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Abstract: In order to improve the efficiency of electrified vehicle drives, various predictive energy
management strategies (driving strategies) have been developed. This article presents the extension of
a generic prediction approach already proposed in a previous paper, which allows a robust forecasting
of all traction torque-relevant variables for such strategies. The extension primarily includes the
proper utilization of map data in the case of an a priori known route. Approaches from Artificial
Intelligence (AI) have proven to be effective for such proposals. With regard to this, Recurrent Neural
Networks (RNN) are to be preferred over Feed-Forward Neural Networks (FNN). First, preprocessing
is described in detail including a wide overview of both calculating the relevant quantities from
global navigation satellite system (GNSS) data in several steps and matching these with data from
the chosen map provider. Next, an RNN including Long Short-Term Memory (LSTM) cells in an
Encoder–Decoder configuration and a regular FNN are trained and applied. The models are used to
forecast real driving profiles over different time horizons, both including and excluding map data
in the model. Afterwards, a comparison is presented, including a quantitative and a qualitative
analysis. The accuracy of the predictions is therefore assessed using Root Mean Square Error (RMSE)
computations and analyses in the time domain. The results show a significant improvement in
velocity prediction with LSTMs including map data.

Keywords: artificial intelligence; recurrent neural networks; long short-term memory (LSTM); electrified
powertrains; model predictive control; global navigation satellite system (GNSS); real driving cycles

1. Introduction

In recent years, many alternative propulsion systems have been developed. This
includes both pure electric and hybrid electric vehicles (HEVs). Electrified drives are char-
acterized by component dimensioning, topology, and driving strategy [1]. The latter must
guarantee that the system functions are used optimally under various driving conditions.
The studies [2–6] provide a comprehensive summary of the current state of research in this
sector, whereby predictive driving strategies are being widely examined. Here, information
about the upcoming driving profile is considered in the propulsion control through related
algorithms to achieve additional fuel savings [7]. This includes, for example, future torque
and power requirements. In general, there are a variety of sources that may be used to
forecast such future torque demand. Telemetry data from the Global Navigation Satellite
System (GNSS), Car-to-Car (C2C), and Car-to-X (C2X) should be mentioned. In addition,
information from Radar, Lidar, and cameras may be used to make predictions. These
communication units and sensors, on the other hand, are not mandatory, and the constant
availability of such data cannot be guaranteed for reliable on-road forecasts. As a result,
researchers in [8] present a generic prediction model based on AI that ensures a reliable
forecast of future torque demand without the need for any telemetry data. Hereby, past
driving profiles are sufficient to train the model. For forecasting, the model simply needs
to know the previous and present conditions of the current trip.
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In the context of this paper, the presented investigations from [8] regarding the appli-
cation of predicting torque-relevant variables are extended. Therefore, RNNs with Long
Short-Term Memory cells (LSTMs) are applied in an architecture developed for the pro-
posed application, including an Encoder–Decoder configuration. It is further shown how
map data can lead to an improvement of velocity prediction accuracy, when the case of
both a known trip and the availability of map data for the current GNSS position arises.
This is the case, for example, when entering the route in the navigation system or by trav-
eling a known route again, which is detected by intelligent algorithms. Overall, the goal
remains to attain a robust application of the whole generic prediction approach including
the proposed extension.

2. Related Work

Vehicle velocity is a complex function of environmental conditions, the vehicle, and the
driver [9,10]. Therefore, at first, major influences on the driving profile are introduced. In a
further step, a deeper look into existing velocity prediction methodologies is given through
corresponding publications.

Today’s vehicles vary widely in type and cover a wide range of performances. As
shown by [11], significantly different average velocities can be observed depending on the
vehicle type under the same conditions. In particular, a clear downward trend in vehicle
velocity with increasing vehicle age can be seen. Other vehicle-specific characteristics,
such as engine size or vehicle load are mentioned. Another factor is the behaviour of the
driver [12]. According to [13], demographic characteristics such as the age and gender of
the driver, as well as the character and current mood of the person driving are decisive
here. [14] also suggests an influence of the driver’s subjective perception regarding the
quality of the road. The infrastructure imposes external constraints on the driver through
legal requirements or driving recommendations, which thus significantly influence the
velocity profile of a route [15]. According to [16], traffic lights and intersections are crucial
here. Speed limits also play a decisive role. Natural environmental conditions such as
weather, time of day, or light conditions also matter. Researchers in [13] suggest a crucial
difference between day and night driving. Another important category is influences related
to the road itself. Not only the road surface, but also the shape and curvature have a
relevant influence on the velocity profile [17]. Particularly in curves, the limiting factor
is usually not the maximum permitted velocity, but the maximum lateral acceleration
accepted by the driver. Road slope can also have a non-negligible effect, especially when
driving uphill. Researchers in [16,18] assign a high relevance to the consideration of curves,
especially for urban driving. Traffic is generally a very dynamic and difficult to predict
system as it is highly influenced by other road users. A schematic overview of the influences
is provided as an Ishikawa diagram, see Figure 1.

It turns out that the consideration of all information through corresponding prediction
models is very difficult. Map data can be used to identify static traffic events such as the
position of traffic lights or stop signs. In addition, so-called Live Maps can provide time-
dependent information such as traffic jams and traffic densities. Furthermore, the vehicle
itself might have on-board sensor systems such as radar systems or cameras to deliver
information about the observed traffic, for example, the distance to the vehicle in front [18].

