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Abstract: With increasing urban population, there are more and more vehicles, causing traffic
congestion. In order to solve this problem, the development of an efficient and fair intersection
management system is an important issue. With the development of intelligent transportation
systems, the computing efficiency of vehicles and vehicle-to-vehicle communications are becoming
more advanced, which can be used to good advantage in developing smarter systems. As such,
Autonomous Intersection Management (AIM) proposals have been widely discussed. This research
proposes an intersection management system based on Advantage Actor-Critic (A2C) which is a
type of reinforcement learning. This method can lead to a fair and efficient intersection resource
allocation strategy being learned. In our proposed approach, we design a reward function and
then use this reward function to encourage a fair allocation of intersection resources. The proposed
approach uses a brake-safe control to ensure that autonomous moving vehicles travel safely. An
experiment is performed using the SUMO simulator to simulate traffic at an isolated intersection,
and the experimental performance is compared with Fast First Service (FFS) and GAMEOPT in terms
of throughput, fairness, and maximum waiting time. The proposed approach increases fairness by
20% to 40%, and the maximum waiting time is reduced by 20% to 36% in high traffic flow. The inflow
rates are increased, average waiting time is reduced, and throughput is increased.

Keywords: autonomous vehicles; intersection management system; reinforcement learning; fairness;
traffic control

1. Introduction

As the density of the urban population increases, the increasing number of vehicles
causes traffic burdens, and how to cross road intersections more efficiently becomes an
important problem that must be addressed. According to reports, traffic accidents are
closely related to intersections [1]. Moreover, congestion is the most influential factor
with respect to CO2 emissions, which is the most important cause of greenhouse gas and
air pollution from the transportation sector. According to recent reports [2], 2.5% and 10%
of CO2 emissions are due to traffic congestion and delays, respectively. Figure 1 shows
the CO2 emissions due to travel speed for different types of vehicle; it can be seen that
lower speeds cause more emissions per kilometer. Advances in wireless networks are
helpful in Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications.
The IEEE has recently published standards on Wireless Access for Vehicle Environments
(WAVE) [3,4] specifications for Dedicated Short-Range Communications (DSRC) technol-
ogy. The biggest feature of DSRC is the low latency of its message transmission, which
makes it suitable for vehicular environments that require real-time communication. The
emergence of DSRC has created discussion and research in the area of autonomous
intersection management (AIM).

With the help of wireless networks, better communication between V2V and V2I
is contributing to the emergence of AIM, which is a new non-signalized approach to
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intersection management that allows vehicles to cross intersections on the basis of design
policy and without human intervention. Several studies have shown that AIM systems
are superior to signal-based methods [3,5]; however, there are many improvements that
remain to be made.

Figure 1. Vehicle speed and CO2 emissions.

1.1. Background

Qian and Altché proposed a priority-based AIM system [6] to coordinate autonomous
vehicles passing through ane intersection. An intersection controller assigns priority to
incoming vehicles, and the vehicles send requests to controller to cross the intersection.
When the controller receives a request, it decides whether to assign a priority according to
the priority assignment policy. The vehicle must be assigned a priority for the intersection;
prioritized vehicles passes through the intersection while maintaining a so-called brake
safety status [6], by which vehicles respect the priority relations maximally through braking.
Vehicles with lower priority brake to let higher priority vehicles pass if there exists any
conflict in their respective paths.

In our research, we use reinforcement learning [7] to learn the priority policy. The aim
is to let the system learn an effective priority assignment policy through interaction with
the environment, allowing more vehicles to pass the intersection. Reinforcement learning
is an effective machine learning technique that emphasizes how to perform an action
effectively based on the environment by maximizing the needed benefits. Agents observe
the environment, take actions, and are rewarded, and through this process develop a policy
to select actions. The aim is to obtain the maximum cumulative reward. Reinforcement
learning actively focuses on immediate planning, and seeks a balance between current
knowledge (exploitation) and uncharted territory (exploration).

1.2. Motivation

Intersection management policy is an important issue in transportation. Various
systems for autonomous intersection management have been proposed [3,6]. Although
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these methods have good performance compared with signal-based approach, there remain
many issues to discuss. Kamal et al. [3] proposed a predictive control model to coordinate
automatic vehicles at non-signalized intersections in order to increase intersection capacity
and avoid collisions. In this scheme, the state of a vehicle approaching the intersection
is the considered framework, and the intersection area increases the vehicle’s optimized
trajectory. The vehicle may apply aggressive braking and acceleration in order to avoid a
collision. However, such braking and aggressive acceleration increases fuel consumption,
and may make the user uncomfortable. Qian et al. [6] proposed a priority and brake-safe
control-based algorithm in which the intersection controller assigns priority to a vehicle,
which then crosses the intersection while maintaining brake-safe distance from prioritized
vehicles with respect to state. In the experimental results, their proposed method showed
improved average time lost (ATL) and average queue length (AQL) compared to signal-
based approaches with restricted traffic flow. However, with higher traffic volumes this
performance was found to deteriorate. On the other hand, because the proposed policy
attempts to maximize throughput, it leads to unfairness; in other words, vehicles may wait
for a long time while others cross the intersection directly. Experimental results show that
a vehicle may need to wait as long as 123 s before crossing an intersection, while other
vehicles may pass directly through intersection without waiting. The average waiting time
is around 30 s. Jain’s fairness [8] index is used to evaluate fairness; the full range is from 0
to 1, and 1 means the system is 100% fair. This method, however, only has a fairness index
value of 0.3.

