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Abstract: Self-driving features rely upon autonomous control of vehicle kinetics, and this manuscript
compares several disparate approaches to control predominant kinetics. Classical control using
feedback of state position and velocities, open-loop optimal control, real-time optimal control, double-
integrator patching filters with and without gain-tuning, and control law inversion patching filters
accompanying velocity control are assessed in Simulink, and their performances are compared. Opti-
mal controls are found via Pontryagin’s method of optimization utilizing three necessary conditions:
Hamiltonian minimization, adjoint equations, and terminal transversality of the endpoint Lagrangian.
It is found that real-time optimal control and control-law patching filter with velocity control incorpo-
rating optimization are the two best methods overall as judged in Monte Carlo analysis by means
and standard deviations of position and rate errors and cost.
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1. Introduction

Vehicle kinetics are commonly studied using predominant kinetics represented by dou-
ble integrators equivalently for translation and rotation, neglecting coupling cross-products
generated by the transport theorem for representing motion in the basis coordinates of rotat-
ing reference frames. Invocation of the Michel Chasles’s Theorem [1] permits a full descrip-
tion of six-degrees-of-freedom motion by assertion of Euler’s [2] and Newton’s [3] equations.
Controlling mechanical motion has an even longer pedigree culminating in utilization of
deterministic artificial intelligence as a burgeoning field proposed by Cooper/Heidlauf in
2017 [4], expanded to space vehicles by Smeresky/Rizzo [5] and after the introduction of
autonomous trajectory generation by Baker et al. [6] formalized as a process that very same
year [7] and proven to be optimal. The provenance of the approach stems from nonlinear
adaptive control as proposed by Slotine [8], modified by Fossen [9], and improved in 2012
with experimental validation [10], while Cooper/Heidlauf formulated the Slotine/Fossen
feed-forward element as a deterministic statement of self-awareness. The physics-based
methods of Lorenz [11,12] provided the formalization which amplified the importance
of the first principles [1–3] to establish physics-based statements of self-awareness. In
Reference [13], simple adaption techniques remained prevalent until the codification of
optimal learning by Smeresky/Rizzo in 2020. One noteworthy feature is the ubiquitous
applicability to such disparate fields as described so far include: spacecraft, robotics, and
power electronics. Additionally, Rätze et al. [14] leverage the physics-based methods for
optimal control of a CO2 methanation reactor. Bukhari et al. [15] leveraged the methods
to monitor and mitigate megacities air pollution. Thus, the utility of this present study is
manifest. Deterministic artificial intelligence necessitates autonomously generated trajecto-
ries [16], therefore presented here is a comparison of techniques to autonomously generate
optimal trajectories that minimize fuel usage. Trajectory research was evident immediately
by Cooper/Heidlauf following their seminal publication, the work that immediately fol-
lowed concentrated on autonomous vehicle trajectory generation [17] and substantiation of
sensor-less state error tracking [18] since the optimal regulator performed so poorly. Shortly

Vehicles 2022, 4, 1109–1121. https://doi.org/10.3390/vehicles4040059 https://www.mdpi.com/journal/vehicles

https://doi.org/10.3390/vehicles4040059
https://doi.org/10.3390/vehicles4040059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com
https://orcid.org/0000-0003-4431-9083
https://orcid.org/0000-0002-4681-7919
https://doi.org/10.3390/vehicles4040059
https://www.mdpi.com/journal/vehicles
http://www.mdpi.com/2624-8921/4/4/59?type=check_update&version=1


Vehicles 2022, 4 1110

thereafter, Cooper collaborated with Smeresky to produce the combination of their efforts
to date [19]. This combined work initiated the several lines of research proposals since 2020
seeking to optimize the current instantiation of deterministic artificial intelligence.

Optimization [20] can take many forms: linear quadratic optimal feed-back regula-
tor [21], time-optimal [22], minimum fuel [23], minimum tracking error [24], etc., where
minimum tracking error methods were proposed to facilitate autonomous vehicle collision
avoidance [25]. These are directly compared in [26] using several figures of merit in the
face of parameter uncertainty and noisy sensor fusion: state tracking error, rate tracking
error, fuel consumption, and computational burden.