According to [10,12], velocity prediction methodologies can be divided into non-
parametric and parametric methodologies.

Parametric Methodologies (PM) are usually based on an analytical function. Examples
that fall into this group are: The Constant Speed Model (CS) and the Constant Acceleration
Model (CA) [10], but also the so-called Intelligent Driver Model (IDM) [19,20]. The research
by [17] describes a possibility of velocity prediction using GNSS data, when the route to
be driven is known in advance. To enable such long-term predictions, the route is described
as a sequence of traffic events. Based on this, the route is divided into segments of equal
maximum velocity. Transitions between the segments are described with acceleration
phases or braking phases. Such predictions can be made for the entire route, as they are
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based only on stationary traffic events. A disadvantage of this method is that it is difficult
to take into account spontaneous traffic events such as congestion or temporal variations in
traffic density.
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Figure 1. Overview of influences on the driving profile based on related work
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Non-parametric Methodologies (NPM) do not require prior knowledge about the exact
dynamics of the system. Due to this, they are well suited for modelling systems whose
physical foundations are not easy to describe or are even unknown. Furthermore, a robust
usage can be ensured, as the route to be driven must not necessarily be known in advance
and additional data are not mandatory. Examples are methods from the field of stochastics
such as Markov Chains (MC) and data-driven methods such as Artificial Neural Networks
(ANN). The generic prediction approach worked out in [8] can be assigned to this category.
Moreover, [8] also includes an overview regarding the state of the art for such models.
In contrast to PM, NPM cannot be used for velocity prediction of the entire route, but only
for short-term predictions.

To sum up, environmental influences including infrastructure, road and traffic, as well
as the vehicle and the driver’s behaviour, all play a role in vehicle velocity. In this work,
influences accessible by digital maps are of increased interest to predict future vehicle
velocity. Moreover, the presented research underlines that data-driven methods from the
field of NPM are well suited for the modelling of driving behaviour in a robust application.
As already shown in [8], methods from the field of AI should be preferred over MC: It was
demonstrated that Feed-Forward Neural Networks (FNN) can achieve 30% more accurate
velocity predictions and lead to higher accuracy in total compared to a first-order MC,
especially when road slope is considered. However, dynamic changes in the driven profile
can only be recognised when they have already been initiated for both MC and FNN. It
was concluded that both MC and FNN can predict trends only to a limited extent. In
this work, Recurrent Neural Networks (RNN) are used, as they are particularly suitable
for time-series predictions and offer improved accuracy compared to FNN. The aim of
this work is to demonstrate how the robust prediction approach from [8] can be extended
by map data for the case of an a priori known route. It is not intended to replace the
approach from [8]. It should be seen as an extension of [8] to additionally increase the
prediction accuracy when both map data and GNSS positioning are available. Overall,
the aim continues to be to achieve robust applicability of the whole approach. As stated
in [8], all traction torque-relevant variables should be predicted to enable the application
of Model Predictive Control (MPC). However, in this work, predicting the velocity profile
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is sufficient, as road slope can be determined from map data for the a priori known route.
Acceleration is derived by numerical differentiation from the velocity profile.

3. Method

The methodology outlined in this paper is divided into two main steps. The first main
step is preprocessing. This is divided into five substeps:

1. Choosing a map data source
2. Importing data from GNSS tracking and matching with map data
3. Calculating velocity
4. Calculating road curvature
5. Calculating road slope

The second main step consists of training and applying the neural network to make
predictions over a short horizon (short-term prediction), similarly to [8]. Therefore, the real
driving data are first separated into training, validation, and test data at the ratio of 60:20:20.
Following this, the ANNs are trained. This includes a model concerning map data and a
model without map data. The final evaluation of the results includes both the RMSE values
of predicted velocity and acceleration and an analysis of the velocity forecasts in the time
domain. The whole procedure is applied both to LSTM and FNN models. The methodology
is also summarized in Figure 2.

Version July 6, 2022 submitted to Vehicles 4

data and GNSS positioning are available. Overall, the aim continues to be to achieve124

robust applicability of the whole approach. As stated in [8], all traction torque-relevant125

variables should be predicted to enable the application of Model Predictive Control126

(MPC). However, in this work, predicting the velocity profile is sufficient, as road slope127

can be determined from map data for the a priori known route. Acceleration is derived128

by numerical differentiation from the velocity profile.129

3. Method130

The methodology outlined in this paper is divided into two main steps. The first131

main step is preprocessing. This is divided into five substeps:132

1. Choosing a map data source133

2. Importing data from GNSS tracking and matching with map data134

3. Calculating velocity135

4. Calculating road curvature136

5. Calculating road slope137

The second main step consists in training and applying the neural network to make138

predictions over a short horizon (short-term prediction), similarly to [8]. Therefore, the139

real driving data are first separated into training, validation, and test data at the ratio of140

60:20:20. Following this, the ANNs are trained. This includes a model concerning map141

data and a model without map data. The final evaluation of the results includes both142

the RMSE values of predicted velocity and acceleration and an analysis of the velocity143

forecasts in the time domain. The whole procedure is applied both to LSTM and FNN144

models. The methodology is also summarized in Figure 2.145

Preprocessing Import Data
& Matching

Calculate
Velocity

Calculate
Curvature

Calculate
Slope

Choose
Map Data

Train and Apply
Neural Network

Quantitative
Analysis

Qualitative
Analysis

w/o map data
Train

Prediction
Model

Apply
Prediction

Model

Calculate
RMSE

Visualize
Test

Cyclesw/ map data

Conclusion

Figure 2. Applied methodology to evaluate both utilization of LSTMs and reveal benefits by use
of map data. This also includes several steps of preprocessing.

