relief during the summer. This points to
the importance of dividing annual findings into seasons to more clearly understand these relationships.
“Cold” during the winter implies an uncomfortable situation, which reasonably leads to lower ridership.
However, it can be ambiguous in the summer, as it may mean an absolute cold or a relative cold which
could explain the lack of relationship between its frequency and ridership. No pattern was found
when using the word “hot”.

4.3. Relationship between Air Quality and Transit Ridership

The relationship between air quality and transit ridership shown in Tables 3–5 can be generally
explained through a combination of infrastructure and human behavior. To frame these results
into context, the FrontRunner is primarily used for longer distance commuting purposes, buses are
used relatively evenly for commuting and non-commuting, and TRAX’s use falls between buses and
FrontRunner. Bus ridership shows a significant seasonal cycle aligned with the periods when both
higher education and schools are in session, with FrontRunner showing almost no seasonal cycle,
and TRAX ridership following a pattern more akin to buses [9].

The greater variability in non-commute ridership is congruent with the nature of these trips.
Unlike commute trips, which can be considered mandatory, non-commute trips are discretionary and
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may be postponed. During the winter, worse air quality days (orange and red) are associated with
colder temperatures which could deter riders from taking non-essential trips to avoid both air pollution
exposure and waiting in the cold.

TRAX serves a role as a mid-range commuting mode (within Salt Lake County) as well as a
faster and preferred (compared to buses) way to travel within the downtown area. In addition to
higher frequency and larger capacity, the TRAX reaches important travel destinations such as the
University of Utah and the Salt Lake City International Airport in a much more convenient manner
than buses. TRAX also provides extended service hours for special events including football games
and has stations located next to the major stadiums and venues in the county. Therefore, it is likely
that it is the preferred means of transportation, but when the air quality becomes a concern, riders will
avoid exposure and travel by other means, specifically private vehicles, or skip the trip altogether,
explaining this mode’s ridership larger sensitivity to poor air quality periods.

5. Conclusions

To explore the relationship between meteorological events, media influence, and public transit
ridership, we traced the relationship between media across a range of meteorological and air quality
related terms on UTA ridership and the compounding influence of local AQ levels. Based on this
analysis, we illustrated the role of media attention in both increased and decreased UTA ridership and
how such effects are compounded by air quality conditions (e.g., green, yellow, orange, red AQ days).

5.1. Implications and Future Research

As this research demonstrates, public transportation is an important policy tool, and efforts to
promote ridership are increasingly fostered at the city level. Future research is still needed to apply
such findings and to theorize how best to design policies that appropriately and efficiently incentivize
the use of public transit networks. An important consideration is that media may have a significant role
to play in transit ridership by forecasting naturally occurring events and guide public transportation
policy making. In addition, as Wakefield et al. [17] have argued in the past, investment in longer,
better-funded campaigns to achieve adequate population exposure to media messages is often required.
Finding better means to support such policies among local populations and within government are
essential to the success of transit systems. A recent bill by Utah State Representative Joel Briscoe
has used information from the present study to allocate funding for free transit fares to improve air
quality [43]. Future research will need to focus on these important elements and further refine the
mechanisms used to best support the preferred behavioral change in addition to increasing the sample
number of years to gain statistical power.

5.2. Limitations

A limitation of this study is that air quality varied significantly across the study period and there
were a limited number of worse (5 red and 62 orange) air quality days compared to better (560 green
and 406 yellow) air quality days. Because meteorological inversion events, which are associated with
worse air quality days, are generally more commonplace during December and January, it is likely
that our exclusion of the winter holiday periods may have reduced the number of worse air quality.
However, during these time periods, ridership and transit schedules are irregular, which would have
incurred bias if they had been included. Due to the limited amount of study years, formal statistical
analysis is not possible at this time, and causality should not be inferred from these findings.

Supplementary Materials: The following are available online at http://www.mdpi.com/2624-8921/2/3/28/s1,
Table S1. Detailed information of media sources used in this study. Table S2. Total and annual average Air Quality
Index days in the study period. State and Federal Holidays, in addition to holiday-influenced time periods
(i.e., between Christmas week and the first week of the year), were not included in the analysis due to irregular
transit travel patterns.

http://www.mdpi.com/2624-8921/2/3/28/s1
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