This article recommends the best method (of six methods compared) for moving a
vehicle from an initial normalized state of zero to a final normalized state of unity in a
scaled-time of one second in the presence of uncertain mass and mass moments of inertia,
and noisy state and rate sensor data. Uncertainty in the moment of inertia is assumed
uniform ±10%, while uncertainty in state and rate is assumed Gaussian with zero mean µ,
and standard deviation σ of 0.01.

Six methods are derived, modeled, and compared in simulation experiments:

1. P+V Control (proportional control plus velocity negation);
2. Open-loop optimal control (feedfoward);
3. Real-Time Optimal Control (RTOC) (feedfoward plus feedback);
4. Double-Integrator patching filter with P+V control;
5. Double-integrator patching filter with gain-tuning for P+V control;
6. Control law inversion patching filter with P+V control.

The methods for implementing these control schemes is outlined in the following
sections. Section 2 establishes a benchmark control for comparison, namely velocity control
augmenting state feedback. Section 3 describes the methods for ascertaining the control
minimizing state, rate, and acceleration trajectories and optimal control utilizing Pon-
tryagin’s minimization condition, the adjoint equations, and terminal transversality of
the endpoint Lagrangian. Following the introduction of optimization methods, slight
modifications are introduced to enable real-time optimization based on noisy sensor data.
Section 4 introduces methods to incorporate the optimization results from Section 3 into
a pre-existing system designed without optimization in mind. Three so-called patching
filters are introduced: the double-integrator patching filter, a gain-tuned double-integrator
patching filter, and a control law inverting patching filter. Section 5 presented the results
of one-thousand simulation experiments using the models developed in Sections 3 and 4
and figures of merit are presented to reveal relative superiority compared to the classical
benchmark controller.

2. Materials and Methods

Methods are developed with variables defined in proximal tables (e.g., Tables 1 and 2),
where simulatoin topologies are provided in Appendix A to aid repeatability.

2.1. Classical Benchmark Control

Using an end time of t f = 1, a P + V Control System is used with gain parameters
tuned to performance specifications using the closed-loop system Equation (1) below [26].
The following equation is used to match desired rise and settling times to position and
velocity gains KP and KV .

Iẍ + KV ẋ + KPx ⇐⇒ u = KP(xd − x)− KP ẋ (1)

x(s)
xd(s)

=
KP

Is2 + KVs + KP
→ C.E. : s2 + KVs + KP|I=1 = s2 + 2ξωns + ω2

n (2)

The damping coefficient is ξ = 0.7, and the desired settling time is ts = 0.6. The settling
time is defined as the time it takes for oscillation to stabilize within 2% of steady state
ts = 4.6

ξωn
→ ωn = 4.6

tsξ → ωn = 10.95 → KV = 2ξωn → KV = 15.33. The rise time is
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tr =
1.8
ωn

= 0.164→ KP = ω2
n = 119.95, giving KP = 119.95 and KV = 15.33. ts is set to 0.6 s

to ensure settling time before the stop time of 1, so that θ f and ω f can be compared to their
desired final values of 1 and 0, respectively. In the following analysis, µθ̂ f

, σθ̂ f
, µω̂ f , σω̂ f ,

µJcost , and σJcost are figures of merit compared across the four error simulations specified in
the previous section. Here, µ denotes the average value of the subscripted parameter over
N = 1000 Monte Carlo simulations, and σ denotes the standard deviation.

Table 1. Proximal variable definitions.

Variable Definition Variable Definition

xd Desired state trajectory ξ Critical damping ratio
KP Proportional gain ωn Natural frequency
KV Velocity gain ts Settling time
I Moment of inertia tr Rise time

2.2. Finding the Optimal Control

To develop a real-time optimal controller using Pontryagin’s Optimization Principles,
an analytic solution for optimal state and rate trajectories will be found given certain
constraints and arbitrary initial and final conditions (θ0, ω0) and (θ f , ω f ), with arbitrary
start and end times t0 and t f . Here, I is the moment of inertia of the vehicle, and τ is the
torque applied.

The goals are as indicated in Equation (3):

Minimize Jcost[x(·), u(·)] = 1
2

∫ t f

t0

τ2(t)dt

Subject to θ̇ = ω

ω̇ =
τ

I
(θ0,ω0)

(θ f ,ω f )

t0

t f

(3)

Jcost, the quadratic cost function, is chosen to be 1
2

∫ t f
t0

τ2(t)dt because it scales with
applied torque (and thus proportional to fuel usage), is positive-definite, and increases
with time.