Investigations from [8] showed that AI should be preferred in the prediction of
traction torque-relevant quantities compared to other methods like MC. Moreover [21]
revealed that in the field of AI for such timeseries prediction, RNNs are particularly
suitable compared to FNN. The basic architecture of an RNN is given by Figure 3 [22].
In the simplest RNN, a so-called Vanilla RNN, the hidden state ht is calculated using
the parameter weights Whh, Wxh, the input xt, and the previously hidden unit ht−1.
A tanh is used to keep the hidden state ht between -1 and 1. The output yt is finally
calculated by multiplying the hidden state ht with another parameter weight Why [23,24].

ht = tanh(Whhht−1 + Wxhxt) (1)

yt = Whyht (2)

Figure 2. Applied methodology to evaluate both utilization of LSTMs and reveal benefits by use of
map data. This also includes several steps of preprocessing.

Investigations from [8] showed that AI should be preferred in the prediction of traction
torque-relevant quantities compared to other methods such as MC. Moreover [21] revealed
that in the field of AI for such time-series prediction, RNNs are particularly suitable com-
pared to FNN. The basic architecture of an RNN is given by Figure 3 [22]. In the simplest
RNN, a so-called Vanilla RNN, the hidden state ht is calculated using the parameter weights
Whh, Wxh, the input xt, and the previously hidden unit ht−1. A tanh is used to keep the
hidden state ht between −1 and 1. The output yt is finally calculated by multiplying the
hidden state ht with another parameter weight Why [23,24].

ht = tanh(Whhht−1 + Wxhxt) (1)

yt = Whyht (2)

Further information regarding RNNs can be found in [25–28]. Basic RNNs have
problems in considering long-term dependencies. For this reason, [29] introduced the
Long Short-Term Memory (LSTM). In contrast to basic RNNs, besides the hidden state ht,
an LSTM includes a cell state Ct. The cell state can be seen as a long-term memory of the
model. In contrast to a Vanilla RNN, an LSTM includes two types of activation functions;
tanh and sigmoid. Tanh, similarly to Vanilla RNN, limits the dataflow to values in between
−1 and 1. Sigmoid determines whether to update or forget certain data (limits to values
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between 0 and 1). An overview of an LSTM cell is given in Figure 4. The different parts of a
basic LSTM should be introduced shortly in the following [23,24,30–33].
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Based on the previous hidden state ht−1 and the current state xt, the forget gate
output ft is calculated using a sigmoid function. This aims to keep or forget information
from previous cell state Ct−1. Next, new information is stored in the cell state. Therefore,
an input gate is used. It consists of a sigmoid layer which decides which values to update
(input gate output it) and a tanh layer, which determines new candidate values C̃t. The
new cell state Ct is calculated using the forget gate output ft, the old cell state Ct−1, the
input gate output it, and the new candidate values C̃t.

Ct = ft · Ct−1 + it · C̃t (3)

The output ot of the Output Gate is calculated by passing both the previously hidden
state ht−1 and the current input xt through a sigmoid function. Furthermore, the new

Figure 3. Feed-Forward Neural Networks (FNN) in comparison to Recurrent Neural Networks
(RNN).
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Figure 4. Architecture of an LSTM cell of a Recurrent Neural Network (RNN).

Based on the previous hidden state ht−1 and the current state xt, the forget gate output
ft is calculated using a sigmoid function. This aims to keep or forget information from
previous cell state Ct−1. Next, new information is stored in the cell state. Therefore, an input
gate is used. It consists of a sigmoid layer which decides which values to update (input
gate output it) and a tanh layer, which determines new candidate values C̃t. The new cell
state Ct is calculated using the forget gate output ft, the old cell state Ct−1, the input gate
output it, and the new candidate values C̃t.

Ct = ft · Ct−1 + it · C̃t (3)

The output ot of the Output Gate is calculated by passing both the previously hidden
state ht−1 and the current input xt through a sigmoid function. Furthermore, the new cell
state Ct is applied to a tanh function. The current hidden state ht is finally calculated by
multiplication as follows.

ht = ot · tanh(Ct) (4)

It should be noted that not all LSTMs are equal. A popular version of an LSTM
including so-called peephole connections, for example, was introduced by [34]. Apart from
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that, there are LSTM modifications without the output gate called Gated Recurrent Unit
(GRU) [35].

4. Implementation
4.1. Choosing Data Sources

In Figure 1, different influences on the driving profile were identified through anal-
ysis of related work. However, as already stated earlier, the focus of this paper is on
information provided from map data. Therefore, the road slope, the legal speed limit,
the curvature, traffic signals, stop- and give way signs are determined for predictions.
Three providers of relevant data are investigated in the following, a selection is made based
on the following criteria.

