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Abstract: The study is dedicated to elaborating and analyzing a technique for autonomous vehicle
(AV) motion planning based on sequential trajectory and kinematics optimization. The proposed
approach combines the finite element method (FEM) basics and nonlinear optimization with nonlinear
constraints. There were five main innovative aspects introduced in the study. First, a 7-degree
polynomial was used to improve the continuity of piecewise functions representing the motion
curves, providing 4 degrees of freedom (DOF) in a node. This approach allows using the irregular
grid for roadway segments, increasing spans where the curvature changes slightly, and reducing
steps in the vicinity of the significant inflections of motion boundaries. Therefore, the segment
length depends on such factors as static and moving obstacles, average road section curvature,
camera sight distance, and road conditions (adhesion). Second, since the method implies splitting the
optimization stages, a strategy for bypassing the moving obstacles out of direct time dependency
was developed. Thus, the permissible area for maneuvering was determined using criteria of safety
distance between vehicles and physical limitation of tire–road adhesion. Third, the nodal inequality
constraints were replaced by the nonlinear integral equality constraints. In contrast to the generally
distributed approach of restricting the planning parameters in nodes, the technique of integral
equality constraints ensures the disposition of motion parameters’ curves strictly within the preset
boundaries, which is especially important for quite long segments. In this way, the reliability and
stability of predicted parameters are improved. Fourth, the seamless continuity of both the sought
parameters and their derivatives is ensured in transitional nodes between the planning phases and
adjacent global coordinate systems. Finally, the problem of optimization rapidity to match real-
time operation requirements was addressed. For this, the quadrature integration approach was
implemented to represent and keep all the parameters in numerical form. The study considered
cost functions, limitations stipulated by the vehicle kinematics and dynamics, as well as initial and
transient conditions between the planning stages. Simulation examples of the predicted trajectories
and curves of kinematic parameters are demonstrated. The advantages and limitations of the
proposed approach are highlighted.

Keywords: autonomous vehicles; motion planning; nonlinear optimization; integral constraints

1. Introduction

The intensive research and developments in the field of AVs have provided a variety
of methods and approaches to motion planning. Although the generalized techniques and
their main ideas are sufficiently well represented in the literature, many details regarding
improving the forecast rapidity and reliability as well as questions of the modeling quality
remain open. The characteristics of selected studies on planning AV motion are presented
in Table 1. The table shows that existing methods have several issues related to the
following: (1) strictly satisfying the boundary conditions, (2) irregularity of trajectory
segments, (3) ensuring the continuity of all parameters, (4) bypassing moving obstacles,
and (5) focusing on fast numerical simulation. These issues are addressed in this study to
strengthen prediction stability and will be discussed in more detail next.
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Table 1. Characteristics of selected studies on planning AV motion.

Ref. Path Model Speed Model Optimization Model Constraints

[1]

The track circuit
represents the allowable
driving area; the center
line is the reference; the

forward vector is defined
by the gradient of

the center-line

No yaw is considered;
the vehicle is facing in

the same direction as the
longitudinal velocity; the

speed is determined
based on the control

of accelerations

MPC as the control structure;
General Trajectory

Optimization Problem: the
goal is to maximize the

track progression;
sequential convex

programming methods;
sequential linearization

The left and right
boundary points along

the normal direction with
the track width;

linearized non-convex
constraints of the

optimization problem

[2]

Free collision trajectory;
local path planner based

on Vehicle Attractor
Dynamic

Approach (VADA)

Lateral vehicle dynamic
model; single-track

model with seven DOF

Control vector is formed by
the steering angle rate and by
the longitudinal acceleration;
PID controller for the vehicle
speed determines the throttle

and brake pedal positions

Ranges of the maximum
lateral and longitudinal

accelerations;
maximum speed

[3]

Cubic-curvature curves;
modified bidirectional

rapidly exploring
random

tree (bi-RRT) approach

Discrete speed model
based on the final
differences of the

path curve

Feasible online SQP to
minimize the time and

acceleration costs

Limited curvature, time,
speed, acceleration,

kinematic constraints

[4]

Cubic splines connecting
three path nodes situated

at equal distances
between the initial and

the target point

Trapezoidal velocity
profile; interpolating
cubic polynomials for

parameterization of the
velocity profile

Band Matrix Method to find
the path model variables.
The trapezoidal velocity
profile is smoothened to

guarantee the acceleration
continuity. Minimum travel

time through the
specified path

Lane constraints, speed
limit 50 MPH,

acceleration limit
10 m/s2, jerk limit

10 m/s3, initial and
final velocity

[5]

Trajectory is combined of
finite elements

represented by the nodal
DOF and basis functions

based on the 5th
order polynomial

FE model with 3 DOF in
a node to ensure the jerk

continuity; kinematic
vehicle model with

ideal turn

Sequential nonlinear
optimization of trajectory
and speed with nonlinear
constraints; SQP method;

curvature rate and slip angle
as basic criteria for trajectory

cost function; speed
deviation, longitudinal

acceleration and jerk are
basic criteria for the speed

profile cost function

Allowable motion zone
with boundaries; critical

slip speed, maximum
acceleration by the

powertrain properties,
maximum adhesion,

initial and
final conditions

[6]

Trajectory is formed by
the longitudinal and

lateral displacements to
avoid a set of obstacles
between the initial and

target locations

3 DOF vehicle model;
system of 8 state-space
differential equations

including controls;

Nonlinear model predictive
control framework for
non-negligible optimal

control problem (OCP); cost
function criteria include:
vehicle’s global position

coordinates, steering angle,
steering rate, longitudinal

jerk, and parameters to
prevent the minimum

vertical tire load

State bounds:
longitudinal and lateral

displacements, yaw
angle, steering angle,

longitudinal speed and
acceleration; control

restrictions: steering rate,
longitudinal jerk

[7]

Road structure is
represented by the center
lines of the adjacent lanes
relevant for overtaking

Constant velocity model
within the Kalman filter

SQP-method to optimize the
cost function based on

deviation from the reference
trajectory, acceleration

and jerk

Probabilistic forbidden
zones; maximum lateral

acceleration, limited
steering angle, spatial
constraints to make
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Ref. Path Model Speed Model Optimization Model Constraints

[8]

Fifth degree polynomial
trajectory generation

method; single trajectory
instead of piecewise

Fifth degree polynomial
trajectory

generation method

Two stages of constrained
quadratic programming

(QP); gradient based method
that considers trajectory

smoothness and curvature;
cost function to evaluate
efficiency, comfort, and

safety consists of steady state
relative distance, time to

collision, total time,
and acceleration

The sampling time range
is between 4.5 s and 7.0 s;

maximum trajectory
curvature, maximum

absolute value of offset
between original

trajectory and
smoothed trajectory

[9]

Reference trajectory
refers to a coarse

trajectory; a reference
trajectory is derived by
searching an abstracted
state space via dynamic

programming (DP)

Speed is integrated as a
state element in the

Cartesian frame based on
the jerk as a

control parameter

Optimal control problem
(OCP) is solved numerically

via a gradient-based
optimizer; the cost function
is represented by deviations

from reference trajectory
(linear and angular

coordinates), and control
profiles towards zero (jerk

and yaw rate)

Collision avoidance
constraints; allowable

bounds of the
state/control profiles:

maximum acceleration,
speed, jerk, yaw rate,

yaw angle

[10]

The combined trajectory
planning and tracking
method; vehicle moves
forward along the lane

with the longitudinal and
lateral potentials

Speed is calculated from
the vehicle

kinematics model

MPC and Artificial Potential
Field (APF); APF for

environment, local vehicle,
and driving style as parts of

the objective function

The desired speed,
maximum acceleration,

limits of the controls and
their increments;

current lane
boundary restrictions

[11]

Behavioral trajectory
planning in three steps:

path candidate
generation, optimal

speed profile
generation, and trajectory

selection; converting
behavioral trajectory into

a denser trajectory

Path-velocity
decomposition method;
spatiotemporal nodes;

two steps: the speed limit
profile generation and

the optimal speed search
determined by the

maximum
lateral acceleration

Numerical optimization for
motion trajectory planning;
objective function: reference

cost, acceleration, jerk
calculated by the final
differences; basic SQP

performs optimization by
approximating the objective

function using
second-order differentiation

Speed limits, maximum
vehicle acceleration,

environment constraints,
avoidance of collisions
with dynamic objects

constraints

[12]

Cubic polynomial for
smooth curve of lateral
offset depending on the

path length

Cubic polynomial for the
planned speed as

function of the
path length

Three criteria in terms of
efficiency, comfort and safety
are adopted to compose the

cost function

Road speed limit, yaw
rate, maximum and

minimum accelerations

[13]

Bi-level optimization the
trajectory planning; the
prediction is based on

current traffic conditions
and vehicle driving

behaviors determined by
car-following and

lane-changing models;
lane-changing
strategy tree

Second-order vehicle
kinematics; speed

distribution based on the
acceleration

profile optimization

The upper-level optimization
minimizes the overall cost
including travel time, fuel

consumption, and
lane-changing cost; the

lower-level optimization
determines the optimal

acceleration for minimum
travel time and fuel

consumption by the given
trajectory from the
upper-level model

Distance between
preceding and following
vehicles; the minimum
time interval between

two consecutive
lane-changing

maneuvers; absolute
values of the maximum

deceleration (4 m/s2)
and acceleration (2 m/s2)
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Ref. Path Model Speed Model Optimization Model Constraints

[14] For path planning any
method can be used

The speed planner
updates the path
information by

evaluating conditions
and vehicle status, the

planner calculates a
speed profile based on

longitudinal acceleration
and jerk.

A minimum time
optimization control

problem; the optimal speed
profile ensures a safe and
comfortable vehicle speed

for the is obtained.