In this paper, our object is to propose an AIM architecture based on reinforcement
learning. This architecture has good control policy learning ability and can learn a good
policy while the traffic flow changes from low to high. In addition, we aim to develop a
good reward function that can enable the system to learn a fair and efficient intersection
management policy, allowing vehicles can cross and move through the intersection with
lower delay disparity.

The novelty of the proposed work lies in increasing the reward function used to
encourage a more fair allocation of intersection resources, ensuring brake-safe control to
ensure that autonomous moving vehicles are safe during travel, and reducing the wait
time in high traffic flow. Our experimental results prove that our method increases fairness
by 20% to 40% and reduces waiting time by 20% to 36% in high traffic flows compared to
previous research methods.

The rest of this paper is organized as follows. In Section 2, we introduce works related
to AIM and reinforcement learning. Section 3 provides the definitions and parameter
settings used in our method along with assumptions made during our work. Section 4
presents the overall framework and details of our proposed intersection model. Our
experiment results are explained and compared with other research works in Section 5.
Finally, in Section 6, we provide conclusions and propose possible future works in this
research area.

2. Related Work

In this section, we present previous approaches that address issues around the design
of autonomous intersection management and reinforcement learning in traffic control, such
as how to design the state space, action space, and reward function.

2.1. Autonomous Intersection Management

Autonomous Intersection Management (AIM) is a non-signal based intersection con-
trol system dedicated to improving traffic safety and efficiency. With the improvement
of vehicle communication and autonomous driving technology, vehicles can share their
current intention and state with the intersection facilities in order to further determine how
to distribute intersection resources. In the field of AIM research, there are two primary
methods, namely, the resource reservation method and the trajectory planning method.
Cascetta et al. [9] described the functional design of a transportation supply system, includ-
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ing such different theories and methods as transportation supply models, transportation
demand models, traffic model assignments, demand travel flow, and dynamic models
for transportation systems. Aaron Parks-Young and Guni Sharon [10] proposed a proto-
col for intersection management using mixed autonomous operated vehicles. The main
objective of their work was increase safety in uncertain situations. In a related work on
concentrated autonomous control policy for efficient autonomous intersection management,
Bindzar et al. [11] proposed universal simulation tools for managing urban intersections.
The main aim of their work was to reduce traffic congestion and adjust the signal plan
for monitoring. Li et al. [12] proposed a model based on reinforcement learning for au-
tonomous intersection management. Musolino et al. [13] proposed mobility as a service
(MaaS) for an integrated transport system. MaaS restructures single or multiple transport
models to integrate mobility operators’ services into a single service. This work used
dynamic strategies with various feedback rewards and time spans to avoid conjecture at
multiple levels. Other major related works are described below.

2.2. Resource Reservation Methods

As shown in Figure 2, AIM was first proposed by Dresner et al. [5] as a centralized
method using an intersection modeled as tiles. Tiles on a vehicle path are reserved for a
period of time in order to ensure that the vehicle can safely pass the intersection without
colliding. Two agents are introduced in this approach, namely, a vehicle agent (VA) to
control the vehicle and an intersection reservation agent (RA) that resides at the intersection.
When a vehicle approaches an intersection, the VA sends a reservation request to the RA,
which includes information about the vehicle such as its time of arrival, velocity, position,
vehicle dynamics, etc., in order to reserve tiles on its planned trajectory. The principle
policy proposed in [5] is based on FCFS, which serves the earliest-arriving vehicle first.
Schepperle et al. [14] introduced an auction-based initial time slot auction (ITSA) instead
of FCFS; in this approach, the vehicle with the highest bid passes the intersection first. The
main idea of this method is that there are different waiting times for each driver.

In addition to centralized reservation management, decentralized reservation man-
agement without intersection controllers has been considered. In [15,16], Naumann et al.
proposed a collision region-based distributed reservation scheme. They introduced the
token reservation and occupation concept, in which each token is associated with collision
regions; one vehicle holds a token and occupies that region at a certain time. When the
vehicle acquires the token, it broadcasts the occupancy information while crossing the
related regions. Simultaneously, other vehicles continue to listen and detect token avail-
ability in order to avoid conflicts. VanMiddlesworth et al. [17] discussed similar concepts
and introduced two types of messages, CLAIM and CANCEL, which are sent by vehicles.
A vehicle constantly listens for CLAIM messages from other cars as it approaches the
intersection and compares them with their planned trajectories. If there is no conflict, it
broadcast the CLAIM message of the corresponding tile on its planned trajectory to other
cars. This method allows CLAIM messages to dominate each other; for example, if two
CLAIMs conflict with each other, the lower priority vehicle must relinquish its reservation
to the higher priority one. Unless there is a higher priority CLAIM message, the vehicle
is granted the right to reserve the tiles and can begin to cross the intersection. When the
vehicle passes the intersection, it issues a CANCEL message to release the reserved tiles.
Experimental results show that delay was significantly reduced compared to traffic light
and four-way stop management. The authors of [16] presented a brief survey of intersection
management techniques for connected vehicle and discussed different communication
infrastructures for autonomous intersections. Their work summarizes signals, controls,
and safety management for autonomous vehicles.
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Figure 2. A four-way intersection discretized into a grid of tiles.