1. Available map data and road attributes
2. Cost of use of the provider (free availability is to be aimed at)
3. Quality of the data (accuracy, completeness, up-to-dateness)
4. Effort of data processing

Google Maps is supposed to provide very up-to-date and accurate data [36]. However,
the service is limited for private users, especially in the case of free application. HERE
provides a larger selection of road attributes, and data are also considered to be both
up-to-date and accurate [37]. However, HERE also has the problem of limited usability due
to a limit on the number of calls per time. Compared to the other two providers, Open Street
Map (OSM) has the advantage that it can be used free of charge without restriction. This
includes a wide range of both infrastructure data and road attributes. However, certain
data, such as current traffic data, cannot be taken from the database. An overview of the
available infrastructure data of the individual providers can be found in Figure 5.
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Regarding the criteria listed above, OSM is chosen as an appropriate solution. Numer-
ous uses of OSM in an academic setting demonstrate a sufficient accuracy and reliability of
the data. An example of this is an application for localization using OSM by [38]. A study
on a quality assessment of OSM data is provided by [39]. Research by [40] suggests a major
influence of road slope. However, OSM does not have sufficient coverage of the map with
elevation data. Therefore, data are enriched with elevation data provided by Shuttle Radar
Topography Mission (SRTM). SRTM data are remote sensing data of the Earth’s surface,
which were conducted in 2000 by the National Aeronautics and Space Administration
(NASA). It has a resolution of one arc second and covers almost all important land areas
on Earth. The resolution of one arc second corresponds to a grid constant of about 30 m
(depending on the latitude).

4.2. Importing Data Including Matching

In [8] a comprehensive dataset, which includes 4500 km of real driving cycles, was
already discussed in detail. It includes four different drivers and covers the entire spectrum
from city driving, to country road driving, through to highway driving. In a first step
of this work, a selection of the driving data of various test drivers is imported. The data
were tracked at a constant rate of 1 s as can be seen in Figure 6: A reduction of velocity,
for example in a curve, leads to the tracking points becoming significantly closer.



Vehicles 2022, 4 814

Version July 6, 2022 submitted to Vehicles 7

4.2. Importing Data Including Matching194

In [8] a comprehensive dataset, which includes 4500 km of real driving cycles,195

was already discussed in detail. It includes four different drivers and covers the entire196

spectrum from city driving, to country road driving, through to highway driving. In a197

first step of this work, a selection of the driving data of various test drivers is imported.198

The data were tracked at a constant rate of 1 s as can be seen in Figure 6: A reduction199

of velocity, for example in a curve, leads to the tracking points getting significantly200

closer. In a next step, relevant OpenStreetMap (OSM) data is downloaded from Geofabrik

49°N

49°01’N

49°02’N

La
ti

tu
de

8°22’E 8°24’E 8°26’E
Longitude

Start

End

0.5 mi
1 km

©OpenStreetMap contributors 200 ft
50 m

©OpenStreetMap contributors

Figure 6. Visualization of available driving data
201

[41]. After reducing data using Osmosis [42], further preprosssing is done with two202

Matlab functions called xml2struct [43] and parse_openstreetmap [44]. Finally, two Matlab203

structs are available. One struct includes nodes, fetched from OSM. Nodes are points204

of interest, which are defined by their coordinates, the specific attributes of the node205

(for example whether a traffic signal is there), and an individual ID. Nodes are further206

assigned to so-called ways, which represent the second struct. Ways can be interpreted207

as streets, which also can have specific attributes, such as legal speed limits. In a next208

step, elevation data of SRTM is downloaded from [45]. The data is visualized in Figure209

7, where the alps can be seen clearly. Also, e.g, the elevation around venezia at sea level210

(12°E, 45°N) and the swabian alps, at a height of around 800 m at 9.5°E, 48.5°N can be211

identified clearly.212

44°N

46°N

48°N

50°N

La
ti

tu
de

6°E 8°E 10°E 12°E 14°E
Longitude

©OpenStreetMap contributors50 mi
100 km

Latitude

Lo
ng

itu
de

9°E

10°E

11°E0
45°N 46°N 47°N 12°E48°N

1000

49°N

2000

3000

El
ev

at
io

n/
(m

)

Figure 7. Visualisation of SRTM data points in Map (left) and corresponding elevation data (right)
213

While the enrichment with SRTM elevation data is done by a simple 2D interpola-214

tion, a challenge lies in the efficient matching of the GNSS tracks with the relevant data215

from the OSM structs. For this, the data-driven method KDTreeSearcher from Matlab is216

used. In Figure 8, the route already presented in Figure 6 is plotted including the streets217

considered by the developed matching algorithm (black lines). Also, the identified nodes218

Figure 6. Visualization of available driving data.

In a next step, relevant OpenStreetMap (OSM) data are downloaded from Geofabrik [41].
After reducing data using Osmosis [42], further preprosssing is performed with two Matlab
functions called xml2struct [43] and parse_openstreetmap [44]. Finally, two Matlab structs are
available. One struct includes nodes, fetched from OSM. Nodes are points of interest, which
are defined by their coordinates, the specific attributes of the node (for example whether a
traffic signal is there), and an individual ID. Nodes are further assigned to so-called ways,
which represent the second struct. Ways can be interpreted as streets, which can also have
specific attributes, such as legal speed limits. In a next step, elevation data of SRTM are
downloaded from [45]. The data are visualized in Figure 7, where the alps can be seen
clearly. Furthermore, e.g., the elevation around venezia at sea level (12 °E, 45 °N) and the
swabian alps, at a height of around 800 m at 9.5 °E, 48.5 °N can be identified clearly.
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Figure 7. Visualisation of SRTM data points in Map (left) and corresponding elevation data (right).