A Hamiltonian is defined as a new cost function that allows one to define a running cost
F that can increase as a function of time, an endpoint cost E(θ f ) that penalizes inaccuracy in
final state, and endpoint constraints. Minimizing this and solving for optimal constants via
Pontryagin’s method leads to an optimal control scheme. To solve this double-integrator
quadratic control (DQC) problem, the following steps will be used:

1. Formulate the Hamiltonian;
2. Minimize the Hamiltonian;
3. Formulate the Adjoint Equations;
4. Apply Terminal Transversality of the endpoint Lagrangian.

Finally, the resulting solution will be given in a matrix form which allows for the
optimal solution to be found at every time step, leading to RTOC.

2.2.1. Formulate the Hamiltonian

There is no endpoint cost E(θ f ) specified and only the running cost F is present. F is
defined as the integrand of Jcost:

F =
1
2

τ2 (4)
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The state-space form of ẋ = f (x, u, p) is

f (θ, τ, I) =
{

ω
τ
I

}
(5)

H = F + λT f (θ, τ, I) =
1
2

τ2 + λθω + λω
τ

I
(6)

2.2.2. Minimize the Hamiltonian

∂H
∂τ

= 0

τ +
λω

I
= 0

τ∗ = − λω

I

(7)

Here, the ’∗’ donates the optimal control or trajectory.

2.2.3. Formulate the Adjoint Equation

∂H
∂θ

= − λ̇θ

0 = λ̇θ

⇒ λθ = c1

(8)

where ci are constants.
∂H
∂ω

= − λ̇ω

λθ = −λ̇θ = c1

⇒ λω = −c1t + c2

(9)

⇒ τ∗ = −λω

I
=

1
I
(c1t− c2) = Iω̇∗

(c1t− c2) = I2ω̇∗

I2ω∗ =
1
2

c1t2 − c2t + c3

I2θ∗ =
1
6

c1t3 − 1
2

c2t2 + c3t + c4

(10)

In addition, using initial conditions and assuming I = 1,

(θ0, ω0)⇒ c3 = ω0, c4 = θ0 (11)

Using t′f = t f − t0 and t′ = t− t0, the final conditions imply as in Equation (12):

(θ f ,ω f )

⇒ c2 =
1
2

c1t f +
ω0 −ω f

t f

and θ f =
1
6

c1t′f
3 − 1

2
c2t′f

2 + c3t′f + c4

⇒ c1 = 12(
θ0 − θ f

t′f
3 ) + 6(

ω0 + ω f

t′f
2 )

⇒ c2 = 6(
θ0 − θ f

t′f
2 ) +

4ω0 − 2ω f

t′f

(12)
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Leading to the optimal trajectory and control:

τ∗ =
1
I
(c1t′ − c2)

I2ω∗ =
1
2

c1t′2 − c2t′ + c3

I2θ∗ =
1
6

c1t′3 − 1
2

c2t′2 + c3t′ + c4

(13)

This control is used for the open-loop guidance control.

2.2.4. Terminal Transversality of the Endpoint Lagrangian

The endpoint cost E(θ f ) is kept as 0:

E(θ f ) = 0 (14)

The endpoint function e(θ̄ f ) is set to equal zero:

e(θ̄ f ) =

[
θ f
ω f

]
−
[

1
0

]
=

[
0
0

]
(15)

Thus, the endpoint Lagrangian is

Ē(θ f , ν) = E + νTe(θ̄ f ) = 0 (16)

where ν is defined as the covector and is composed of the adjoints (λ) found in Section 2.2.3

ν =

[
λθ

λω

]
(17)

Because Ē(θ f , ν) = 0, there is no terminal transversality condition to be applied.
The optimal state and rate trajectory are shown in Figure 1.