2.3. Trajectory Planning Methods

Trajectory planning is another important requirement for AIM. While resource reser-
vation methods manage intersections by considering them through the scheduling of space
tiles and time slots, the trajectory planning method is used for various moving objects in
a conflict-free way. In [18], Grégoire et al. proposed a mathematical framework based on
path–velocity decomposition and adopted priority to relative intersection passing vehicles
between for path identification. A vehicle that wants to cross an intersection needs to send a
request to the intersection controller in order to gain priority, and only vehicles with priority
can pass. Then, a priority flow graph is constructed, including the relationships between the
involved vehicles, and an algorithm is used to construct the optimal trajectory for the given
priorities. While simulations confirm the safety effect, this approach may cause deadlocks
at high flow densities. Moreover, it assumes that vehicles follow the control plan, and does
not consider control uncertainty. In [19], the same authors revisited the priority-based robot
motion planning method, presenting a control policy called brake-safe control. By introduc-
ing a feedback control law to ensure that all vehicles follow the priority relationship while
crossing the intersection, collisions caused by mechanical failure, accidental control, and
other uncertainties can be avoided. In [6], Qian et al. adapted [19] in presenting their policy
called Fast First Service. In [20], the authors proposed a contradictory criteria and five pairs
of criteria considered for designing trajectory planning systems. The same authors [21]
proposed a manipulator trajectory method for work spaces using a kinematic model, and
provided the solution for the independent area and overlapping areas, thereby avoiding
the trajectory misalignment problem.

2.4. Reinforcement Learning for Traffic Control

Intersection signals using reinforcement learning control have been widely discussed
in the literature [1,22–24]. The approaches in these studies differ in terms of the traffic
network model and state definitions required for reinforcement learning. Here, we focus
on discussing three important definitions which are important for reinforcement learning,
namely state, action, and reward. Although the reinforcement learning studies presented
here are used for traffic signal control, there are many other ideas that can be considered.
The state, defined as si

t ∈ Si = {si
1, si

2, si
3, . . . , si

|Si |}, is used to describe the state of intersec-

tion i at time t, which are an agent’s decision-making factors. A state si
t can be represented

by two main approach, the queue size and the position of the waiting vehicle. The action
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definition can be stated as ai
t ∈ Ai =

{
ai

1, ai
2, ai

3, . . . , ai
|A|

}
, and is the action set that can be

selected by an agent to change the traffic environment. An action ai
t can be represented by

two main approach, the traffic phase and traffic phase split. The traffic phase represents
the selection of combinations of the traffic path which do not have conflicts and allow the
lanes to receive a green light. As per Figure 3, the traffic phase ensures traffic safety and
avoids traffic congestion. The authors of [25] designed different signal phases, as shown in
Table 1. Zhang et al. [26] proposed a reinforcement learning approach to weakly control
traffic systems, and used this to achieve optimal cooperation learning strategies.

Table 1. Phase Scheme [25].

Phases -I EWG Phases -II EWY Phases -III EWLG Phases -IV EWLY

turn right from
west or east Wait Turn left

west or east Wait

Phases -V
SNG

Phases -VI
SNY

Phases -VII
SNLG

Phases -VIII
SNLY

turn right from
north or south Wait Turn left from

north or south Wait

The traffic phase can be used to split the representation into time intervals, which can
then be assigned to a traffic phase at an intersection. The two methods are described below.
First, an action consists of combinations of green timing of each phase, where the green
timing is the time interval that allows vehicles to cross an intersection. The green timing
consists of the sequence of a traffic phase, with the cycle time based on the traffic demand.
Second, actions can be either (1) switching to a different traffic phase or (2) remaining in
the current traffic phase [27]. This definition leads to the agent always choosing to remain
in the current traffic phase unless executing this action does not receive the best reward,
then changing to another traffic phase [28].

Figure 3. Single intersection model.