While the enrichment with SRTM elevation data is achieved by a simple 2D inter-
polation, a challenge lies in the efficient matching of the GNSS tracks with the relevant
data from the OSM structs. For this, the data-driven method KDTreeSearcher from Matlab is
used. In Figure 8, the route already presented in Figure 6 is plotted including the streets
considered by the developed matching algorithm (black lines). Furthermore, the identified
nodes from traffic signals (TS, green points), give way (GW, blue points), and stop (black
points) are marked.

Additionally, the legal speed limit is appropriately detected, even when it is sensitive
to the direction.
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Figure 9. Visualisation of two-step filter methodology for velocity calculation on exemplary plot

As can be seen in Figure 9, obvious outliers can be well corrected with the first234

filter, (see Filter 1 Only signal in plot on the left). Further filtering with the low-pass235

filter eliminates high-frequency disturbances (see Final Signal on the right). However,236

especially the plot on the left reveals that also the reference signal is biased and therefore237

only provides limited information.238
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years. For example, it can be assumed that the vehicle moves between three points of241

the GNSS track on a circle section. By knowing the position of the current point, the242

coordinates of the point at time tt−1 and the next point tt+1, the radius of the assumed243

circle at time tt can be calculated. However, the results with this simple geometric244

approach are not satisfactory due to the inaccuracies in the GNSS measurements.245

Figure 8. Visualisation of identified OSM Data including GNSS track, traffic signal (TS), give way
(GW), and stop.

4.3. Calculating Velocity

To ensure a robust velocity calculation from the GNSS tracks, a two-step filter method-
ology is developed: In the first step, a maximum acceleration and deceleration are defined
for the individual test vehicle used on the basis of [46], which are stored in a lookup table
as a function of the velocity. Incorrect measurements resulting from a jump in the GNSS
signal (see Raw Data) are then overwritten using a linear interpolation between the first
and last valid data points (see Filter 1 Only). In the second step, a lowpass filter is used
to calculate the Final Signal. The optimal normalized passband frequency is found through
an RMSE comparison between final signal and reference signal (Reference). This reference
velocity is calculated independently using an alternative calculation. The effects on two
exemplary sequences are presented in Figure 9.
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Figure 9. Visualisation of two-step filter methodology for velocity calculation on exemplary plot.

As can be seen in Figure 9, obvious outliers can be well corrected with the first filter,
(see Filter 1 Only signal in plot on the left). Further filtering with the low-pass filter
eliminates high-frequency disturbances (see Final Signal on the right). However, the plot on
the left especially reveals that the reference signal is also biased and therefore only provides
limited information.

4.4. Calculating Road Curvature

Various approaches to calculating curvature have been worked out during the last
years. For example, it can be assumed that the vehicle moves between three points of the
GNSS track on a circle section. By knowing the position of the current point, the coordinates
of the point at time tt−1 and the next point tt+1, the radius of the assumed circle at time
tt can be calculated. However, the results with this simple geometric approach are not
satisfactory due to inaccuracies in the GNSS measurements.

To ensure robust use, another two-step filter methodology is applied: In the first step,
the path is smoothed by use of smoothPathSpline from Matlab Automated Driving Toolbox
which smoothens the vehicle path using cubic spline interpolation and therefore calculates
new data points with a constant distance. In the second step, the bearing φ is calculated to
a specified axis for each timestep, which is finally filtered again by a low-pass filter, similar
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to Section 4.3. Finally, the curvature is calculated using κ = dφ
ds , whereby dφ represents the

change of bearing to the specified axis, and ds stands for the corresponding path section of
the track.

For validation, the proposed algorithm is applied to the exemplary driving cycle
which has already been presented in Figure 6. The goal is to determine the radius of the
Adenauerring in Karlsruhe, Germany by using the proposed algorithm (see Figure 10).
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Figure 10. Two-step filter methodology for curvature calculation: Visualisation of the
smoothPathSpline (left) and calculated bearing and curvature (right) using the lowpass filter
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without any further quantification of the exact curvature is considered in this work,264

the authors define the proposed algorithm as sufficient. Finally, a suitable threshold is265

defined. When it is exceeded by curvature κ, a significant influence on velocity can be266

expected and a curve flag is output by the curvature algorithm.267
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comparing the black dotted line from the raw signal (Elevation Raw) to the black solid274

line (Elevation Filtered) in the zoom plots of Figure 11 (bottom). Macroscopic fluctuations,275

which sometimes extend over several kilometres as in the case of Landecker Tunnel, Aus-276

tria (see map in Figure 11), however, cannot be reliably detected and eliminated.277

In such a case, the SRTM data represent the actual height of the mountain passed through,278

but not the height of the actual road. Apart from that, there are no measurements in the279
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Figure 10. Two-step filter methodology for curvature calculation: Visualisation of the smoothPathSpline
(left) and calculated bearing and curvature (right) using the low-pass filter.

In the left plot of Figure 10, both the Raw Data and the Smoothed Data of the GNSS data
can be seen. A radius of 1125 m can be calculated through cycle approximation. In the right
plot, the calculated bearing signal is plotted, both with the low-pass filter (black line) and
without (grey line). Furthermore, final curvatures are presented (red line). A ∆bearing ≈ 150°
over a distance of d ≈ 2600 m can be estimated roughly from the right plot, which in turn
leads to a radius R ≈ 1000 m. It can be concluded that there is a ≈ 10% deviation from the
proposed bearing algorithm. As only a curve detection without any further quantification
of the exact curvature is considered in this work, the authors define the proposed algorithm
as sufficient. Finally, a suitable threshold is defined. When it is exceeded by curvature
κ, a significant influence on velocity can be expected and a curve flag is output by the
curvature algorithm.