Rollover criterion,
maximum speed

corresponding to the
maximum lateral

acceleration, skidding
friction, steering rate,

steer angle, maximum
acceleration and jerk

[15]

Two high-level options
(lane follow/wait and

lane change); waypoint
on the target-lane is
selected using the
ego-vehicle state

information through the
epsilon greedy strategy;
sub-trajectories form a

complete trajectory

Target speed is calculated
using the maximum

acceleration or
deceleration to ensure a
smooth sub-trajectory;

then the target speed and
final waypoint values are
given, the PID controller
generates longitudinal

and lateral control

Double Q-Learning; deep
Q-Learning algorithm is
used to find an optimal

action-selection policy to
maximize the action-value

function through minimizing
the loss function between

predicted action-value and
the target action-value

Regular time step
penalty, regular time step

reward for progressing
towards final destination,
collision penalty, unsafe

penalty, goal not required
penalty, non-smoothness
penalty, Success Reward

[16]

Trajectory design is based
on a constrained

optimization; clothoid
trajectory for the lateral

displacement and
yaw angle

Kinematic equations for
the longitudinal velocity

and displacement for
planning; vehicle is

described by the
dynamical bicycle model

for tracking

Minimizing the tracking
error and the ratios of the

clothoid sections by a
quadratic programming

method; LPV-based control
design method to guarantee

the tracking of the
generated trajectory

Finite horizon length;
constraints are

incorporated into the
trajectory optimization
problem; minimum and
maximum lateral offsets

[17]

Quadratic time-based
function for longitudinal
displacement; 4th extent
time depending function
for lateral displacement

Linear time depending
function for the vehicle
longitudinal velocity;

Gaussian distribution for
describing the vehicle

lateral velocity

MPC is converted to a
standard quadratic

programming problem;
nonlinear vehicle dynamic

model is linearized as a
linear time invariant (LTI)

state space form

Vehicle state and control
constraints; maximum

acceleration, road
adhesion limit

[18]

Cubic spline
interpolation to find the
driving centerline points

in the Cartesian
coordinate system from
sampling points of the
Frenet frame; quintic

time depending
polynomial for lateral

and longitudinal
displacement

Fourth extent
polynomials for the

lateral and longitudinal
velocities; 3th extent

polynomials for
the lateral and

longitudinal accelerations

The cost function considers
the longitudinal and lateral
jerks, offset degree from the

reference line, deviation
between the planning and
desired speeds, minimum

distance between the AV and
the obstacles, cost of a

collision between the AV and
the static or

dynamic obstacles

Lateral position sampling
range; predicted time
sampling range; target
speed sampling range;

predicted time sampling
interval; target speed

sampling interval

[19]

Reference map;
candidate paths in the
curvilinear coordinate

system; 4th order
polynomial for the

lateral offset

Desired velocity profile
based on a set of
speed limitations

Objective function includes
the factors such as

smoothness, consistency,
reference tracking and safety

Prediction horizon; speed
is restricted by imposing

the lateral
acceleration limitation
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[20]
Path-velocity

decomposition; the path
is treated as an input

Double integrator model
for the movement along

the path; the model
yields the agent’s

position from its velocity
and acceleration

Velocity is optimized to
follow a reference by solving

the optimal control
problem (OCP)

Constraints: input, states,
terminal position,

prediction horizon

[21]

Independent movements
in lateral and

longitudinal directions;
the sine function curve is
applied to determine the
trajectory; lane change in

original lane (LC-O)
stage and lane change in

target lane (LC-T)

Velocity and acceleration
in the lateral direction of
lane change are obtained
by the first and second

derivatives of the
trajectory curve model

Cost function is designed to
optimize processes of LC-O

stage and LC-T stage;
objective functions represent
desired accelerations at the

LC-O stage and LC-T stages,
the gap errors between

vehicles, and the
terminal cost

Maximum longitudinal
and lateral accelerations,

safe gap constraint at
critical moment, gap of

host vehicle and
surrounding vehicles, the

minimum time

[22]

A set of possible
trajectories based on

B-splines; quintic
polynomials to connect

initial state with a grid of
terminal constraints in

space and
time dimensions

The first-order dynamics
for the vehicle driveline

based on the longitudinal
acceleration, commanded

acceleration, and time
constant; virtual triple

integrator system

The cost function selects the
optimal (feasible and

collision free) trajectory from
the generated set by

minimizing the cumulative
error in the B-spline over the

entire prediction horizon

Testing possible
violations of constraints

and occurrence of
collisions;

Schoenberg-Whitney’s
Condition; constant zero

acceleration for the
extended trajectory

[23]

Third order polynomials
to independently
represent x and
y displacement

Kinematic bicycle model
to calculate state vector

including velocity

Chance-constrained model
predictive control (cc-MPC);
model predictive contouring

control cost function
penalizing contouring

deviation, lag error, control
effort, and deviation from a

reference speed

Chance-constraint
enforced with

deterministic nonlinear
constraints; upper

bounds on the
probability of violating

constraints using
Cantelli’s inequality

[24]

Quintic polynomial for
the lateral offset as

function of longitudinal
displacement;

longitudinal position,
lateral position,

derivative, and the
curvature of the lane

curve to find the
polynomial coefficients

Speed, acceleration, and
jerk profiles are based on
the quintic polynomial of

the driving distance
profile over time

Objective function of the
constrained nonlinear
optimization model

containing acceleration and
jerk of the ego vehicle, and

the total driving time

Collision-avoidance
constraints; maximum

total time, speed,
acceleration, and jerk;
traffic state constraint

[25]

Sixth order time
depending polynomial

functions for the
longitudinal and
lateral positions

The speed kinematic
model is represented by

the time quadratic
equation with

acceleration and jerk;
kinematic variables:

longitudinal and
lateral positions,

accelerations, jerks

SQP algorithm to solve the
nonlinear programming by

minimizing the longitudinal
and lateral accelerations and

jerks, and time, the safety
risk and discomfort

for vehicle

Restricted distances
between vehicles,
constraints for the

longitudinal and lateral
speeds, accelerations,

jerks, and horizon time
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[26]

Three-dimensional
spatio-temporal driving
map; reference trajectory

generation with a
search-based method,

followed by local
refinement

and smoothing

Vehicle states are: the
lateral and longitudinal
positions, velocity, and
yaw angle; the action

space includes possible
acceleration and

yaw angle

Time-invariant MPC
extended by the

reconstruction of convex
feasible sets; objective

function includes
parameters: prediction

horizon time, initial position,
target destination, reference
state of the spatio-temporal

trajectory, control input

State constraints for each
state; limits of control

input; deviation of
longitudinal velocity

from the desired value
with the limit of 20 m/s

[27]

Path is searched by ant
colony algorithm

according to the path
enlightened by artificial
potential field algorithm

Vehicle accelerates to
reach speed of 80 km/h,
deceleration to 40 km/h;
vehicle travels at speed of

30, 50, and 100 km/h

Transfer probability function
of ant colony algorithm,
improved potential field

algorithm; gravity model of
safety lane change

Speed limits of front
section 80 and

40 km/h;lateral
acceleration changes

from −0.15 g to 0.15 g

The analysis of approaches to AV motion modeling is summarized in Table 1. The
main aspects are focused on trajectory modeling, speed mode, the use of optimization
methods, and imposed restrictions.

Conventionally, the work can be divided into using model predictive control (MPC)
and state-space models [1], polynomial representation of trajectories [3–5,8,12], and methods
using graph techniques to find the best trajectory [15,22]. To a lesser extent, attention is paid
to restrictions, especially geometric ones in relation to the possible motion zone. Thus, Table 1
reflects the full range of approaches used today in the problems of autonomous vehicles.

The following important aspects need to be addressed and can be considered innovative.
Strictly Satisfying Boundary Conditions. When using a piecewise polynomial [17,19,25]

representation of functions describing the planned geometric, kinematic, and dynamic AV
characteristics, the function behavior within a roadway segment depends on the parameters
specified at the nodal points. Different methods [2,11], including optimization, can deter-
mine these parameters. At the same time, the restrictions imposed on the nodal DOF ensure
the permissible values of the functions at the nodes themselves but do not guarantee the
stable behavior of the functions strictly within the desirable limits along a road section. This
point is especially critical for the vehicle trajectory geometry, which means non-violation
of the allowable external motion boundaries by a vehicle’s safety contour. Note that the
positions of control points determining the safety contour are influenced not only by the
position of the vehicle’s mass center but also by the yaw angle (angular displacement).
Thus, the guarantee of non-violating the boundaries by the control points within a road
section interval also contributes to ensuring the stability of predicting the vehicle admissible
motion and the strict unambiguity of the steering control impact. Regarding the kinematic
and dynamic parameters of the AV movement, the compliance of equality and inequality
constraints in nodes is replaced by the conditions of integral equality constraints along
the motion path. Thus, the boundary functions of sought parameters within segments can
be represented as piecewise constant/linear or decomposed by the same FE-basis as the
optimized parameters.

Irregularity of Trajectory Segments. When an AV is camera guided, the roadway cur-
vature defines the natural limit of visibility/perceptivity of the three-dimensional space
through the perspective projection. Typically, this is conditioned by a significant curvature
change at the end of the sight distance. Additionally, the road section curvature does not
remain constant within the visible distance. In connection with the above, the splitting of
linear segments of the vehicle displacement should include the grid concentration in areas
requiring an accurate description as well as in sites where static obstacles are located. In
addition, the last segment must be allocated to compensate for the time needed to process
the next forecast.
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Ensuring the Continuity of all Parameters. With the piecewise polynomial representation,
all the motion planning parameters are presented by the same basis of shape functions. This
contributes to considering the continuity of higher derivatives of the motion parameters’
functions simultaneously with inflicting the integral restrictions. The basis functions
derived based on a 7-degree Lagrange polynomial are used in this study framework.
Such a solution ensures the continuity up to the third derivative at nodes and helps
mitigate the discontinuity of parameters requiring higher than third derivatives (jerk,
angular acceleration). This also makes it possible to coordinate the nature of the vehicle’s
acceleration change with the specific properties of the propulsion system response.

Bypassing Moving Obstacles. A complete solution to avoiding moving obstacles [9,24]
is possible only with the simultaneous optimization of AV motion in space and time, that
is, when the trajectory and speed are distributed in parallel. However, it is evident that
with such an approach, the number of nodal unknowns is doubled, leading to increasing
variations and search time. Furthermore, when sequentially searching for the trajectory and
speed to bypass a moving obstacle, complications arise related to splitting the maneuver
into parts, allocating boundaries for them according to certain algorithms, and coordinating
spatial constraints with the vehicle speed properties. This primarily occurs because the
camera visibility zone limits the guaranteed maneuver.

Focusing on Fast Numerical Simulation. Since the study emphasizes the integral approach
in representing constraints to improve the optimization quality, this may decrease the
computational rapidity. However, the higher complexity of the nonlinear restrictions
should not affect the optimization performance. In this regard, numerical methods are used
to replace symbolic integration with a discrete summation. At the same time, a scheme of
the numeric integration [3,11] must ensure the calculation accuracy and the smoothness of
output functions.

This study’s purpose consists of developing a mathematical basis for representing
nonlinear constraints in the form of integral equalities and a numerical integration tech-
nique for accelerating the optimization procedure and implementing the interpolation
polynomials to ensure the smoothness of all optimized parameters.