The reward definition, represented as reward r, can be a variable or a constant (e.g.,
r = 1 expresses a prize and r = −1 expresses a punishment [29]). As a variable, it can be a
combination of different elements. There are three main methods for calculating variable
reward values: first, a reward r = r1 + r2 which has two elements r1 and r2 with equal
weights [30]; second, a reward with weight r = [ε1 × (ri

1 + ri
2)] + [(1− ε1) × (rj

1 + rj
2)],

where 0 ≤ ε1 ≤ 1 represents different priority levels between two elements (in this case,
if ε1 ≤ 0.5, then lane i has higher priority than lane j); and third, a reward with multiple
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elements and weights, where the weights represent different priority levels for different
elements [30]. There are four main definitions of rewards, such as variation of vehicular
delay, waiting time, appropriateness of green time [22,23,29,31], and variation of queue
size [24,29,32]. The authors of [33] provide a summary and brief details about reinforcement
learning dynamic control, its environment, and its goals.

2.5. Intersection Throughput and Fairness

Although increasing intersection throughput is an important issue, its fairness needs
to be addressed as well. In [34], Pasin et al. discussed the tradeoff between throughput
and fairness in intersection control. They proposed two algorithms for intersection control
issues, with a focus on the tradeoffs between fairness and throughput. They considered
various traffic conditions in a single-intersection scenario and evaluated two platoon-
based algorithms, namely, Longest Queue First (LQF) and Efficient Intersection Control
(EIC). In their experiments, the platoon-based algorithms performed significantly better
in throughput, while only EIC achieved good fairness. In [35], Wu et al. introduced a
delay-based mechanism for traffic light management in transportation networks; they
dealt with excessive delay and achieving better fairness using a queue control mechanism.
The delay-mechanism traffic system isolated intersections and improved the throughput
effectively. The advantage of a delay control mechanism is in dealing with excessive
delay under different traffic patterns. Simulation results show that delay-based systems
produce better fairness in terms of delay results, and that this improvement is more
obvious under heterogeneous traffic conditions. In [8], Jain et al. proposed a formula
called the fairness index for quantifying equality. The proposed formula applies to any
system related to resource allocation. The authors provide a number of examples from
different areas to illustrate applications of their fairness index in different situations. The
fairness index ranges between 1 and 0, meaning it can be expressed as a percentage to
continuously allocate changes in fairness. In this paper, the Jain fairness index is used
to compare the proposed method with existing AIM methods. Victor Manuel Madrigal
Arteaga proposed [36] an efficient adaptive intersection management approach using fuzzy
logic. In this work, real time data were used for implementation and the effective flow rate
was calculated.

The authors of [37] proposed a scheduling-based method for autonomous intersec-
tion control (AIC) for autonomous vehicles. In their approach, the intersection controller
computes the inflow based on FCFS order and an optimization heuristic. Their work was
simulated using MATLAB, and performance was evaluated using traffic flow, utilization
(throughput) of the intersection, and delay in terms of seconds. The authors of [38] pro-
posed an AIM system called Roadrunner+ that cooperates with continuous vehicles. The
proposed work integrates dynamic lanes into AIM with roadside units. The proposed
work was simulated using SUMO with different parameters, such as throughput and
delay. Their proposed approach was able to attain 15.16% better throughput than other
traditional methods. The authors of [39] proposed an AIC with global scheduling to protect
autonomous vehicles from collisions. The particle swarm algorithm was used for optimiza-
tion, and performance was compared using fairness, efficiency, delay, and throughput. The
PSO-based approach achieved better throughput, fairness, and robustness. The authors
of [40] proposed a hybrid approach for controlling dynamic intersections, which they
called GAMEOPT. This method uses game theory and optimization methods to control
cooperative intersections dynamically. This work included 10,000 vehicles, and used the
SUMO simulator for simulations. Throughput, fairness, efficiency, and safety were the
parameters used for performance evaluation.

3. Autonomous Intersection Management

In this section, our method, which we call Advantage Actor-Critic Autonomous
Intersection Management (A2CAIM), is introduced in detail. Figure 4 shows the basic
framework of our proposed mA2CAIM method in two parts: the vehicle intersection
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controller and the brake-safe model. The intersection controller is responsible for man-
aging the priority of vehicles, ensuring that vehicles with higher priorities can pass the
intersection preferentially.

Figure 4. Deep Reinforcement Learning-based AIM architecture.

The intersection controller consists of the priority assignment model, agent, and
environment, which are described below.

• Priority Assignment Model
The model maintains a priority list and waiting list for assigned and unassigned
vehicle. It receives requests from vehicles and stores then in the waiting list. At each
time step, the priority assignment model assigns vehicles a priority in certain lanes, as
determined by the agent, then adds the vehicles to the priority list. Generally, the dif-
ferent types of applicable intersection models are crossroad, roundabout, misaligned
intersection, ramp merge, deformed intersection, X-intersection, T-intersection, and
Y-intersection.

• Agent
The agent is responsible for carrying out the priority assignment policy by selecting
vehicles to cross the intersection. It continually revises the policy based on previous
experience. At every timestamp, the agent collects the state information st from the
environment and chooses vehicles to pass. The agent sends actions to the priority
assignment model. After priority assignment, the action is executed and the vehicles
which are allowed to pass receive the priority needed to cross the intersection. The
state then changes to st+1 and the agent receives a reward rt+1. The main object of
the agent used in this study is to develop an effective and optimal policy in order to
increase its cumulative reward.