Figure 1. Artemis missions, NASA will land the first woman and first person of color on the Moon,
using innovative technologies to explore more of the lunar surface than ever before image courtesy
NASA [27], image use in accordance with NASA image use policy: [28].
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2.2.5. Real-Time Optimal Control (RTOC)

At each time step, the simulation solves a matrix equation to find the best constants
−→p =

[
c1 c2 c3 c4

]
that will achieve the desired end state and rate given the current

state and rate. If no noise or external disturbances are present, these should always be
the optimal constants found in Equations (8) and (9). However, the presence of noise and
disturbances necessitates adjustment to reach the end goal. The form of the matrix equation
is taken directly from the set of linear equations found in Equations (10), (12), and (13) and
is presented as follows: [

T
]−→p =

−→
b (18)

t′3
6

−t′2
2 t′ 1

t′2
2 −t′ 1 0

t′f
3

6
−t′f

2

2 t′f 1
t′f

2

2 −t′f 1 0




c1
c2
c3
c4

 =


θ(t′)
ω(t′)

θ f
ω f

 (19)

[
T
]−1−→b = −→p (20)

[T] is defined as the matrix in Equation (19). −→p is defined as the vector of constants ci,
where I is absorbed into these constants when the matrix equation is solved.

−→
b is defined

as the vector of current and final state and rate as in Equation (19). Performing the matrix
inverse in Equation (20) solves for the optimal constants −→p at every time step.

The simulation was run with the optimal control, a moment of inertia of I = 1, t0 = 0,
t f = 1 s, (θ0, ω0) = (0, 0), and (θ f , ω f ) = (1, 0). Multiple matrix inverse solvers were tested
to see which performed best. The results are summarized in Table 2.

When |det[T]| ≤ 0.001, the control is switched to the open-loop optimal solution, as a
matrix with zero determinant is noninvertible, and the matrix inversion would provide a
diverging solution.

Table 2. Figures of Merit for RTOC implementing various MATLAB inversion techniques while
adding uncertainty. Gaussian noise in θ̂ and ω̂ of σ = 0.01 and Uniform Distribution of I = 1± 0.1
(N = 1000). Overall step size h=0.001 s. RTOC update rate h = 0.01 s.

Figure of Merit 1
[T] pinv([T])

µθ̂ f
−0.6178 1.0014

σθ̂ f
1.5996× 10−4 0.0035

µω̂ f −1.9737 0.0029
σω̂ f 2.0012× 10−4 0.0094
µJcost 3.1891 6.0167
σJcost 2.8279× 10−4 0.0218

MATLAB’s pinv([T]) was used to solve RTOC because of its greatly improved mean
error in state and rate over the 1/[T] method, and ability to prevent singularities. Other
methods were considered but were unusable. MATLAB was unable to use the [T]−1

function on this particular matrix. The inv([T]) and LU Inverse functions caused the matrix
values to diverge to infinity at the end of the simulation and were unusable. While the
determinant switch can switch to open-loop control and bypass the divergent solution,
MATLAB still attempts to calculate the matrix inverse, and fails due to the presence
of singularities. Both the overall integration time step and the update time step of the
RTOC matrix inversion are h = 0.01 s. Decreasing h results in higher accuracy but higher
computation time as well. Depending on the use case, higher accuracy may be preferable,
especially in the presence of greater uncertainty and external forces. h = 0.01 s was
found to perform well in accuracy while not requiring significant computation time for the
1 s simulation.
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The resulting constants from −→p are fed as the control as in Equation (13).

2.3. Patching Filters

Instead of feeding in the desired end state to the P+V controller, patching filters take
in the optimal control and feed in the desired current state as determined by the optimal
control. Here, except for the case of gain-tuning (Section 2.3.2), it is assumed that the gains
of the P+V controller cannot be altered from their form found in Section 2:

u(t) = (θd(t)− θ̂(t))KP − ω̂(t)KV (21)

where θd(t) is calculated in a few different ways:

2.3.1. Double-Integrator Patching Filter

Here, the open-loop optimal solution is fed into a double-integrator and fed as an
input to the P+V controller. The double-integrator model essentially feeds in exactly the
optimal trajectory θ∗(t) = θd(t) to the P+V controller instead of θ f ,d, the desired final state.

2.3.2. Double-Integrator Patching Filter with Gain-Tuning

Here, it is assumed that the gains in the P+V controller can be altered. By performing
manual tuning, KP = 280 and KV = 15.33 were found to work best in arriving at the desired
end state, correcting for errors that arose in the case of the double-integrator patching filter
without gain-tuning.. Higher or lower velocity gains worsened accuracy, while higher
position gains only increased the velocity. These newfound gains are used in the simulation
for the double-integrator patching filter with gain-tuning.