2. Basics of Mathematical Tools
2.1. Representing Planning Parameters by Basis-Functions

Let us generalize the technique for obtaining the form functions based on Lagrange
polynomials. Suppose a polynomial of extent p represents a function y(x). Then, it can be
reflected in the matrix form

A =

c0
...

cp

, X =

x0

...
xp

, y(x) = ATX (1)

where cj = polynomial coefficient, j ∈ [0, p].
Considering one FE of the length L, a function y(x) may be expressed by sets of shape

functions and DOF values. Then

Q =

 q1
...

qp+1

, F =

 f1
...

fp+1

, y(x) = QTF (2)

where fj = shape functions and qj = weight coefficient or degree of freedom (DOF), j ∈ [1, p + 1].
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Let us define k = (p + 1)/2 − 1 first derivatives of the vector X provided that p is odd.
Substituting the coordinates of the initial (0) and final (L) nodes, the matrix B is formed as

B =



XT(0)
...

dkXT/dxk(0)
XT(L)

...
dkXT/dxk(L)


, BA = Q, A = B−1Q, F =

(
BT
)−1

X (3)

As a result, using Equations (1)–(3), expressions are linked in the form

y(x) =
(

B−1Q
)T

X = QT
(

BT
)−1

X = QTF (4)

If we assume x = ξL, where parameter ξ ∈ [0, 1], then after substituting it into B and
excluding the length elements as multipliers, the shape functions take the form of basis
functions for an element of unit length [28]. These functions for FE with four DOFs in a
node (it is assumed that p = 7 and k = 3 in Equation (3)) corresponding to the derivative
order and DOF are shown in Figure 1. As seen, the superposition of these functions can
provide high accuracy of forecasts and boundary models.
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Thus, the objective is to obtain the basis functions Fξ of the argument ξ ∈ [0, 1] that are
universal for a variable length L of roadway segments. In this regard, the main integration
can be reduced to the range [0, 1] of a function y(ξ). Denoting by the low index for i-th FE,
let us define the vector li and matrix Li

li =
(

L0
i · · · Lk

i
)
, Li = diag

(
li li

)
(5)

where k = (p + 1)/2 − 1.
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Thus, for i-th FE, functions F of Equation (2) can be rewritten with basis functions of
the parameter ξ

Fi = LiFξ , yi(x) = yi(Qi, Li, ξ) = QT
i LiFξ (6)

Additionally, for k-th derivative,

dkyi

dxk =
d

Lidξ

(
1

Lk−1
i

QT
i Li

dk−1Fξ

dξk−1

)
= QT

i

(
Li

Lk
i

)
dkFξ

dξk (7)

Thus, the integral of an arbitrary function zi(x) comprising yi(x) or its derivatives
within the interval [xi−1, xi], considering Equation (6), can be calculated as∫ xi

xi−1

zi(x)dx = Li

∫ 1

0
zi(Qi, Li, ξ)dξ = Li

∫ 1

0
zi(ξ)dξ (8)

2.2. One-Dimensional Quadrature Integral

Since the basis functions are built into the integration procedures, and the extent of
derived interpolating polynomials is quite high, the problem of the computational speed
of the iterative optimization scheme occurs. To solve it, numerical integration based on
Gaussian schemes is used in this approach. Thus, the integral of Equation (8) for a function
zi(ξ) can be evaluated as∫ 1

0
zi(ξ)dξ = ∑N

k=1 wkzi(ξ(λk))det(J(λk)) (9)

where wk = integration weight in the k-th point; λk—points in the master-element coordinate
system; J = Jacobian, k ∈ [1, N]; N = number of integration points.

Since for each FE the reduced length is the same and equals to 1, the Jacobian matrix
for transiting to the master element and its determinant yield

J(λ) =
∂(ξ1, . . . , ξN)

∂(λ1, . . . , λN)
, det(J) =

ξ1 − ξ0

2
=

1
2

(10)

The master element is defined on the segment [−1, 1], and the transition is conducted
according to the rule

ξ(λk) =
(ξ1 − ξ0)

2
(λk + 1) + ξ0 =

1
2
(λk + 1) (11)

Let us represent the sets of integration points, weight coefficients, and function values
as column vectors of length N

λ =

λ1
...

λN

, w =

w1
...

wN

, ξ =

 ξ1
...

ξN


T

, zi =

 zi1
...

ziN


T

(12)

Then, the integral of Equation (9) for i-th FE can be calculated as the scalar product
of vectors

∑N
k=1 wkzi(ξ(λk))det(J(λk)) =

1
2

zi

(
ξ
(

λT
))

w =
1
2

zi(ξ)w =
1
2

ziw (13)

Since, in the study, both the functional and constraints are to be integral over all n seg-
ments, their general scheme, owing to Equations (6) and (13), takes the vector-matrix form

I = ∑n
i=1 Li

∫ 1

0
zi(ξ)dξ ≈ 1

2 ∑n
i=1 Liziw =

1
2

Lszw (14)
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where Ls = vector of segment lengths; z = matrix of integrands with n × N size; and

Ls =

L1
...

Ln


T

, z =

z1
...

zn

 =

z1,1 . . . z1,N
...

. . .
...

zn,1 . . . zn,N

 (15)

In this study, we use N = [3, . . . , 8] point schemes for comparing the quality and
performance.

2.3. SQP Nonlinear Optimization

The sequential quadratic programming (SQP) optimization [3,5,7,11] algorithm is
based on a quadratic approximation of the Lagrangian function. Its most valuable properties
include the strict feasibility of founds, fast linear algebra routines, and good convergence.

Since any cost function S can be represented in the form of Equation (14) through a set
q of nodal parameters, the generalized approach is written as

min
q

S(q) subject to


Ceq(q) = 0
Aeqq = beq

qL ≤ q ≤ qU

, q =

 q1
...

qn+1

, qi =

qd(i−1)+1
...

qd(i−1)+d

 (16)

where q = vector of nodal parameters to be optimized; Ceq(q) = vector function of nonlinear
equality constraints; Aeq, beq = matrix and vector of equality linear constraints, respectively;
qL, qU = lower and upper limits; i ∈ [1, n] = segment number; d = (p + 1)/2 = DOF in a node.

Thus, the nonlinear inequality constraints are omitted since the main task is to replace
them with integral functions and include them in the nonlinear equality constraints.

2.4. Integral Representation of Constraints

As noted in Section 1, most of the constraints are represented linearly and concern only
nodal values of parameters. When a roadway section is divided into a pretty large number
of segments with relatively small lengths, the high solution quality is ensured. However,
by reducing the number of segments and increasing their lengths, which is especially
important for roads with small curvature, the behavior of the sought functions within the
intervals depends only on the constraints of the nodal parameters and the optimization
function. Thus, increasing the guarantees on restricting the desirable solutions can be
achieved by replacing the linear nodal constraints with nonlinear integral ones.

Consider the idea in more detail based on the example of ensuring the trace y(x) of the
AV mass center within the upper yU and yL lower boundaries. As seen in Figure 2a, the
nodes and the local extremum are located inside the bounds. The area enclosed between
the functions of the upper and lower boundaries is precisely equal to the sum of the areas
above (yellow) and below (blue) the function y(x). It is evident that if an FE grid step
is proportional to the overall length of a single vehicle, the probability of violating the
boundaries by a local extremum is relatively small, which makes it sufficient sometimes
for using the linear inequality constraints. However, suppose an FE is much longer. In
that case, a situation depicted in Figure 2b may occur when the nodal values formally
satisfy the boundary conditions, and the local extremum surpasses the limits (red zone). In
this case, the area between boundaries is less than the sum of integrals taken for modules
of differences above and below the function y(x). This point can be used for enhancing
the optimization.
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Thus, the cumulative boundary condition on the section x ∈ [0, D] divided into n finite
elements can be written as∫ D

0
(yU(x)− yL(x))dx =

∫ D

0
|(yU(x)− y(x))|dx +

∫ D

0
|(y(x)− yL(x))|dx (17)

Now, let us track the formation of conditions for equality constraints from the point
of view of the optimization procedure. Consider the problem statement for an arbitrary
criterion h along the trajectory s bounded by the functions hmin and hmax in the same basis
functions of Equation (6). If a function h is strictly within the limits of the functions hmin
and hmax, then ∫ s

0
(hmax − hmin)ds =

∫ s

0
|(hmax − h)|ds +

∫ s

0
|(h− hmin)|ds (18)

The integral of Equation (18) can be split into sections. Then, for i-th FE, considering
ds = s′x dx ∫ xi

xi−1

(hmax − hmin)s′xdx =
∫ xi

xi−1

|(hmax − h)|s′xdx +
∫ xi

xi−1

|(h− hmin)|s′xdx (19)

Passing to the variable ξ, let us express the integrands in terms of certain functions
zi(ξ) of an optimized parameter, which in the general case depends on both the trajec-
tory’s Qyi and speed’s Qvi DOF vectors of each i-th segment. Integral between upper and
lower bounds:

zuli(ξ) =
(

hmax

(
Qyi, Qvi, Li, ξ

)
− hmin

(
Qyi, Qvi, Li, ξ

))
s′xi

(
Qyi, Li, ξ

)
,

zuli = zuli

(
Qyi, Qvi, Li, ξ

(
λT)), Iul ≈ 1

2 Lszulw
(20)

Integral between upper bound and criterion function:

zuhi(ξ) =
∣∣∣hmax

(
Qyi, Qvi, Li, ξ

)
− h
(

Qyi, Qvi, Li, ξ
)∣∣∣s′xi

(
Qyi, Li, ξ

)
,

zuhi = zuhi

(
Qyi, Qvi, Li, ξ

(
λT)), Iuh ≈ 1

2 Lszuhw
(21)

Integral between the criterion function and lower bound:

zhli(ξ) =
∣∣∣h(Qyi, Qvi, Li, ξ

)
− hmin

(
Qyi, Qvi, Li, ξ

)∣∣∣s′xi

(
Qyi, Li, ξ

)
,

zhli = zhli

(
Qyi, Qvi, Li, ξ

(
λT)), Ihl ≈ 1

2 Lszhlw
(22)
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Thus, the requirement of nonlinear equality constraints along all the segments, accord-
ing to Equation (16) is expressed as follows

ceq = Iul − Iuh − Ihl =
1
2

Ls(zul − zuh − zhl)w = 0 (23)

Consequently, by combining (mainly summing) values of nonlinear equality con-
straints for a set of criteria, it is possible to form conditions for improving the optimiza-
tion quality.

3. Technique of Planning Boundaries and Avoiding Obstacles

General Moments. Figure 3a shows a generalized motion planning scheme in conditions
of external boundaries and moving obstacles. Let us assume that the AV is equipped with
radar systems for scanning space and determining the speeds of moving objects and
distances to them. Suppose also that the AV is guided by a computer vision technology
allowing the recognition of road marking lines and identification of moving objects in
online mode. However, the camera vision is limited by the road section’s distance and
curvature. In the perception of an oncoming roadway through the perspective view, there is
a moment when the road marking lines practically merge, and the accuracy of determining
a destination point is abruptly reduced. In this regard, let us consider phased planning.
Thus, in Figure 3a, the AV’s trajectories (red) are independently planned for phases between
positions 1©– 2© and 2©– 3©. Let us also outline such an important aspect as the time needed
for processing the visual camera information and for computing optimizations. Therefore,
the forecast should last within a motion segment. Given this, the trajectories of the planned
parts for subsequent phases must be seamlessly joined to ensure the smoothness between
preceding and following forecasts. That is, the prediction must be built inside the points
0 and 1 (or what is the same—between points n and n + 1). Thus, if the motion tracking
stage continues up to (and including) the last point (n + 1), a new prediction is based on
the data set obtained in the previous position (n).

Number of Segments. As noted, by using basis functions composed of the 7-degree
polynomial, there is an option for making an irregular FE mesh with relatively large
segments in areas with relatively small curvature. However, some segments are mandatory
to form the motion zone’s boundaries. Thus, segment 0–1 (L0) corresponds to a forecast
computation delay for the next road section; segment 1–2 (L1) is usually associated with
forming internal boundaries in the initial position 1; subsequent segments may also be
assigned to include internal constraints; segment (Lb) is responsible for a sufficient space
required to bypass obstacles with a minimum change in steered wheels’ angles; segment n
provides a transition stage and serves to compensate the time spent for the next prediction
procedure. Thus, the number of segments within one roadway section mainly depends on
the obstacles.