• Environment
The environment refers to the information obtained from monitoring the traffic en-
vironment; it consists of the size of the queue, vehicle waiting times, and number of
vehicles inside the intersection.

The break-safe model for vehicles [6] is described in Section 4.5. This model guarantees
that vehicles can pass the intersection without any collisions occurring. When a vehicle
enters the cooperative zone, it sends a request to cross the intersection, and only when it
receives the confirmation message and priority list from the intersection controller is it
able to pass the intersection. When the vehicle crosses the intersection, it must follow the
priority in the list, that is, when the trajectories of two vehicles collide, the lower-priority
vehicle must brake to let the higher-priority one pass.

4. Advantage Actor-Critic for Autonomous Intersection Management

In this section, we introduce the A2C model for AIM, which contains the state space,
action space, reward, and learning algorithm.

4.1. State Space

In the design of the state space, it is necessary to consider the kind of design that can
lead to a full description of the current state of the traffic environment. First, it is necessary
to define the condition of each lane; here, sQ

t = {sq,1
t , . . . , sq,n

t } is the queue length of
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all the lanes 1 to n at time t. We then define the average wait time for the vehicles in all
lanes sW

t = {sw,1
t , . . . , sw,n

t }. To obtain a comprehensive understanding of the traffic, we
then use the number of vehicles inside the intersection to represent the situation at time t,
that is, sI

t . The state is now defined as the combination of the above-mentioned elements:
st = {sQ

t , sW
t , sI

t}.

4.2. Action Space

At each time step, the agent observes the state and chooses an action to interact with
the environment. Compared to the different types of lane approaches, this lane approach
action design allows vehicles that have sent requests to cross the intersection to be chosen.
In this work, we consider five types of actions: (1) allow vehicles from the west or east to
move straight or turn right, (2) allow vehicles from the west or east to turn left, (3) allow
vehicles from the north or south to move straight or turn right, (4) allow vehicles from the
north or south to turn left, and (5) not allow any vehicles to move. This design principle is
intended to let the vehicles in different lanes cross the intersection without conflict. The
intuition behind the design is to increase throughput by preventing vehicles from braking
or waiting too frequently for other cars due to constant switching of lane permissions.

4.3. Reward

The reward function is described as follows:

Rt+1 =

{
αnt+1 −maxiwi

t+1 + β, i f maxiwi
t+1 < maxiwi

t

αnt+1 −maxiwi
t+1, otherwise

(1)

where nt+1 is the change in throughput between time t and t+ 1, maxiwi
t+1 is the maximum

average time at i and increase at t + 1, and α, β are constants. The term nt+1 is used to
enhance the efficiency of intersection crossing, and the term maxiwi

t+1 is used to avoid
starvation and unfairness. Note that the units of nt+1 and maxiwi

t+1 are different; thus,
the reward is a linear combination of nt+1 and maxiwi

t+1. Moreover, in order to encourage
agents to choose the vehicle that has been waiting for the longest time, we provide an
additional reward of β if maxiwi

t+1 < maxiwi
t, meaning that the vehicle with the longest

wait time receives higher priority to cross the intersection. This approach can improve
fairness by considering maxiwi

t+1 through the additional reward β.

4.4. Learning

Next, we describe how Advantage Actor-Critic(A2C) learns. Actor-Critic contains
two neural networks. The Actor is a strategy function π(s) that outputs a set of action
probabilities according to the state. The Critic function V(s) is used to estimate the state.
The Actor updates the strategy according to the value from the Critic; on the other hand, the
Critic learns how to evaluate it more accurately based on the reward. The value function
V(s) represents the policy and π is the expected discounted, which is defined in [41]
as follows:

V(s) = Eπ(s)[r + γV(s′)] (2)

Essentially, we weight-average the term r + γV(s′) as possible action state s, where s′

is the next state of s, r denotes the reward, and γ denotes the discount factor. The action
value Q(a, s) is defined as

Q(a, s) = γV(s′) + r (3)

the action value means that after taking action a at state s, the reward r + γV(s′) is obtained.
Now, we define a new function, namely, the advantage function A(s, a), as follows:

A(a, s) = Q(a, s)−V(s) = γV(s′)−V(s) + r (4)
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the policy gradient used to optimize the effective policy is π. The object function is
defined as

J(π) = Eρs0 [V(s0)] (5)

the gradient function tells us how good policy π is, where ρ is the distribution of the
environment. We can then obtain the gradient of the J(π) function using the method
proposed in [42]:

∇θ J(π) = Es∼ρπ , a∼π(s)[A(s, a) · ∇θ log π(a|s)] (6)

this formula is intuitively explained. It tells us that function J(π) changes the direction
of the weight of the neural network. On the right side of the formula, if the advantage
function A(s, a) is positive at state s, meaning that the value obtained by selecting a at s is
higher than the average, then adjusting θ means that the probability of the agent selecting
action a at state s is increased. As we are trying to maximize the function J(π), we can say
that the loss function is