2.3.3. Control Law Inversion Patching Filter

Here, the open-loop optimal solution is fed into the following transfer function, which
is then fed as an input to the P+V Controller:

1
KP

[
s2 + KVs + KP

s2 ] (22)

This takes into account the fact the P+V controller gains will inherently change the
resulting θ(t) to one that is not the θ∗(t) fed in to the filter. This transfer function aims to
predict the effects that the P+V controller will have and input a θd(t) that counters that
effect to retain optimality. According to Equation (2), this inverts the effect of the P+V
controller, and adds a double-integrator (a factor of 1

s2 ) to it.

3. Results

A Monte Carlo simulation was run for each of the six methods using a uniform ±10%
uncertainty in I so that I varied from 0.9 to 1.1. The state and rate sensors are subject to
a Gaussian distribution of “white noise” with mean 0 and a standard deviation of 0.01.
N = 1000 simulations are done for each method. MATLAB’s ode4 Runge–Kutta integration
solver was used with a step size of h = 0.01 s.

State and rate data are taken prior to going through the noisy sensors. The large,
systematic diagonal spread in final state and rate values is most likely to stem from the
uniform uncertainty in I, not the noisy sensor data.

In Figure 2, the standard deviation ellipses plotted are those of the measured data in
θ f and ω f . In addition, 1, 2, and 3 standard deviations are plotted.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Monte Carlo simulations of six different controller schemes, n = 1000. Gaussian noise
in state and rate sensors with zero mean and σ = 0.01 and uniform uncertainty in I = 1± 0.1.
All simulations are run with ode4 Runge-Kutta integration with a step size of h = 0.01 s. (a) P+V
control, (b) open-loop optimal feedforward control, (c) real-time optimal control, (d) double-integrator
patching filter with P+V control. KP = 119.95 and KV = 15.33, (e) double-integrator patching filter
with gain-tuning of P+V control. KP = 280 and KV = 15.33, (f) control law inversion patching filter
with P+V control. KP = 119.95 and KV = 15.33.

4. Discussion

The results summarized in Table 3 will be compared and contrasted. It is noted that
state and rate data presented are “actual” final states and rates before passing through
noisy sensors.

It is clear from the results that the double-integrator patching filter without gain tuning
is the least accurate method. The errors in accuracy are four orders of magnitude higher
in state and rate than RTOC. While the quadratic cost of the maneuver is 28% lower than
the case of open-loop optimal control and RTOC, the loss in accuracy is too large for this
method to be considered a good option. With gain-tuning, the state error was decreased
by two orders of magnitude, making it the second-most accurate method for state out of
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the six. However, it still has a large, systematic error in rate, as well as a higher cost than
the double-integrator patching filter without gain-tuning and the control law inversion
patching filter. This systematic error makes the gain-tuning with double-integrator patching
filter also a relatively bad method.

Table 3. Figures of Merit for adding uncertainty to various control schemes. Gaussian noise in θ̂ and
ω̂ of σ = 0.01 and Uniform Distribution of I = 1± 0.1 (N = 1000). ode4 (Runge–Kutta) integration
with h = 0.01 s used.

Figure of Merit
P+V Control:
KP = 119.95,
KV = 15.33

Open-Loop
Optimal

Guidance
RTOC

Double-
Integrator

Patching Filter
KP = 119.95,
KV = 15.33

Gain-Tuning
with Double-

Integrator
Patching Filter

KP = 280,
KV = 15.33

Control Law
Inversion

Patching Filter
KP = 119.95,
KV = 15.33

µerr ˆθ f
0.001 0.0002 −6.4854× 10−5 −0.0484 7.3814× 10−4 1.4422× 10−5

σθ̂ f
0.0101 0.099 0.0035 0.0021 0.0030 0.0020

µerrω̂ f
0.0075 9.1195× 10−5 −9.4813× 10−5 0.6711 0.3322 8.2613× 10−4

σω̂ f 0.0237 0.0100 0.0093 0.0224 0.0534 0.0224
µJcost 236.72 6.0110 6.0168 4.3251 9.1355 6.6956
σJcost 13.4524 0.6917 0.0213 0.1535 0.6566 1.660

The P+V controller has accuracy and precision within the same order of magnitude as
that of open-loop optimal control, except in the rate, where open-loop optimal wins by three
orders of magnitude. The major issue with P+V control is cost. For essentially the same
accuracy, the maneuver costs 1.5 orders of magnitude more. The benefit of P+V control
over open-loop optimal, however, is that it is a feedback control mechanism rather than a
feedforward mechanism. This allows it to correct for external disturbances. A feedforward
mechanism, on the other hand, is unaffected by sensor noise (even if it is of nonzero mean).
Which one is more desirable in a given scenario is then determined by the context of the
engineering problem and the presence of disturbances and noise of nonzero noise, which is
not tested here.