External and Internal Boundaries. Road markings delineate the outer boundaries of
space available for organizing the AV motion. Since the camera fixes these boundaries at
the forecast beginning moment, they can be considered static. In particular, this method
describes the boundaries by the basis functions through the nodal parameters. This is
convenient because if the nodal parameters of the roadway’s upper and lower boundaries
are calculated, it is easy to obtain the lane’s boundary marking lines (even if they are absent)
using an arithmetic proportion and a road width. Note that some obstacles may cause a
blind spot for identifying outer boundaries. Then, they can be virtually completed based
on the available information about the visible parts and their analysis. Internal boundaries
exclude the road space parts forbidden for motion, such as zone A in Figure 3a.
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On the other hand, a part of space should be allocated for moving obstacles in such a
way as to make the least influence on both their motion mode and safety. These zones (B and
C) should be tied to the motion speeds relative to the bypassing AV, to road conditions
(adhesion), and cannot be defined unambiguously, i.e., are dynamic.

Stages of Forming Obstacle Avoidance Boundaries. Ideally, the problem of avoiding
obstacles is solved by simultaneously optimizing the trajectory and speed [26]. However,
this significantly increases the number of nodal parameters’ combinations and the com-
putation time, respectively. In this regard, with sequential optimization at the trajectory
search step, it is impossible to explicitly include time to determine the boundaries of areas
B and C. Therefore, it is necessary to proceed from some heuristic approaches considering
the dynamic nature of safety zones for moving objects and allowing to avoid the explicit
time factor. The restriction of zone B in the first planning section, when the distance d
between the AV and the impeding (blue) vehicles in position 1© is set, can be carried out
by estimating the critical gap between the vehicles during emergency braking. At the
same time, it is evident that the space reduction between the vehicles comes faster than
during the AV acceleration. Suppose such a gap is accepted as a criterion depending on the
difference of the vehicles’ initial speeds and tire adhesion value. In that case, it is possible
to determine when zone B must be closed. Thus, in the first stage, the movement D under
the angle φ to the AV longitudinal axis ζ is planned. By evaluating the segment’s length
Lb, a decision concerning the safeness of performing the speed maneuver can be made.
Suppose the boundaries critically constrain a passage within Lb. In that case, it is necessary
to cancel the maneuver planning and wait for a convenient situation, continuing to move
along the lane with reduced speed.

Initially, it is difficult to predict the vehicles’ mutual position in the position 2© since the
time costs can only be calculated after redistributing the AV speed. If the current section’s
curvature changes slightly, then a forecast estimation of the impeding vehicle position may
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be built as well. Additionally, at point n, the position and speed of the impeding (blue)
vehicle can be measured by using the AV sensory system. At this stage, it is necessary to
determine a corridor for the possible lane change in the presence of two moving obstacles
(blue and green vehicles). In the case of the green vehicle, the space restriction technique is
equivalent to the blue vehicle restriction in the first phase 1©– 2©. The issue of closing zone
B for the blue vehicle is much more complicated. Since time is not explicitly present in
trajectory planning, let us use the partially heuristic approach shown in Figure 3b. Suppose
that when the vehicle is located at point n, the distance to the impeding (blue) vehicle is ∆d
(can be positive or negative). If we assume that the AV keeps its initial speed Va, then for a
specific time period t it will cover the distance Pa = Va·t. During the same time, the blue
vehicle, presumably also maintaining the speed Vi, will pass the distance Pi = Vi·t. At the
same time, a certain distance ∆s will be set between the vehicles, at which it is safe to start
changing the lane. That is, neglecting the curvature in the area of the maneuver beginning
can be written

Pa

Va
=

Pi
Vi

, Pi = Pa
Vi
Va

, Pa = ∆d + Pi + ∆s + la (24)

where la = length of AV safe contour.
Substituting for Pi, then

Pa = ∆d + Pa
Vi
Va

+ ∆s + la, Pa

(
1− Vi

Va

)
= ∆d + ∆s + la, Pa =

∆d + ∆s + la

1−Vi/Va
(25)

It follows from Equation (25) that if ∆d < 0 and |∆d| = ∆s + la, Pa = 0 and the lane
change may be started. Note that if Va = Vi, then Pa = ∞, meaning outrunning is impossible.
Further, the distance Pa is also deviated by a certain angle relative to the x-axis; the larger
the angle, the greater the curvature in this area. However, this angle is slightly less than φ.
If we introduce the coefficient kφ (≈0.8), then the point xf can be estimated as

x f ≈ Pacos
(

kφφ
(2)
(0)

)
(26)

where φ
(2)
(0) = angle between the new x-axis and ζ-axis in the point 0 of the second phase.

Then, the point xb, considering that li is the length of the impeding vehicle save contour,
can be approximately estimated as

xb ≈ x f − (∆s + li/2)cos
(

kφφ
(2)
(0)

)
(27)

The maneuver can be considered as possible if such a corridor Lb (Figure 3a) between
the constrained areas B and C is provided, ensuring its high-speed passage without a
significant impact of the AV steering system. The critical length of such a corridor is
commensurate with several lengths of the AV itself. If such a corridor does not correspond
to critical capabilities, the maneuver should be postponed, or another option accepted.

The next important issue concerns the transition between the stages’ coordinate sys-
tems at the points n→ 0 and n + 1→ 1. Thus, the first phase trajectory on segment Ln
should ideally coincide with the second phase trajectory on segment L0. Obviously, the
first phase parameters at nodes n, n + 1 will differ from the second phase’s parameters in
the corresponding nodes 0, 1. Particular attention should be given to the first phase’s node
n + 1, in which the continuity of the curvature and its derivatives must be ensured for a
seamless transition to the new coordinate system of node 1. This issue will be considered
in detail in the paragraph on forming initial conditions.

4. Modeling the AV Motion

Figure 4 shows the scheme of the vehicle kinematic model [10,13,23] for generating a
trajectory of the mass center C. Three coordinate systems are placed at this point. First, the
motion trajectory is considered relative to the absolute coordinate system xy. Longitudinal
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Vζ and lateral Vµ velocities are considered in the local moving coordinate system ζµ turned
on the angle φ relative to the absolute one. The tangential aτ and normal an accelerations
are decomposed in the natural coordinate system located at the angle β to the local or at
the angle α to the global coordinate systems. The natural coordinate system rotates with an
angular velocity Ω relative to the instantaneous center O with a radius R. Let us assume
that the traction forces are realized by all the wheels.
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Let us consider the primary theoretical basis that allows establishing strict mathemati-
cal relations between the geometric, kinematic, and dynamic parameters for AV motion
planning. All the formulas are represented in the final view, omitting the deriving stages.

4.1. Basic Parameters of Trajectory Planning

If a trajectory function y(x) is explicitly determined by a set of nodal parameters qy, it
and its k-th derivative are evaluated according to Equations (6) and (7).

yi(x) = QT
yiLiFξ ,

dkyi

dxk = QT
yi

(
Li

Lk
i

)
dkFξ

dξk (28)

The elementary arc length gives

ds =
√

1 + (dy/dx)2dx = s′xdx (29)

Considering s′x as a variable, its first derivative concerning the coordinate x is

ds′x
dx

= s′′x =
1
s′x

dy
dx

d2y
dx2 (30)

Second derivative of s′x concerning x

d2s′x
dx2 =

d
dx

(
1
s′x

dy
dx

d2y
dx2

)
=

1
s′x

((
d2y
dx2

)2

+
dy
dx

d3y
dx3 −

(
ds′x
dx

)2
)

(31)

For the tangent angle, the trajectory derivative defines the tangent of the slope angle

dy/dx = tan(α(x)) (32)

Consequently, the slope angle is

α(x) = arctan(dy/dx) (33)
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Let us consider the derivative of α(s) concerning the arc s

dα

ds
=

dα

dx
dx
ds

=
dα

dx
/

ds
dx

=
1
s′x

dα

dx
(34)

The first derivative by x

dα

dx
=

d
dx

arctan
(

dy
dx

)
=

1

(s′x)
2

d2y
dx2 (35)

The second derivative by x, expressing K to be the curvature

d2α

dx2 =
d

dx

(
1

(s′x)
2

d2y
dx2

)
=

1

(s′x)
2

d3y
dx3 − 2K

ds′x
dx

(36)

The curvature is the rate change in the arc angle along the arc itself, i.e.,

K(s) =
dα

ds
, K(x) =

1
s′x

dα

dx
=

1

(s′x)
3

d2y
dx2 (37)

In turn, the curvature changes along the coordinate x

dK
dx

=
d

dx

(
1

(s′x)
3

d2y
dx2

)
=

1
s′x

(
1

(s′x)
2

d3y
dx3 − 3K

ds′x
dx

)
=

1
s′x

(
d2α

dx2 − K
ds′x
dx

)
(38)

Second derivative concerning x

d2K
dx2 =

d
dx

(
dK
dx

)
=

1
s′x

(
1

(s′x)
2

d4y
dx4 −

(
2

(s′x)
3

d3y
dx3 + 4

dK
dx

)
ds′x
dx
− 3K

d2s′x
dx2

)
(39)

The instantaneous radius is derived as the curvature’s inverse. Its sign, consequently,
shows the rotational direction around the instant center O (Figure 4).

R = 1/K (40)

The central slip angle β shows the relation between the longitudinal and lateral compo-
nents of the mass center velocity and can be estimated based on the ideal turn geometry

β = arcsin(b/R) = arcsin(bK) (41)

The derivative of angle β concerning x, introducing the coefficient kβ

dβ

dx
=

d
dx

(arcsin(bK)) = kβ
dK
dx

, kβ =
b√

1− (bK)2
(42)

The derivative of kβ relative to x is given by

dkβ

dx
=

d
dx

 b√
1− (bK)2

 = k3
βK

dK
dx

(43)

The second derivative of β concerning x, using Equations (42) and (43)

d2β

dx2 = kβ

(
K
(

dβ

dx

)2
+

d2K
dx2

)
(44)
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The yaw angle ϕ, in contrast to the vehicle models with elastic tires, can be expressed
purely geometrically as the difference between the angles of tangent slope and central slip
(Figure 4)

φ = α− β and
dφ

dx
=

dα

dx
− dβ

dx
(45)

Thus, the first and second trajectory’s derivatives affect the yaw angle φ.

4.2. Basic Parameters of Kinematics Planning

The longitudinal speed Vζ according to Equations (6) and (7) includes the nodal parame-
ters qv inherited by the Vζ derivatives for using in accelerations and jerks. Deriving the
first and second derivatives concerning time t, obtain

dVζ

dt
=

dVζ

dx
dx
dt

=
dVζ

dx
Vx,

d2Vζ

dt2 =
d2Vζ

dx2 V2
x +

dVζ

dx
dVx

dx
Vx (46)

where dkVζ /dxk is defined by Equation (7), Vx = projection of absolute speed V on the
global x-axis.