4.5. Calculating Road Slope

For the calculation of road slope, a two-step filter methodology is also applied to the
elevation signal resulting from interpolated SRTM data (see Section 4.2), visualized by a
black dotted line in Figure 11.

In a first step, a filter for detecting and eliminating small jumps in the Elevation Raw
signal is used to reduce oscillations in the microscopic range. This can be seen when
comparing the black dotted line from the raw signal (Elevation Raw) to the black solid line
(Elevation Filtered) in the zoom plots of Figure 11 (bottom). Macroscopic fluctuations, which
sometimes extend over several kilometres as in the case of Landecker Tunnel, Austria (see
map in Figure 11), however, cannot be reliably detected and eliminated.

In such a case, the SRTM data represent the actual height of the mountain passed
through, but not the height of the actual road. Apart from this, there are no measurements
in the tunnel itself. As a result, the black dotted line (Elevation Raw signal) at 375 km rises to
about 940 m when entering the tunnel. From there, it is interpolated to the next measured
GNSS point at the end of the tunnel (750 m at 380 km). As such big jumps cannot be
handled properly by the proposed filter algorithm, see black solid line (Elevation Filtered),
the Elevation Reference signal, represented by a blue line, is used for further calculations in
this work.
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Hereby, in a second step, according to [47], a Butterworth filter is applied to the
Elevation Reference measurement. Lastly, the slope is calculated from the filtered elevation
signal (see Calc. Slope). For validation of the algorithm, both final elevation and slope data
for the driven alp-crossing route are compared to literature data.
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Figure 11. Two-step filter methodology for road slope calculation using an alps traverse journey.
The raw elevation signal from interpolated SRTM data is represented by a black dotted line.
Applying the first filter algorithm, the filtered elevation signal is calculated (black solid line).

Elevation Reference signal is represented by a blue solid line. The resulting calculated road slope
from the Elevation Reference signal after applying a Butterworth filter is visualized by the red solid

line.
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Figure 11. Two-step filter methodology for road slope calculation using an alps traverse journey.
The raw elevation signal from interpolated SRTM data is represented by a black dotted line. Ap-
plying the first filter algorithm, the filtered elevation signal is calculated (black solid line). Eleva-
tion Reference signal is represented by a blue solid line. The resulting calculated road slope from the
Elevation Reference signal after applying a Butterworth filter is visualized by the red solid line.

4.6. Short Range Predictions

As already stated, investigations by [8] revealed that AI should be preferred over
other approaches such as MC for the prediction of traction torque. Therefore, in Section 3,
the basics of RNN and LSTMs were introduced which are particularly interesting for time-
series predictions. In this work an Encoder–Decoder LSTM (from now on called ED-LSTM)
is implemented for multivariate, multi-step time series forecasting using Keras. Keras is
a TensorFlow platform-based neural network library. Multivariate means that multiple
variables are collected as input for the analysis. Multi-step means that several timesteps are
to be predicted. Using an Encoder–Decoder configuration enables the opportunity to apply
sequences of varying lengths to one another. This can be of benefit, when considering a
longer horizon in the input than that of the actual prediction output. An ED-LSTM consists
of three components: encoder, intermediate vector, and decoder. Both the encoder and
decoder contain several LSTMs. The encoder reads the input sequence and summarizes
the hidden state and cell-state information. The encoder’s output is a fixed-length vector
that indicates how the model interprets the sequence. The first cell of the decoder network
receives the vector from the encoder’s final cell. For each time step, it finally calculates
the output yt [21,48,49]. A simplified scheme of the applied ED-LSTM for multivariate,
multi-step time-series forecasting can be seen in Figure 12.
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Figure 12. Architecture of the implemented ED-LSTM in multi-step, multivariate application for
an exemplary prediction horizon of 3 s. The input data includes both past velocity timesteps (vi)

and future information about slope (slpi), traffic signals ( f lagTSi), give way signs ( f lagGWi),
curves ( f lagCvi) and the legal speed limit (vmaxi ). The output of the ED-LSTM represents the

future velocity for the prediction horizon of 3 s
.
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Figure 12. Architecture of the implemented ED-LSTM in multi-step, multivariate application for
an exemplary prediction horizon of 3 s. The input data include both past velocity timesteps (vi)
and future information about slope (slpi), traffic signals ( f lagTSi), give way signs ( f lagGWi), curves
( f lagCvi) and the legal speed limit (vmaxi ). The output of the ED-LSTM represents the future velocity
for the prediction horizon of 3 s.

For the input data, every state consists of both several velocity steps from the past
and future infrastructure data. The output is defined by future velocity steps. Within the
framework of the modelling, it is assumed that the last known velocities in combination
with the future route information enable the best possible determination of the future
velocity profile. As stated, the lengths of the inputs and outputs can also be different when
ED-LSTMs are applied. In the context of this work, however, inputs have the same lengths
as outputs. In other words, for a 10 s prediction into the future, past velocity values of
a 10 s timespan are chosen. An appropriate amount for the LSTM units is determined
through parameter studies, which are not further discussed at this point. In this work,
the number of units is set according to the number of timesteps Ntimesteps,predhorizon to be
predicted. Furthermore, similar to FNN, an activation function is needed, whereby the
Rectified Linear Unit (ReLu) is chosen. As a Loss function, the Mean Squared Error (MSE)
is calculated. The final parametrization including Learning Rate, Batch Size, Epochs,
and chosen optimizer can be seen in Table 1.