Open-loop optimal control may have the highest accuracy in rate, but the control
law inversion patching filter has the highest accuracy in state, and outperforms all other
methods except RTOC in rate accuracy. Its precision is lower than that of RTOC, but its
increase in accuracy outweighs this. The control law inversion patching filter has a slightly
higher mean cost than RTOC and open-loop optimal guidance but is relatively insignificant.
The spread in cost is also higher. RTOC’s slightly 0.5 order of magnitude lower state
accuracy and one order of magnitude higher rate accuracy, combined with improved
slightly improved rate precision and lower state precision, makes it a good competitor with
the control law inversion patching filter, depending on desirable traits.

All figures in Figure 2 are made with equal axes. It should be noted that Figure 2d,e has
a shifted center of the graph to encompass the data points. These points center on a different
point than the other methods due to a systematic error inherent in the double-integrator
patching filter. These graphs also provide visual cues indicating the spread patterns of
the various methods. The open-loop optimal feedforward control has a relatively circular
distribution of points, as it is not subject to noise in the state and rate sensors, but just
uncertainty in the moment of inertia. The spreads of the other methods are more elliptical in
nature. RTOC has a smaller spread than any other method, but has a noticeable diagonality
to it—indicating a bias from the changing moment of inertia.

Computational burden was not measured as a figure of merit due to the inability to
obtain meaningful results. Other processes were running on the same computer during
these simulations, thus affecting run time, or computational burden, measurements.
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5. Conclusions

The control law inversion patching filter and RTOC work best out of the six options
for general purposes. The decision for which control scheme is best ultimately depends
on the relative use case, context, and requirements. Strict cost requirements or precision
requirements may outweigh benefits that the control law inversion patching filter provides
over RTOC, for example. The control law inversion filter also provides a benefit over RTOC
in computational burden due to the lack of a matrix inversion scheme.

Using optimality will reduce cost significantly over traditional methods, as indicated
by the steep decrease in Jcost between P+V control and any optimal control scheme. If tra-
ditional methods are being used, one can incorporate optimality by the use of patching
filters and combine the benefits of traditional feedback controllers with the cost benefits of
Pontryagin optimization.

A future study could be done running the control law inversion patching filter with
RTOC and measuring its performance. Future study may also be done studying the
effects of these control schemes with the inclusion of a full 6-degrees-of-freedom, three-
dimensional, coupled, nonlinear equations of motion with external forces and Coriolis
forces present.
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Abbreviations
The following abbreviations and symbols are used in this manuscript:

P+V Proportional and velocity
RTOC Real-time optimal control
MAE Mechanical and aerospace engineering
Jcost Quadratic cost
µx Mean value of parameter x
σx Standard deviation of parameter x
F Running cost
E(θ f ) Endpoint cost
θ State or angle (synonymous)
θ f Final state, or angle (synonymous)
ω Rate or angular velocity (synonymous)
ωa Final rate or angular velocity (synonymous)
x∗ Optimal value of parameter x
x̂ Value of parameter x from sensor data
τ Applied torque
I Moment of inertia of vehicle
KP Position gain
KV Velocity gain
tr Rise time
ts Settling time
u Control parameter. In this case, u = τ.
[T] Matrix of time coefficients for RTOC
−→p Optimal coefficients at each time step for RTOC
−→
b Vector of current and final state and rate for RTOC
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Appendix A. MATLAB Simulink Model

Figure A1. Upper level Simulink model.

Figure A2. Addition of Gaussian noise to sensor data.

Figure A3. Double-integrator plant to convert input control τ into state and rate data. Including the
transport theorem was not done; however, one could add it here if desired.

Figure A4. Controllers Simulink block.
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Figure A5. Real-time optimal control Simulink model.

Figure A6. Determinant switching logic for RTOC. When the absolute value of det[T] < 0.001,
the switch flips to open-loop optimal control.

Figure A7. Simulink implementation of patching filters. A manual switch is present to switch
between a simple double-integrator patching filter and a control law inversion patching filter.

Figure A8. Simulink implementation of a P+V feedback controller.
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