If the function Vζ(x) is explicitly determined by a set of nodal parameters qv, it and its
k-th derivative are evaluated according to Equations (6) and (7).

Vζi(x) = QT
viLiFξ ,

dkVζi

dxk = QT
vi

(
Li

Lk
i

)
dkFξ

dξk (47)

The mass-center velocity can be represented through decompositions in the natural,
local and global, coordinate systems (Figure 4).

→
V =

(
V
0

)T
(→

τ
→
ν

)
,
→
V =

(
Vζ

Vµ

)T
(→

u ζ
→
u µ

)
,
→
V =

(
Vx
Vy

)T
(→

u x
→
u y

)
(48)

where
→
τ ,
→
ν = basis vectors of the natural coordinate system;

→
u ζ ,

→
u µ = unit vectors of

the vehicle local coordinate system;
→
u x,

→
u y = unit vectors of the fixed (global) coordinate

system xy.
If M is the matrix of plane rotation, the transitions between the coordinate systems

can be expressed as follows

M(·) =
(

cos(·) sin(·)
−sin(·) cos(·)

)
,

(→
τ
→
ν

)
= M(β)

(→
u ζ
→
u µ

)
,

(→
u ζ
→
u µ

)
= M(φ)

(→
u x
→
u y

)
(49)

Correspondingly, for velocities(
Vx
Vy

)
= MT(φ)

(
Vζ

Vµ

)
(50)

The absolute speed is determined as the relation of elementary arc length to elementary
time increment

V =
ds
dt

=
ds
dx

dx
dt

= s′xVx =
Vx

cos(α)
=

Vζ

cos(β)
(51)

where Vx = projection of absolute speed on the x-axis.
The projection of absolute speed unavoidably occurs in all kinematic parameters to

replace the x-coordinate derivative concerning time t. The longitudinal velocity Vζ in the
local coordinates and the projection Vx are tied by the dependency

Vx = Vζ
cos(α)
cos(β)

(52)
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The first derivative concerning the coordinate x is

dVx

dx
=

(
dVζ

dx
+ Vζ

(
dβ

dx
tan(β)− dα

dx
tan(α)

))
cos(α)
cos(β)

(53)

The lateral speed, considering the ideal turn of the vehicle kinematic model (Figure 4),
is expressed by the longitudinal component Vζ

Vµ = Vζ tan(β) (54)

The derivative concerning time gives

dVµ

dt
=

dVµ

dx
dx
dt

=
dVµ

dx
Vx (55)

where
dVµ

dx
=

dVζ

dx
tan(β) +

Vζ

cos2(β)

dβ

dx
(56)

The yaw rate can be evaluated as the derivation of yaw angle ϕ, Equation (45), in the
current global coordinates. Thus,

ω =
dφ

dt
=

d
dt
(α− β) =

(
dα

dx
− dβ

dx

)
Vx (57)

Since the global coordinate systems differ only by a constant angle of mutual disposi-
tion, this does not affect the yaw rate value ω (Figure 4).

The derivative component with respect to the coordinate x is

dω

dx
=

(
d2α

dx2 −
d2β

dx2

)
Vx +

dVx

dx

(
dα

dx
− dβ

dx

)
(58)

The angular acceleration ε is the derivative of the yaw rate ω concerning time

ε =
dω

dt
=

dω

ds
ds
dt

=
dω

dx
/

ds
dx

V =

(
d2α

dx2 −
d2β

dx2

)
V2

x +
dVx

dx
ω (59)

The longitudinal and lateral accelerations in the local vehicle coordinate system ζµ can be
derived from Equation (48) via decomposition components

→
a =

d
→
V

dt
=

(
aζ

aµ

)T
(→

u ζ
→
u µ

)
,
(

aζ

aµ

)
=

(
dVζ

dx Vx −ωVµ
dVµ

dx Vx + ωVζ

)
(60)

The longitudinal jerk [14,25] characterizes the acceleration change, impacting the dy-
namics transient. This parameter comprises all other kinematic criteria and can be used
for insuring the smoothness of non-stationary motion. Differentiating Equation (60) and
taking the longitudinal component, obtain

jζ =
d2Vζ

dt2 −
(

2
dVµ

dt
+ Vζ ω

)
ω−Vµε (61)

4.3. Optimization Criteria

Let us consider the formation of objective functions that provide the search for the best
approximations of the desirable trajectory (steering control) and velocity distribution functions.

4.3.1. Trajectory Cost Function

This stage aims to determine the vector of nodal parameters qy corresponding to
Equation (28). Since the nodes of internal FEs are adjacent, the values in them are the same.
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This leads to the need to form a complete set of DOFs for each i-th FE in which the vehicle
motion section consists. Then

Qyi =

(
qy(i)

qy(i+1)

)
(62)

Path Length. This characterizes the travelling distance that influences the total energy
consumption. It can be calculated as the integral of elementary arcs.

Is =
∫ s

0
ds =

∫ D

0
s′xdx =

n

∑
i=1

Li

∫ 1

0
zsi(ξ)dξ (63)

According to the scheme of Equation (8), the integral is transformed to the view of
Equations (14) and (15), where the function zsi(ξ) and the final form of the integral are
expressed as

zsi(ξ) = s′xi

(
Qyi, Li, ξ

)
, zsi = zsi

(
Qyi, Li, ξ

(
λT
))

, Is ≈
1
2

Lszsw (64)

In practical calculations, it is better to use a specific parameter that reflects the deviation
of the trajectory length from the section one, then

ID = Is/D (65)

Slip Angle Deviation. The angle β is associated with the mass center’s lateral velocity
component as well as with the current curvature and, consequently, the position of vehicle’s
steered wheels. Minimizing this angle in the quadratic sense along the section D provides
the least activation of the steering control, which positively affects the motion stability and
the possibility of increasing the course speed. Then,

Iβ =
∫ D

0
(β(x))2dx = ∑n

i=1 Li

∫ 1

0
zβi(ξ)dξ (66)

Expressing the integrand zβi(ξ) according to the scheme Equations (14)–(16), get

zβi(ξ) = β2
(

Qyi, Li, ξ
)

, zβi = zβi

(
Qyi, Li, ξ

(
λT
))

, Iβ ≈
1
2

Lszβw (67)

Curvature Rate. This reflects the intensity of changing the curvature component and
also affects the yaw speed and other kinematic parameters (acceleration, jerk) containing it.
Thus, the maximum smoothness of the trajectory nature should be ensured. Then,

IdK =
∫ D

0

(
dK
dx

)2
dx = ∑n

i=1 Li

∫ 1

0
zdKi(ξ)dξ (68)

Using the integrand zdKi(ξ) according to the scheme Equations (14)–(16), obtain

zdKi(ξ) =
(

dK
dx

(
Qyi, Li, ξ

))2
, zdKi = zdKi

(
Qyi, Li, ξ

(
λT)),

IdK ≈ 1
2 LszdKw

(69)

Deviation of Curvature’s Second Order Derivative. This reflects the intensity of curvature
rate that affect the vehicle dynamics. From this point of view, the DOFs to be optimized are
selected in such a way as to reduce the transient processes when controlling the AV, which
also simplifies the task of complex control. Then

Id2K =
∫ D

0

(
d2K
dx2

)2

dx = ∑n
i=1 Li

∫ 1

0
zd2Ki(ξ)dξ (70)
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Denoting the integrand zd2Ki(ξ) and following the scheme of Equations (14)–(16), get

zd2Ki(ξ) =
(

d2K
dx2

(
Qyi, Li, ξ

))2
, zd2Ki = zd2Ki

(
Qyi, Li, ξ

(
λT)),

Id2K ≈ 1
2 Lszd2Kw

(71)

Deviation of Fourth Order Derivative. This derivative is an element of the second
curvature derivative, however, in Equation (3) it is not included in the nodal parameter.
As a result, this leads to discontinuity of this parameter at the bounds of adjacent FEs. To
mitigate this deficiency as much as possible, it is necessary to add this parameter in the
objective function. Then

Id4y =
∫ D

0

(
d4y
dx4

)2

dx = ∑n
i=1 Li

∫ 1

0
zd4yi(ξ)dξ (72)

Denoting the integrand zd4yi(ξ) and following the scheme of Equations (14)–(16), obtain

zd4yi(ξ) =
(

d4y
dx4

(
Qyi, Li, ξ

))2
, zd4yi = zd4yi

(
Qyi, Li, ξ

(
λT)),

Id4y ≈ 1
2 Lszd4yw

(73)

Minimization. The cost function Sy can be represented as a sum of criteria weighed by
proportional coefficients Wy and written in the matrix form.

Sy

(
qy

)
= WT

y Iy

(
qy

)
→ min (74)

where qy = vector of variable nodal parameters corresponding to Equation (16); Iy = vector
of criteria integrals; Wy = vector of weighting coefficients.

Wy =


WD
Wβ

WdK
Wd2K
Wd4y

, Iy

(
qy

)
=


ID
Iβ

IdK
Id2K
Id4y

 (75)

where WD, Wβ, WdK, Wd2K, Wd4y = weighting factors of the path, slip angle, curvature first
and second derivatives, and fourth order y derivative, respectively.

4.3.2. Kinematics Cost Function

Considering that the vector of nodal parameters qy is already found, the next step
implies determining the vector qv. By analogy with Equation (62)

Qvi =

(
qv(i)

qv(i+1)

)
(76)

Travel time is needed to form the discrete time series for motion tracking task. In lesser
degree this criterion is suitable for optimization since it does not correspond to the quadratic
form of the objective function and asymptotically decreases to ts with increasing speed.