Table 1. Parameters for RNN for 10 s prediction.

LSTM Units Ntimesteps,predhorizon
Optimizer Adam

Loss Function Mean Squared Error (MSE)
Activation Function Rectified Linear Unit (ReLU)

Learning Rate 0.01
Batch Size 1400

Epochs 1000

The parameterization of the FNN has already been discussed in detail in [8] and has
been adopted for this work. However, the number of inputs is increased by the number
of variables to be considered. With a 10 s prediction and 5 variables from map data,
for example, the architecture of the FNN consists of 60 inputs. In contrast to LSTM, the time
order and a separation of the different variables are not included in the model architecture
of the FNN.
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5. Results

Preprocessing including all applied substeps is already discussed in detail in the
explanations about implementation (Section 4). Therefore, the following statements are
limited to the quantitative and qualitative analyses of the results from ED-LSTM and
FNN. In terms of calculating the optimal control for an HEV, the crank torque is needed,
which can be calculated from the wheel torque taking into consideration the wheel radius
as well as the gearbox ratios. The wheel torque, in turn, is impacted by vehicle-specific
parameters and driving cycle-specific variables such as velocity, acceleration, and road
slope [8]. As road slope is known for a given route from the start of the trip, this variable
will not be analyzed. Accordingly, the analysis focuses on the predictions of velocity
and acceleration.

5.1. Analysis of RMSE Values (Quantitative Analysis)

Tables 2 and 3 show the RMSE values between actual profile and predicted profile for
three different prediction horizons (10 s, 20 s, and 30 s). This includes velocity (RMSEv)
and acceleration (RMSEa). A direct comparison was also made with FNN, which was
already presented in [8]. Table 2 lists the predictions without taking map data into account.
Here, both ED-LSTM and FNN were trained on the velocity profiles only, on the lines of
the explanations from [8]. In contrast to Table 2, in Table 3, the infrastructure data were
taken into account, similar to Figure 12.

Table 2. RMSE without map data for different prediction horizons.

Horizon 10 s Horizon 20 s Horizon 30 s

ED-LSTM FNN ED-LSTM FNN ED-LSTM FNN
RMSEv km/h 6.43 7.74 12.23 14.10 16.44 17.84
RMSEa m/s2 0.52 0.57 0.59 0.62 0.65 0.66

Table 3. RMSE with map data for different prediction horizons.

Horizon 10 s Horizon 20 s Horizon 30 s

ED-LSTM FNN ED-LSTM FNN ED-LSTM FNN
RMSEv km/h 5.33 6.46 5.77 9.29 10.31 11.82
RMSEa m/s2 0.48 0.52 0.49 0.56 0.58 0.60

Comparing Table 2 (without map data) and Table 3 (with map data) reveals that
ED-LSTMs always deliver better results than FNN. This statement is valid for all prediction
horizons examined, both for the RMSE values of velocity RMSEv and acceleration RMSEa.
This observation is in line with the generally known statement that ED-LSTMs deliver
better results for time-series predictions. In addition, it can be seen that lower RMSE can be
achieved at all times when using map data (Table 3).

Looking in detail, it is revealed that improvements of the RMSEv for ED-LSTMs
compared to the application of FNN when using a 10 s prediction horizon are at around
10%. (7.74 km/h vs. 6.43 km/h). The relative error of the RMSEv for 20 s and 30 s window
is similar: 12.23 km/h (ED-LSTM) vs. 14.10 km/h (FNN) and 16.44 km/h (ED-LSTM) vs.
17.84 km/h (FNN). Using map data (Table 3) leads to improvements of about 10% for both
ED-LSTM and FNN for the 10 s window of the RMSEv: An improvement of 6.43 km/h
to 5.33 km/h can be detected for the ED-LSTM, and 7.74 km/h vs. 6.46 km/h for the
FNN. For the 20 s window, however, using map data leads to significant improvements of
about 40%: RMSEv is reduced from 12.23 km/h to 5.77 km/h for the ED-LSTM. For the
FNN, RMSEv reduction is from 14.10 km/h to 9.29 km/h. For the 30 s horizon, a sim-
ilar improvement can be seen. The observed RMSEa values always correlate with the
RMSEv values.
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5.2. Analysis in Time Domain (Qualitative Analysis)

In Figure 13, (top), the relevant map data are displayed as a flag over time for a section
of a given route. According to Figure 12, this includes curves (grey), traffic signals (violet),
and give ways (yellow). In addition, in a further plot, the legal speed limit from map data
is visualised (red line). Furthermore, the corresponding real driving profile is presented
(blue line). The predictions of the ED-LSTM are plotted by a light grey and dark grey line,
both for a prediction horizon of 20 s. The predictions in light grey, represent predictions
without any knowledge of map data (see Table 2). The predictions in dark grey represent
predictions including map data (see Table 3) as presented in Figure 12.