Lπ = −J(π) (7)

then, we can rewrite the function J(π) by treating A(s, a) as a constant:

J(π) = E[A(s, a) · log π(a|s)] (8)

finally, we swap the expectation for average over all samples in a batch, meaning that the
final loss function is then

Lπ = − 1
n

n

∑
i=1

A(si, ai) · log π(ai|si) (9)

next, we define the value loss. In the n-step return scenario, the true function V(s) should
be as follows:

V(s0) = r0 + γr1 + γ2r2 + . . . + γn−1rn−1 + γnV(sn) (10)

the value function V(s), which we want to approximate, should converge to Equation (10),
and we can write the error as

e = r0 + γr1 + γ2r2 + . . . + γn−1rn−1 + γnV(sn)−V(s0) (11)

then, we can define the loss of the value function LV as the mean squared error of all given
samples, as follows:

LV =
1
n

n

∑
i=1

e2
i (12)

The module structure is shown in Figure 5. Actor and Critic are two neural networks,
the input is the state s, and the output is the probability of each action π(s) and a scalar
V(s), respectively. The neural used here consists of three hidden layers, and each layer
includes 64 neurons. RELU was selected for use as the activation function in the model.
The working process is presented in Algorithm 1 and Figure 6. In Figure 6, at is an action at
time t, st is the state at time t, t is the time step, and T is the length of the simulation.

First, the agent copies the global parameters and observes the state. Then, it initiates
training, interacts with the environment, and computes the gradient according to the
data. Finally, it updates the gradient to the global model. Due to countinous updates
to the global model, our proposed system can connect autonomous interconnection
management and mobility as a service (maaS). The main components of MaaS are envi-
ronmental learning, decision-making, and system planning. In our proposed approach,
autonomous environment agent learning and rewards help to make for more effective
decision-making. Using environmental learning and decision-making can aid in better
and more autonomous management.



Vehicles 2022, 4 1401

Algorithm 1: The A2C-based Intersection Management Algorithm.
Input:
N: Number of simulations;
sim_len: The length of simulation time step;
ε: A user-defined value that 0 < ε < 1;
Variable:
γ: discount factor;
at: An action at time t;
st: A state at time t;
rt+1: a reward received after executing at;
episode: One of the simulations;
t: The time step;
e: a variable contains (st, at, rt+1);
tupdate: the frequency of update neuronal net work;
θ: the parameter vector of π;
θv: the parameter vector of V(s);
for episode = 1 to N do

Observe state st;
for t = 1 to tupdate do

Choose at randomly with probability ε, else perform at to policy π(at|st; θ);
Take action at, observe rt+1, st+1;
st ← st+1;

end
R = V(st, θv);
for i ∈ {t− 1, . . . , t− tupdate} do

R← ri + γR;
gradient:θ ← θ +∇θ logπ(ai‖si; θ)(R−V(si; θv))
gradient:θv ← θv + δ(R−V(si; θv))2/δθv

end
end

Figure 5. Module Structure of A2C.



Vehicles 2022, 4 1402

Figure 6. Flow of Intersection Control Model.

4.5. Brake-Safe Control

The brake-safe control used to cross intersections without collisions [6] is presented
as follows. The model and control described here use differential equations and a set of
assumptions. The differential equation of state is described as follows:

ẏi(t) = vi(t) (13)

v̇i(t) = ui(t)δ
(

ui(t), vi(t)
)

(14)

where δ denotes the binary function and vi ∈ [0, v̄i] denotes the set of times. The velocity
vi(t) is zero, and the acceleration ui(t) is negative; alternatively, the velocity vi(t) reaches
the maximum value and the acceleration ui(t) is positive, in which case the output δ
function is zero. Given two vehicles i, j, the completed obstacle region is defined as
Rσ(j)<σ(i), with positions (yi, yj) and leading priority σ(j) < σ(i). For the control section,
assuming vehicle j is in state xj(t0) at time t0, the authors note

Bσ(j)<σ(i)(xj(t0)) := {xi ∈ Xi|∀t ≥ t0,
(

yi
(
t, ui, xi(t0)

)
, yj
(
t, uj, xj(t0)

))
/∈ Rσ(j)<σ(i)} (15)

where u denotes the braking control. A vehicle i brakes at t0 if

∀j ∈ N, σ(j) < σ(i)⇒ xi(t0) ∈ Bσ(j)<σ(i)(xj(t0)) (16)
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where N is the number of vehicles in the system. This means that vehicle i can cross safely
without colliding with vehicle j, even if vehicle j uses the maximum brake control value.
To ensure that all vehicles are always in brake-safe state, a control law g is introduced.
Given the initial configuration σ(j) < σ(i) of two vehicles i, j, the worst-case scenario is
that vehicle j brakes and vehicle i accelerates during the next or future time slot. With this
in mind, the control law can be described as follows.