It =
∫ ts

0
dt =

∫ s

0

ds
V(s)

=
∫ D

0

s′xdx
s′xVx

=
∫ D

0

dx
Vx(x)

= ∑n
i=1 Li

∫ 1

0
zti(ξ)dξ (77)

Let us use the integrand zti(ξ) according to the scheme Equations (14)–(16), then

zti(ξ) =
1

Vx

(
Qyi, Qvi, Li, ξ

) , zti = zti

(
Qyi, Qvi, Li, ξ

(
λT
))

, It ≈
1
2

Lsztw (78)
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Longitudinal speed can be redistributed relative to a preset level Vζmax to provide the
minimum deflection in the quadratic sense. Then

Iv =
∫ s

0

(
Vζmax −Vζ

)2ds =
∫ D

0

(
Vζmax −Vζ

)2s′xdx = ∑n
i=1 Li

∫ 1

0
zvi(ξ)dξ (79)

Denoting the integrand zvi(ξ) and following the scheme of Equations (14)–(16), obtain

zvi(ξ) =
(
Vζmax −Vζ(Qvi, Li, ξ)

)2s′x
(

Qyi, Li, ξ
)

,

zvi = zvi

(
Qyi, Qvi, Li, ξ

(
λT)), Iv ≈ 1

2 Lszvw
(80)

The longitudinal acceleration criterion helps to even its deflection and decrease power
consumption during changing AV speed. Thus,

Iaζ =
∫ s

0
a2

ζds =
∫ D

0
a2

ζ s′xdx =
n

∑
i=1

Li

∫ 1

0
zaζi(ξ)dξ (81)

Determine the integrand zaζi(ξ), then, according to the scheme of Equations (14)–(16), obtain

zaζi(ξ) =
(

aζ

(
Qyi, Qvi, Li, ξ

))2
s′x
(

Qyi, Li, ξ
)

,

zaζi = zaζi

(
Qyi, Qvi, Li, ξ

(
λT)), Iaζ ≈ 1

2 Lszaζ
w

(82)

The lateral acceleration criterion is responsible for motion stability and safety. It charac-
terizes the lateral tire reactions. Thus,

Iaµ =
∫ s

0
a2

µds =
∫ D

0
a2

µs′xdx = ∑n
i=1 Li

∫ 1

0
zaµi(ξ)dξ (83)

Using the integrand zaµi(ξ), and expressions of Equations (14)–(16), obtain

zaµi(ξ) =
(

aµ

(
Qyi, Qvi, Li, ξ

))2
s′x
(

Qyi, Li, ξ
)

,

zaµi = zaµi

(
Qyi, Qvi, Li, ξ

(
λT)), Iaµ ≈ 1

2 Lszaµw
(84)

The longitudinal jerk [9] criterion provides a smooth acceleration during transient
dynamics, ensuring the propulsion system’s stable and predictable operation. Then,

Ijζ =
∫ s

0
j2ζ ds =

∫ D

0
j2ζ s′xdx = ∑n

i=1 Li

∫ 1

0
zjζi(ξ)dξ (85)

Determine the integrand zjζi(ξ), then, according to the scheme of Equations (14)–(16), obtain

zjζi(ξ) =
(

jζ
(

Qyi, Qvi, Li, ξ
))2

s′x
(

Qyi, Li, ξ
)

,

zjζi = zjζi

(
Qyi, Qvi, Li, ξ

(
λT)), Ijζ ≈ 1

2 Lszjζw
(86)

Minimization. The function Sv to be optimized is represented as a linear combination
in the matrix form

Sv(qv) = WT
v Iv(qv)→ min (87)
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where qv = vector of unknown node parameters, Equation (60), Iv = vector of integrals,
Wv = vector of weighting coefficients.

Wv =


Wv
Waζ

Waµ

Wjζ

, Iv(qv) =


Iv

(
qy, qv

)
Iaζ

(
qy, qv

)
Iaµ

(
qy, qv

)
Ijζ

(
qy, qv

)

 (88)

where Wv, Waζ , Waµ, Wjζ = weighting factors for the speed, longitudinal and lateral
accelerations, and longitudinal jerk, respectively.

4.4. Integral Equality Constraints

Using the technique of Equations (17)–(22), let us note the parameters for which it is
expedient to introduce integral restrictions. All separately generated vectors of equality
constraints will be represented by a single vector to match the shape in Equation (16).

4.4.1. Trajectory Restrictions

Curvature. The trajectory curvature should not exceed the limits Kmax and Kmin condi-
tioned by the maximum turn angles of the steered wheels. That is, for i-th FE∫ xi

xi−1

(Kmax − Kmin)dx =
∫ xi

xi−1

|(Kmax − K)|dx +
∫ xi

xi−1

|(K− Kmin)|dx (89)

Considering Kmax to be a constant and Kmin = −Kmax, according to Equations (17)–(22)

zuli(ξ) = (Kmax − Kmin),

zuhi(ξ) =
∣∣∣Kmax − K

(
Qyi, Li, ξ

)∣∣∣,
zhli(ξ) =

∣∣∣K(Qyi, Li, ξ
)
− Kmin

∣∣∣
(90)

Other Options. According to a similar scheme, the parameters defined for trajectory
optimization may also be used (curvature’s higher derivatives). However, the number of
restrictions, in this case, may become redundant in relation to the quality of optimization.
Some of these parameters are better to be considered in the kinematic constraints by
adjusting the smoothness of the speed change.

4.4.2. Physical Restrictions

First of all, despite using the vehicle kinematic model, the speed plan should be
linked to the possibilities of realizing the tire–road adhesion. Thus, if the lateral adhesion
coefficient φζ is already set by the traction mode, the maximum lateral forces are limited by
the potential φµ [29].

ϕµ = ϕmax

√
1−

(
ϕζ/ϕmax

)2 (91)

where φmax = maximum adhesion value.
Thus, even with minimum traction use, the curvature and motion speed must be such

that φµ < φmax. Since the maximum vehicle traction is realized on the wheels and associated
with the acceleration nature, the φζ will be limited simultaneously by the adhesion limit
and the powertrain system potential.

The equation of longitudinal dynamics in dimensionless form, where φζ reflects the
degree of using the traction potential on the wheels necessary to ensure aζ , can be written as

ϕζ = aζ/g + fd + fr (92)
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where fr = coefficient of total rolling resistance; fd = specific drag force; g = gravitational
acceleration constant.

fd = Fd/(mg) = ρaCx A f /(2mg) (93)

where Fd = drag force; m = vehicle gross mass; ρa = air density under the normal conditions;
Cx = aerodynamic drag coefficient, and Af = frontal (projective) vehicle square.

Assuming that the curvature for high-speed motion is relatively small and the steered
wheels’ turn angles differ little from β, the longitudinal component fr of rolling resistance
in the vehicle’s local coordinates can be estimated as follows

fr ≈ ((Fr1 + Fr3)cos(β) + Fr2 + Fr4)/(mg) (94)

where Fr1, Fr2, Fr3, Fr4 = forces of rolling resistance on wheels.
For each wheel, considering their local coordinates, the rolling resistance is propor-

tional to the vertical reaction, then

Frk = Rzk frk (95)

where Rzk = vertical wheel load (may be accepted as mg/4 for simplicity); frk = k-th wheel
rolling resistance coefficient.

Each wheel moves with its speed (Figure 4), then

frk = qsy1 + qsy3
∣∣Vζk

∣∣+ qsy4
(
Vζk/Vm

)4 (96)

Vζk = longitudinal speed in k-th wheel coordinate system, Vm = speed at which the
empirical measurements were made; qsy1, qsy3, qsy4 = coefficients [30].

Consider the component of the centrifugal force acting in the vehicle transverse plane
and balanced by the sum of the tires’ side reactions

mV2Kcos(β) = mgϕµ (97)

Then, the critical value of the mass center absolute velocity, according to the road
adhesion condition, gives

Vcr =

√
gϕµ

Kcos(β)
(98)

Since the longitudinal speed is related to the absolute one by expression Equation (51),
the critical value Vζs by the sliding condition yields

Vζs = Vs =
√

gϕµcos(β)/K (99)

4.4.3. Kinematic Restrictions

Speed. The predicted speed can be determined within certain limits [12], which in
the general case can also be functions of nodal parameters. However, within the nearest
prediction horizon, the easiest way is to set the upper Vζmax and lower Vζmin limits to
constant values. Here, for brevity, we write only the main line, followed by applying the
scheme of Equations (17)–(22). For i-th FE∫ xi

xi−1

(Vmax −Vmin)s′xidx =
∫ xi

xi−1

∣∣Vζmax −Vζ

∣∣s′xidx +
∫ xi

xi−1

∣∣Vζ −Vζmin
∣∣s′xidx (100)

However, with a substantially curvilinear motion, it may turn out that Vζs < Vζmax.
Therefore, one more condition is necessary to ensure the requirement Vζ < Vζs. Obviously,
for zero curvature, Vζs from Equation (51) becomes infinite, and it’s impossible to use it
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directly in integral equalities. In this regard, let us use a function ψ(ν) = arctan(ν) that
rapidly saturates with increasing speed. Thus∫ xi

xi−1

ψ
(
Vζs
)
s′xidx =

∫ xi

xi−1

∣∣ψ(Vζs
)
− ψ

(
Vζ

)∣∣s′xidx +
∫ xi

xi−1

ψ
(
Vζ

)
s′xidx (101)

According to Equations (17)–(22)

zuli(ξ) = arctan
(
Vζs(Qvi, Li, ξ)

)
s′xi

(
Qyi, Li, ξ

)
,

zuhi(ξ) =
∣∣arctan

(
Vζs(Qvi, Li, ξ)

)
− arctan

(
Vζ(Qvi, Li, ξ)

)∣∣s′xi

(
Qyi, Li, ξ

)
,

zhli(ξ) = arctan
(
Vζ(Qvi, Li, ξ)

)
s′xi

(
Qyi, Li, ξ

) (102)

Yaw Rate. As known, the vehicle is equipped with a gyroscope for estimating the
yaw rate [12], and therefore, it should also be restricted when planning. This is due
to the provision of directional stability of the vehicle. Thus, with symmetrical limits
ωmin = −ωmax obtain∫ xi

xi−1

(ωmax −ωmin)s′xidx =
∫ xi

xi−1

|ωmax −ω|s′xidx +
∫ xi

xi−1

|ω−ωmin|s′xidx (103)

Angular Acceleration. This characterizes the ratio of the yaw rate intensity and the
rotational velocity of the steered wheels. Similar to ω, for ε the integral criterion has a view∫ xi

xi−1

(εmax − εmin)s′xdx =
∫ xi

xi−1

|εmax − ε|s′xdx +
∫ xi

xi−1

|ε− εmin|s′xdx (104)

Longitudinal Jerk. This may be restricted to mitigate and provide the reliable transients
of powertrain modes. Supposing the upper jζmax and lower jζmin limits to be constant, obtain∫ xi

xi−1

(
jζmax − jζmin

)
s′xdx =

∫ xi

xi−1

∣∣jζmax − jζ
∣∣s′xdx +

∫ xi

xi−1

∣∣jζ − jζmin
∣∣s′xdx (105)

4.4.4. Dynamic Restrictions

When planning the dynamic mode of AV motion, it is necessary to consider both
the vehicle powertrain potential and the ability to realize traction on wheels according to
the road adhesion condition. In this case, the acceleration limit determined by adhesion
and distributed along the path s can be estimated as aζmax = φζmaxg and aζmin = −aζmax
(Figure 5a). At the same time, the acceleration provided by the propulsion system under
normal road conditions is a function of the longitudinal speed and is limited by the throttle
response characteristic [5] for the case of maximum fuel supply (Figure 5b). In turn,
the upper limit aζU, which determines the maximum vehicle performance, will change
stepwise following the number of automatic transmission gears, and the lower limit aζL
can be set based on certain expediency for a particular maneuver. Thus, the distribution
of accelerations must simultaneously correspond to the two approaches in Figure 5. For
example, (a) if the road adhesion is low, then aζmax < aζU, (b) if road condition is good, then
aζmax > aζU, (c) if the use of the braking system is not planned, then it can be assumed that
aζL ≥ −0.5 m/s2, and (d) if intensive braking is required, then a threshold value within
aζmin ≤ aζL ≤ −0.5 m/s2 may be set.