A correlation between the velocity profile-driven (blue line) and the identified map
data can be recognised. At t = 120 s, both a give way sign and a curve are detected.
Although the vehicle does not stop, the curve causes a significant reduction in velocity to
≈30 km/h. The velocity of the vehicle is also reduced at t = 180 s. However, a stop resulting
from the traffic lights at t = 200 s is not recognisable, either. It is unclear whether the velocity
reduction results from the curve or from a back-up of the red traffic light, which just turned
green again. At t = 340 s, the traffic signal is clearly green and thus has no influence on
the velocity profile. At t = 280 s and t = 380 s, there is obviously a stop due to the detected
traffic lights.

An analysis of the breaking manoeuvres demonstrates that the ED-LSTM can predict
a breaking manoeuvre much more precisely than without knowledge of the map data.
This can be seen particularly well in the driving situations at t = 120 s, t = 180 s, t = 280 s,
and t = 380 s (green circles). The ED-LSTM without knowledge of the map data predicts
a velocity profile without any major dynamics (light grey lines) in all driving situations.
The ED-LSTM with knowledge of the map data, on the other hand, predicts an appropriate
breaking manoeuvre as soon as the flag has moved into the prediction horizon (20 s).
However, unrealistic predictions are also issued in some cases, which are avoided in the
ED-LSTM without map data (see t = 130 s). This is because of the higher complexity of
the RNN when map data are taken into account. An increase in the training data could
provide a solution to this problem.
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Figure 13. First exemplary test sequence using ED-LSTM 20 s prediction horizon.

As visualized in Figure 14, there are also standing phases that cannot be explained
directly with map data. From t = 320 s to t = 380 s, there is a standstill in a curve situation.
The reason is not clear, however, a tailback from the traffic light at t = 390 s is possible.
Clearly, the ED-LSTM with map data predicts the standphase much more accurately than
the one without map data. The problem of inaccurate stand phase predictions was already
identified as a weakness of the FNN in [8]. Although this weakness also occurs analogously
with the ED-LSTMs when no map data are available, the ED-LSTMs taking map data into
account seem to predict these situations much better.
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Moreover, t = 420 s demonstrates another weakness of the proposed implementation:
When a traffic light occurs (420 s), breaking manoeuvres are predicted from t = 410 s on,
until the traffic light situation is overcome without breaking. Predictions using the map
data are obviously worse than those without using the map data, as can be seen by the
corresponding light grey and dark grey predictions. Knowledge about the status of the
traffic lights, for example via camera information, could possibly make the predictions
much more precise.

It should be considered whether in a further development of the model, instead of
the specified time horizon, a specific future distance of x m should be used as input for
the ED-LSTM. For implementation in a real vehicle, an assumption regarding upcoming
velocity has to be made to transfer the map information from the distance domain to the
time domain.

6. Conclusions

It was shown how an existing robust generic approach to the prediction of traction
torque-relevant variables can be extended. This extension focuses on the consideration
of map information in the case of an a priori known route and the availability of the
corresponding GNSS signal.

An analysis of related work revealed that the influences on the driving profile are
complex and a consideration in the driver model is challenging. Therefore, the paper
focuses on the utilization of Artificial Neural Networks (ANNs). These are particularly
suitable for modelling systems whose physical foundations are not easy to describe or are
even unknown. At the same time, a robust use can be ensured for the chosen application.
Additionally, in the course of the work, map data were added to raise prediction accuracy.
The most suitable map data provider was selected based on defined criteria. Next, GNSS
tracks were enriched using both Open Street Map (OSM) data and data from the Shuttle
Radar Topography Mission (SRTM). Positions of traffic signals, give way signs, and stops
as well as maximum legal velocity were identified properly. Furthermore, velocity, road
curvature, and road slope were determined. After preprocessing, Long Short-Term Memory
(LSTM) cells from the field of Recurrent Neural Networks (RNNs) in an Encoder–Decoder
configuration (ED-LSTM) were applied, as they are particularly suitable for time-series
predictions. Additionally, a comparison to Feed-Forward Neural networks was given. Both
ANNs were applied to the driving profiles and evaluated with regard to their predictive
quality: After calibrating the models appropriately, quantitative analyses regarding RMSE
values and qualitative analyses in the time domain were successfully performed for each
approach. Regarding the quantitative analysis, it became clear that ED-LSTMs consistently
outperform FNN. This assertion holds true for all of the prediction horizons investigated
and the RMSE values of velocity RMSEv and acceleration RMSEa. This finding is consis-
tent with the widely held belief that ED-LSTMs perform better in time-series prediction.
Furthermore, it was observed that when employing map data, lower RMSE values are
reached at all times. From the qualitative analyses of the ED-LSTM, it could be confirmed



Vehicles 2022, 4 822

that identified map data are considered properly. However, the limits were revealed,
for example in the case of a green traffic light.

To summarize, ED-LSTM should be preferred over FNN, and considering map data
in the predictions provides additional benefits regarding prediction accuracy. Further
work should deal with how the ED-LSTM can be enriched with additional information
to make the predictions more precise. The easy expansion allows the use of Radar, Lidar,
and camera or additional data from C2C, C2X if these are accessible. This should make it
easier to predict standstill phases that cannot be explained by map data or, for example,
to predict that a stop will not be made if the traffic light is green. This higher prediction
accuracy allows the energy management strategy to optimize more accurately and, thereby,
ultimately allows getting closer to the global optimal solution.
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