Let uimpulse
i ∈ Ui describe the impulse control function for vehicle i, defined by

uimpulse
i (t) =

{
ūi i f t = 0
ui i f t ≥ 1

(17)

The flow control law is described synthetically as follows:

gi(x) =

{
ui i f ∃ σ(j) < σ(i), ∃t ≥ 0 s.t.

(
yj(t, uj, xj), yi(t, uimpulse

i , xi) ∈ Rσ(j)<σ(i)

)
ūi else

(18)

In Equation (18), vehicle i exerts maximum brake control if there exists a collision at time
t ≥ 0 in the worst-case scenario. Otherwise, it may accelerate in any case. Figure 7 shows
the flow for how the brake-safe control is used in this work. Each vehicle starts with an
initial speed of zero and an initial brake-safe state, according to Equation (15). Furthermore,
each vehicle i computes the control law gi using Equation (18) and uses gi as the control
from time step t to t + 1 until its position yi reaches the destination ȳi. As far as matters of
safety are concerned, the proposed work takes into consideration cooperative, connected,
and automated mobility (CCAM) and a brake-safe control policy [18], with a focus on
priorities and recommendations while crossing the intersection. This approach circumvents
collisions caused by mechanical failure and takes into account accident control measures
for ensuring road safety. With the proposed safety policy and the ongoing developments
around the idea of “Sustainable Mobility as a Service” (S-MaaS) [43], users can share speed,
public transportation mobility services [44], as well as other mobility services on a single
digital platform. The proposed plan can help to reduce the travel time of mobility services
and make automated intersection crossings safer.

Figure 7. Flow of brake-safe control.



Vehicles 2022, 4 1404

5. Experiments and Results Discussion

In this section, we present the simulation environment, simulation setup, simulation
results, and evaluation of A2CAIM, then describe the traffic simulator information.

5.1. Simulation Environment

As shown in Table 2, our method was implemented using the Python programming
language on a computer with an Intel(R) Core(TM) i5 CPU with 2.8 GHz and 16 GB RAM
running the Windows 10 (64-bit) operating system. The Python programming language
was used to realize the proposed Advantage Actor-Critic Agents Autonomous Intersection
Management method.

Table 2. Experimental environment.

CPU Intel(R) Core(TM) i5-8400 CPU @ 2.80GHz

Memory 16 GB - DDR4

Operating System Windows 10 (64-bit)

Programming Language Python 2.7

5.2. Simulation Setup

We simulated the proposed method using SUMO [45], which is a multi-modal and
microscopic open-source traffic simulator. SUMO allowed us to simulate each vehicle with
its own routes moving individually through the networks. We generated traffic demands
and values of simulated vehicles, and generated the manipulated behaviors individually
via the Traffic Control Interface (TCI), which is the interface between the outer codes and
SUMO. Figure 8 shows the intersection model used in our experiments, which consists
of twelve incoming lanes. The vehicles in the left-most lane turn left, while those in the
middle lanes turn right or move straight. We used an Origin–Destination (OD) matrix, as
shown in Table 3, to describe the traffic. An entry value of 0.2 for West and East that means
that 20% of vehicles move West to East. The number of generated vehicles per minute is
used as the parameter for the Poisson distribution to generation vehicles in the simulation;
the basic parameters are summarized in Table 4.

Figure 8. Intersection model used in our simulations.
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Table 3. Origin–Destination matrix.

Origin
Destination West East South North

West - 0.3 0.035 0.085

East 0.3 - 0.085 0.035

South 0.085 0.035 - 0.2

North 0.035 0.085 0.2 -

Table 4. System simulation parameters.

Simulation Parameter Value

Car moving length 5 m

Cooperative zone car length 50 m

Maximum velocity 10 m/s

Maximum accelerate 4 m/s2

Minimum accelerate −5 m/s2

Brake-safe control time step 0.1 s

5.3. Simulation Results

This section evaluates our training results and compares them with other methods,
namely, Fast First Service (FFS) (2017) [6] and GAMEOPT (2022) [3]. FFC is considered
as the base comparison method in terms of fairness, average wait time, maximum wait
time, and throughput. Below, we introduce the performance indicators used to evaluate
the performance of these models.

• Average Wait Time (AWT): If the velocity of a vehicle in an incoming lane is smaller
than 0.1 m/s, we regard the vehicle as in the wait queue. The Average Wait Time
(AWT) is represented by

AWT =
∑i wi

N
(19)

where wi denotes the wait time of vehicle i and N denotes the number of vehi-
cles waiting.

• Maximum Wait Time (MWT): The maximum wait time for vehicles during the simula-
tion is called the Maximum Wait Time. It expresses how long a vehicle needs to wait
in the worst case.

• Throughput: The vehicles exiting an intersection during the simulation is called
the throughput.

• Fairness: The fairness metric used in our simulations is Jain’s fairness index [8],
represented by

Fairness =

(
∑N

i=1 wi

)2

N ∑N
i=1(wi

2)
(20)

where wi is a waiting vehicle i and N is the number of vehicles. If all vehicles have the
same wait time, the fairness index is 1. The fairness decreases as the disparity in the
wait time of vehicles increases.