However, there is a problem with composing the integral constraints in Figure 5b. The
nodal parameters of acceleration distribution are determined relative to the path nodes.
Therefore, it is impossible to obtain an explicit form of dependency where the speed grows
strictly in one direction. In this regard, it is proposed to use an interpolation approach. The
values of speed and acceleration for each segment of a path section can be determined at
several points, followed by sorting in ascending order of speeds. Using the new polynomial
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representation of both the current accelerations and the boundaries, it is possible to use
again the numerical integration schemes corresponding to N points and equivalent to
Equation (9). Of course, this will lead to errors in representing the curves’ shapes but
ensures that the vehicle powertrain system’s capabilities will not be exceeded for the
corresponding gear.
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4.4.5. Boundary Restrictions

The most critical and complex problem of the vehicle motion geometry is providing
such traces of control points [1, . . . , 6] (Figure 6) that retain their trajectories strictly within
the motion zone boundaries [1,4]. Thus, the approach in Figure 2 can also be applied to the
trajectories of the safe contour control points. These points are chosen in such a way as to
cover the curvature of the borders within the half of vehicle’s length, which is sufficient for
maneuvers on the roadway.
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Figure 6. Forming control points’ traces for use in integral equality constraints.

Points 5 and 6 are sliding. Their abscissas coincide with the mass center abscissa, that
is, x(p) = x, where p = 5, 6, and the ordinates, respectively,

y(p) = y + rµ(p)/cos(φ) (106)

where rµ(p) = ±Y/2 = transversal coordinate of point p in the vehicle coordinate system.
For external points, p = [1, 2, 3, 4], the effect of the AV yaw angle is significant. Then

y(p) = y + r(p)sin
(

φ(p) + φ
)

and x(p) = x + r(p)cos
(

φ(p) + φ
)

(107)
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where x, y, ϕ = current values of the mass center position and the vehicle yaw angle in the
grid nodes; r(p), ϕ(p) = radius module and angle of the critical point p location in the vehicle
coordinate system.

Unlike the trajectories of points 5 and 6 that can be directly included in the integration
scheme, control points [1, 2, 3, 4] are moving within segment lengths Li(p) influenced by the
yaw angle. In this case, the integration can be organized within the FE’s internal coordinate
if considering the functions of control points’ trajectories and boundaries as shifted and
stretched under the yaw angle influence. This will provide dependencies on only one
variable x and, therefore, the possibility of applying the same general integration scheme.
However, if the values of y(p)-ordinates of the control points can be easily found according
to Equation (107), determining the boundaries’ values at the points x(p) is complicated
by the fact that x(p) exceeds a segment limit in which the integration is performed. Thus,
the problem is reduced to determining the corresponding parameters ξ in the local and
adjacent segments to use their nodal parameters in calculating the ordinates of the upper
yUi(p) and lower yLi(p) boundaries.

ξi(p) =
(

xi(p) − xi

)
/Li (108)

The obtained values can be within the following limits stipulating the point position
in i-th segment. Note that ξi(p) is a vector with a length corresponding to many integration
points. Thus, it is assumed that the procedure is carried out for each its member.

0 > ξi(p) ≥ −1 ⇒ i− 1 ⇒ ξi−1(p) =
(

xi−1(p) − xi−1

)
/Li−1

0 < ξi(p) ≤ 1 ⇒ i ⇒ ξi(p) =
(

xi(p) − xi

)
/Li

1 < ξi(p) ≤ 2 ⇒ i + 1 ⇒ ξi(p) =
(

xi+1(p) − xi+1

)
/Li+1

(109)

Thus, calculating the boundaries’ ordinates is performed by considering which seg-
ment the integration point belongs to. Then, for each point p = [1, 2, 3, 4]

zULi(p)(ξ) =
(

yUi(p)

(
Qyi, Li, ξ

)
− yLi(p)

(
Qyi, Li, ξ

))
,

zUhi(p)(ξ) =
∣∣∣yUi(p)

(
Qyi, Li, ξ

)
− yi(p)

(
Qyi, Li, ξ

)∣∣∣,
zhLi(p)(ξ) =

∣∣∣yi(p)

(
Qyi, Li, ξ

)
− yLi(p)

(
Qyi, Li, ξ

)∣∣∣
(110)

4.5. Coordination of Transients between Phases

As noted, when changing global coordinates for different movement phases, it is
necessary to ensure the coordination of geometric and speed parameters in the transition
node. Therefore, let us reflect in parentheses a parameter’s phase number by the upper
index and several transition points by the lower index.

4.5.1. Geometric Transition Conditions

The task is to determine the vector of nodal parameters for node 1 in the new coor-
dinate system based on the vector of parameters of the same node (n + 1) in the previous
coordinate system (Figure 2). That is

q(2)y(1) =

(
y(2)
(1)

dy
dx

∣∣∣(2)
1

d2y
dx2

∣∣∣(2)
1

d3y
dx3

∣∣∣(2)
1

)T
(111)

If AV in the node n of the first phase fixes by a camera the road boundaries for the
second phase, then the new global coordinate system is estimated at the angle −φ

(2)
(0) for the

longitudinal axis ζ of the local AV coordinate system, which corresponds to the AV location
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under the angle φ
(2)
(0) relative to the longitudinal x-axis of the new global coordinate system.

The global coordinate systems are located at the angle ∆ϕ for each other

∆φ = φ
(1)
(n) − φ

(2)
(0) (112)

The coordinates of point 1 in the new coordinate system, considering Equation (49)x(2)
(1)

y(2)
(1)

 = MT(∆φ)

∆x(1)
(n+1)

∆y(1)
(n+1)

,

∆x(1)
(n+1)

∆y(1)
(n+1)

 =

x(1)
(n+1)

y(1)
(n+1)

−
x(1)

(n)

y(1)
(n)

 (113)

The first derivative in the node 1 can be determined according to Equation (32)

dy
dx

∣∣∣∣(2)
(1)

= tan
(

α
(2)
(1)

)
(114)

Note that the angle β does not depend on the coordinate system, and therefore

β
(1)
(n+1) = β

(2)
(1) (115)

Then, considering Equation (45)

β
(1)
(n+1) = α

(1)
(n+1) − φ

(1)
(n+1), β

(2)
(1) = α

(2)
(1) − φ

(2)
(1) (116)

In its turn

α
(1)
(n+1) − φ

(1)
(n+1) = α

(2)
(1) − φ

(2)
(1) , α

(2)
(1) = α

(1)
(n+1) − φ

(1)
(n+1) + φ

(2)
(1) (117)

Considering Equation (112) the yaw angle at point 1 becomes

φ
(2)
(1) = φ

(1)
(n+1) − ∆φ = φ

(1)
(n+1) − φ

(1)
(n) + φ

(2)
(0) (118)

Then, substituting Equation (118) in Equation (117), obtain

α
(2)
(1) = α

(1)
(n+1) − φ

(1)
(n) + φ

(2)
(0) = α

(1)
(n+1) − ∆φ (119)

Finally, Equation (114) becomes

dy
dx

∣∣∣∣(2)
(1)

= tan
(

α
(1)
(n+1) − ∆φ

)
(120)

The second derivative at node 1 can be determined under the condition that the
curvature at the transition point is equal.

K(1)
(n+1) = K(2)

(1) (121)

The curvature value at the point (n + 1) is already calculated, then, calculating the
value s’x from Equation (29), in accordance with Equation (37), obtain

d2y
dx2

∣∣∣∣(2)
(1)

= K(1)
(n+1)

(
s′x
∣∣(2)
(1)

)3
(122)
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The third derivative in node 1 can be determined from the condition of equality of
curvature derivatives along the path s at the transition point. Considering Equation (38)

dK
ds

=
dK
dx

dx
ds

=
1
s′x

dK
dx

=
1

(s′x)
2

(
1

(s′x)
2

d3y
dx3 − 3K

ds′x
dx

)
,

dK
ds

∣∣∣∣(1)
(n+1)

=
dK
ds

∣∣∣∣(2)
(1)

(123)

Then, considering Equation (30) and already calculated components

d3y
dx3

∣∣∣∣(2)
(1)

=

(
dK
ds

∣∣∣∣(1)
(n+1)

(
s′x
∣∣(2)
(1)

)2
+ 3K(2)

(1)
ds′x
dx

∣∣∣∣(2)
(1)

)(
s′x
∣∣(2)
(1)

)2
(124)

4.5.2. Kinematic Transition Conditions

As in the previous case, the task is to determine the vector of nodal speed parameters
in the node 1 of the new coordinate system based on the parameter vector in the same node
(n + 1) of the previous coordinate system (Figure 2). That is

q(2)v(1) =

(
V(2)

ζ(1)
dVζ

dx

∣∣∣(2)
(1)

d2Vζ

dx2

∣∣∣∣(2)
(1)

d3Vζ

dx3

∣∣∣∣(2)
(1)

)T

(125)

When coordinating the nodal parameters in node 1 (n + 1) of the transition between
planning phases, it is necessary to ensure that the following conditions are met (Figure 2b).
Equality of longitudinal speeds:

V(2)
ζ(1) = V(1)

ζ(n+1) (126)

The first derivative in different coordinate systems can be estimated from the continuity
of the relative longitudinal acceleration in the local AV coordinate system, following from
Equation (46). Then, one can equate

dVζ

dt

∣∣∣∣(2)
(1)

=
dVζ

dt

∣∣∣∣(1)
(n+1)

(127)

Since the value for the previous phase at node (n + 1) is already known, using the
formula of Equation (52) for the new Vx, obtain

dVζ

dx

∣∣∣∣(2)
(1)

=
dVζ

dt

∣∣∣∣(1)
(n+1)

/V(2)
x(1), V(2)

x(1) = V(2)
ζ(1)

cos
(

α
(2)
(1)

)
cos
(

β
(2)
(1)

) (128)

The second derivative can be found in the same way based on the equalities of the
second derivatives concerning the time of the longitudinal velocity Vζ at the point of phase
change according to Equation (46).

d2Vζ

dt2

∣∣∣∣∣
(2)

(1)

=
d2Vζ

dt2

∣∣∣∣∣
(1)

(n+1)

(129)

Then, considering Equation (53), obtain

d2Vζ

dx2

∣∣∣∣∣
(2)

(1)

=

 d2Vζ

dt2

∣∣∣∣∣
(1)

(n+1)

−
dVζ

dx

∣∣∣∣(2)
(1)

dVx

dx

∣∣∣∣(2)
(1)

V(2)
x(1)

/(V(2)
x(1)

)2
(130)
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The third derivative in the transition node can be found by considering the equalities of
the corresponding derivative concerning the time

d3Vζ

dt3

∣∣∣∣∣
(2)

(1)

=
d3Vζ

dt3

∣∣∣∣∣
(1)

(n+1)

(131)

Differentiating Equation (46), obtain

d3Vζ

dt3 =
d3Vζ

dx3 V3
x + 3

d2Vζ

dx2
dVx

dx
V2

x +
dVζ

dx

(
d2Vx

dx2 V2
x +

(
dVx

dx

)2
Vx

)
(132)

Wherefrom

d3Vζ

dx3 =

(
d
dt

(
d2Vζ

dt2

)
− 3

d2Vζ

dx2
dVx

dx
V2

x −
dVζ

dx

(
d2Vx

dx2 V2
x +

(
dVx

dx

)2
Vx

))/
V3

x (133)

Differentiating Equation (53), obtain

d2Vx
dx2 =

(
dVζ

dx
cos(α)
cos(β)

+ dVx
dx

)(
dβ
dx tan(β)− dα

dx tan(α)
)

+

(
d2Vζ

dx2 + Vζ

(
d2β

dx2 tan(β)− d2α
dx2 tan(α) +

(
dβ
dx

)2 1
cos2(β)

−
(

dα
dx

)2 1
cos2(α)

))
cos(α)
cos(β)

(134)

Carrying out manipulations similar to the previous paragraph with the known pa-
rameters from the previous phase, the last component for phase matching in speed can
be determined

d3Vζ

dx3

∣∣∣∣∣
(2)

(1)

4.5.3. Linear Equality Constraints

The task is to form vectors for predicting the trajectory and speed, determining
the preset parameters at the initial and final nodes. According to Equation (16), these
parameters are associated with the solution vector by matrices Aeq. Note that parameters
can be assigned arbitrarily for the first node of the first phase, and transition values are
calculated for subsequent phases as described in the previous paragraph.

Boundary conditions of the trajectory. Usually, at the initial node of the first phase, its
position, derivative, and curvature with its derivatives are considered to be known. In this
regard, let us preset all DOFs in node 1. At the same time, at the last node (n + 1), let us
leave the DOFs self-determining except for the curve tangent slope, due to which the curve
stability is preserved, but the rigidity of conditions is reduced. In this way

beq =

(
y(1)
(1)

dy
dx

∣∣∣(1)
(1)

d2y
dx2

∣∣∣(1)
(1)

d3y
dx3

∣∣∣(1)
(1)

dy
dx

∣∣∣(1)
(n+1)

)T
(135)

The first four elements for the starting node can be obtained from Equations (32),
(37) and (38), and subsequent values correspond to the vector of Equation (111). The fifth
element is obtained by averaging the slope angles at the (n + 1) nodes of the upper and
lower boundaries.

The matrix Aeq, in this case, is a rectangular matrix of dimension 5 × 4(n + 1), where
all elements are equal to 0, except for

Aeq(1,1) = Aeq(2,2) = Aeq(3,3) = Aeq(4,4) = Aeq(5,4n+2) = 1 (136)

Boundary conditions for speed. A vector of five elements can also represent the
conditions for external speed nodes. For the phases following the first, the initial four



Vehicles 2022, 4 1151

elements are defined as transitional based on the requirements of Equation (125). The
fifth element characterizes the change in speed along the x-coordinate in the last node and
can be determined from the relation of Equation (46), setting the change in velocity over
time in the local AV coordinates. The remaining DOFs at the last node are determined by
the optimization,

beq =

(
V(1)

ζ(1)
dVζ

dx

∣∣∣(1)
(1)

d2Vζ

dx2

∣∣∣∣(1)
(1)

d3Vζ

dx3

∣∣∣∣(1)
(1)

dVζ

dx

∣∣∣(1)
(n+1)

)T

(137)

In the case of the first node of the initial phase, the definition of velocity derivatives
can be determined from the conditions established by Equations (46), (60), (61) and (133),
setting the initial speed, acceleration, and jerk. The matrix Aeq remains the same as for the
trajectory case.

5. Simulation Example

Consider an example of a two-stage prediction of the AV curvilinear motion with
bypassing moving obstacles. Let us use the Audi A4 Quattro’s data as vehicle model
parameters. The set of required initial data is summarized in Table 2. All calculations are
performed on the authors’ program composed in the MATLAB [31] environment. The
“fmincon” [31] function of nonlinear optimization with nonlinear constraints is used for
the minimization procedure.

Table 2. Data for simulating the AV motion prediction.

Parameter Value Parameter Value Parameter Value

c, [m] 1.43 m, [kg] 1960 ρa, [kg/m3] 1.225

b, [m] 1.37 φmax 0.8 Cx 0.24

Y, [m] 1.551 Vζmax, [km/h] 85 Af, [m2] 2.04

|rζk|, [m] 2.5 Vζ (0), [km/h] 60 D, [m] 67.98/76.8

|rµk|, [m] 1.2 n 6 d, [m] 17.5/ 21.5

5.1. Trajectory Searching

As specified in Equation (75), let us form a vector of weight coefficients that determine
the same nature of optimization for all stages. Then

Wy =
(
0.01 1 0.01 0.01 3

)T (138)

Here, the used values are explained as follows. The first coefficient is highly sensitive,
but at the same time the minimum path factor reliably sets the initial trajectory skeleton for
any configuration of conditions. The second coefficient focuses on the minimum possible
curvature. The third and fourth coefficients are responsible for the smoothness and flatness
of the trajectory. Small values are explained by the fact that, firstly, their influence is already
indirectly taken into account by the integral equality constraints, and, secondly, an increase
in these coefficients can lead to ambiguity in the form of the trajectory in various phases and
conditions. The last coefficient strengthens the requirement of minimum discontinuities of
the fourth derivative in the nodes of adjacent FEs. Figure 7 shows the results of trajectory
optimization for both phases.
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5.2. Kinematics Searching

As shown in Equation (88), four weight coefficients determine the nature of the
velocity distribution along the motion trajectory. The following set of coefficients can be
recommended as providing a stable forecast for both phases:

Wv =
(
1 0 0.03 0.03

)T (139)

The choice of coefficients was made by multiple testing for mutual influence, and
the values are explained as follows. The first coefficient is responsible for the rapid speed
approach to the preset upper limit; therefore, its influence is set to the greatest. The second
coefficient should average and minimize the use of longitudinal acceleration. However, it is
in conflict with the fourth impact coefficient. On the other hand, the increase in longitudinal
acceleration is not a problem, since the integral equality constraints already limit it. The
third coefficient reduces the use of lateral acceleration and is also in conflict with the first
coefficient, therefore, its value is small, purely to take into account safety requirements.
Additionally, the fourth coefficient determines the intensity of the influence of longitudinal
jerk, which is also limited by the integral equality constraints.

Thus, a significant value of the coefficient is not required. Note that using the settings
of Equation (137) it is possible to influence the longitudinal acceleration nature at the
phase’s final node. Thus, considering the transient nature of the vehicle dynamics in the
bypassing zone of the impeding vehicle at the end of the first phase, it is recommended
to set the fifth element in Equation (137) equal to zero. Firstly, when the camera visually
assesses the road situation at the beginning of the first phase, the curvature of the following
road section is unknown. Therefore, to ensure increased safety, the longitudinal acceleration
at the end of the first phase must be close to zero. However, this requirement is no longer
strict when returning to the initial lane at the end of the second phase. The results of
determining the kinematic parameters by phases are shown in Figure 8.
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5.3. Analysis of Results

Trajectories (Figure 7a–c) with a minimum number of nodes are smooth, compact,
of moderate curvature, and do not have excessive inflections. Although the calculations
are carried out in different coordinate systems, the junction in the phase change node is
accurate in value and derivatives. The curvature and its derivative along the trajectory
(Figure 7d,e) are within the established limits and do not exceed them. As seen, the
trajectories maintain sufficient clearance within the boundaries of the motion area, which
confirms the effectiveness of the proposed solution with the safety contour’s control points.
Note that the grid irregularity affects the concentration of curvature in these places due
to a significant difference in the FE lengths between the corresponding adjacent segments.
However, the trajectory’s overall stability, smoothness and monotonicity are preserved.
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The distribution of speed and accelerations (Figure 8a–d) is represented by smoothed
curves, matching the phase conjugation node in values and derivatives. The speed values
do not exceed both the preset upper limit and the variable level of values according to the
side slip condition (Figure 8b). Accelerations (Figure 8c–g) demonstrate continuity and
do not exceed the vehicle technical capabilities as well as the physical limits in terms of
tire–road adhesion. Longitudinal jerk and angular acceleration (Figure 8h,j) give some
discontinuities at the nodes, which, as explained above, is due to the absence of the fourth
derivative as a nodal parameter in the curve model. However, due to the inclusion in the
cost function, it is possible to minimize gaps between the same nodes of adjacent FEs. At
the same time, a strict distribution of these parameters’ values within the established limits
is practically ensured. Note that the longitudinal acceleration and jerk boundaries are not
symmetrical and permanent and can be set depending on the nature of the required action
(e.g., acceleration and deceleration).

6. Conclusions

This paper has developed a mathematical basis for representing nonlinear constraints
in the form of integral equalities and a numerical integration technique for accelerating
the optimization procedure and implemented the interpolation polynomials to ensure the
smoothness of all optimized parameters. Based on this study, the following comments
are offered:

The most important advantage of the proposed approach is the significant calcula-
tion speed while ensuring prediction quality due to the numerical representation of all
current parameters and the use of quadrature integration schemes. This predetermines
the possibility of implementing optimization procedures in conjunction with real-time
machines for HIL (hardware-in-loop) modeling and online implementation on natural
objects. Note that a reliable and stable result is provided even with the five-point Gaussian
integration scheme.

The proposed phase change method ensures seamless transitions for the main param-
eters of the trajectory and speed and their derivatives between adjacent fixed coordinate
systems. Furthermore, having a road model generator would make it possible to realize
the prediction continuity for any configuration of road conditions with arbitrary curvature.

Despite the essential irregularity of the FE grid, the forecasts are highly stable to
changing initial optimization conditions. This is owing to the increased role of the integral
equality constraints, which explains that, for example, regardless of the emphasis on
any weight coefficients when searching for a trajectory, its general character remains
unambiguous and approximately the same.

The idea of the integral equality constraints fully justified itself, providing good
convergence of the cost function and determining the parameters within the given limits.
Moreover, the computations are based on the same quadrature scheme as the calculations
of the objective function components, which unifies the approach.

The distribution of speed parameters is represented by a fully kinematic model,
although considering some physical limitations. Such an ideal curve has a slightly higher
limiting potential than an actual vehicle can realize. However, this remark applies only to
extreme riding modes, which are often prevented by preset safety criteria.

The longitudinal acceleration can be considered as the main numerical criterion for
predicting the AV behavior that does not exceed both the propulsion system potential’s
threshold of 3.5 m/s2 and the reached peak value of 2.5 m/s2. At the same time, the nature
of changing the acceleration is stipulated by introducing the jerk restrictions: 5 m/s3 for
the upper limit due to the propulsion system’s properties, and −2.5 m/s3 is the lower
limit. Here, the asymmetry implies a lower intensity of deceleration than acceleration
since during bypassing obstacles along the planning section the AV should not activate the
braking system. From a safety point of view, the lateral acceleration peaks are about 6 m/s2,
which corresponds to the curvature peak points. However, the maximum acceleration
at the same points is enough below the set limit of about 7.8 m/s2, which guarantees a
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margin for tires’ adhesion conditions. It is possible to introduce a lateral acceleration limit
regulated in the value of 0.4 g; however, the goal of this technique is to assess the maximum
planning potential in terms of vehicle dynamics.

For future research, in the flat vehicle model used to form a plan of speed parameters,
it is expedient to include moments that reflect dynamic phenomena such as roll, lateral
elasticity of tires, dynamic distribution of vertical reactions, and traction and lateral forces.
This approach will increase the forecast safety and feasibility of an actual vehicle.
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