5.4. Evaluation of A2CAIM

The experimental results show the performance of our proposed model using different
parameter combinations, including the reward function and timestep. Table 5 specifies the
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parameters used in this experiment. In each training epoch, we ran the simulation for 200 s
using a high inflow rate (100 vehicle arrivals per minute).

Table 5. Parameters used in simulations.

Parameter Value

Simulation length 200 s

Inflow rate 100 vel/min

Discount factor 0.99

The reward function used here is

Rt+1 =

{
αnt+1 −maxiwi

t+1 + β, i f maxiwi
t+1 < maxiwi

t

αnt+1 −maxiwi
t+1, else

(21)

where nt+1 is the change in throughput between time t and t + 1, maxiwi
t+1 is the average

wait for lane i with increasing t + 1, and α, β are constant values. The use of the element
nt+1 is to maximize throughput in order to enhance the efficiency of the system, while
maxiwi

t+1 is used to avoid starvation in case a is not prioritized for long time (in which case
the reward is very low). The use of α is to balance nt+1 and maxiwi

t+1, as the value of nt+1

is around 0 to 5 and maxiwi
t+1 is around 10 to 80. Finally, β is used to encourage the agent

to select the lane that has been waiting for the longest time, and should be large enough to
have an encouraging effect.

Figures 9 and 10 show the MWT and Fairness with different combinations of α and
β. We used different combinations of α and β as the parameters of the reward function to
train our model for 30 epochs, and used ten simulations to average the performance. It can
be seen that our method outperforms the others when α = 15. Then, we used α = 15 and
different β to train the model. As shown in Figure 11, our method outperformed the others
in terms of the Maximum Wait Time when α = 15, β = 459.

Figure 9. Maximum Wait Time difference with different α, β.

Based on these results, we chose α = 15, β = 459 as the parameter for the reward
function and used different action time steps to evaluate model performance. Table 6 shows
the average performance with different action time steps. The experimental results show
that a time step of 4.0 s results in the best MWT and throughput.
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Figure 10. Fairness with different α, β.

Figure 11. Maximum Wait Time with α = 15 and different β.

Table 6. Average performance comparison with different action time steps.

Timestep (s) AWT (s) MWT (s) Throughput (Vehicles) Fairness

2.5 36.76 79.05 162.0 0.67

3.0 37.59 66.09 193.1 0.73

3.5 39.83 79.64 204.9 0.67

4.0 32.93 65.63 213.3 0.70

5.5. Comparison with FFS and GAMEOPT Methods

We compared our model with the FFS policy [6] and GAMEOPT [40] traffic flow
without lights. In GAMEOPT, 50+ vehicles per minute were considered in the implemen-
tation. In our implementation, we considered 100+ vehicles per minute. In total, around
6000 vehicles per hour were considered in the simulations. The parameters used for our
method were α = 15, β = 459 and an action time step of 4.0 s. We simulated both methods
using four different inflow rates ten times. Table 7 shows the average performance over
ten simulations.
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Table 7. Average performance results over ten simulations using four different inflow rates.

Inflow Rate (Vehicles/min) 125 100 75 50

Method A2CAIM GAMEOPT FFS A2CAIM GAMEOPT FFS A2CAIM GAMEOPT FFS A2CAIM GAMEOPT FFS

AWT (s) 33.6 37.1 38 32.93 36 31.73 27.34 24 24.25 15.51 17.2 7.74

MWT (s) 65 110 120 65.63 108 108.51 63.32 82 89.56 59.14 70 43.01

Throughput (vehicles) 230.2 210.4 220 213.3 180 227.1 193.2 150 204 157.5 120 138.7

Fairness 0.78 0.6 0.4 0.7 0.5 0.32 0.63 0.42 0.24 0.43 0.4 0.09

Although the throughput and AWT are worse than FFS, our method has better MWT
and Fairness at high inflow rates (125, 100, and 75 vehicles per minute). Figure 12c
shows that the fairness of our method is 20% to 40% better than FFS and 15% better than
GAMEOPT. Figure 12d shows the throughput results; while our method is initially some-
what worse than FFS and GAMEOPT, as the number of vehicles increases the throughput
increases as well. For example, when vehicle flow is increased to 100 or 125 per minute, the
throughput gradually increases. Figure 12a,b shows the AWT and MWT at different inflow
rates. Our method has a higher AWT than FFS and GAMEOPT, although it has a lower
MWT at a high inflow rate of up to 100 vehicles (a reduction of 25% to 36% up to inflow of
100). The inflow is increased automatically, and the average waiting time is reduced. This
means that even though the average wait time of our method supports a higher number of
vehicles, our proposed method produces better results compared to FFC and GAMEOPT.
However, the difference in waiting time per vehicle is low, and considering the worst case
from among the three methods, the worst-case vehicle waiting in our method crosses the
intersection sooner than with FSS and GAMEOPT at high inflow rates. On the other hand,
the AWT and MWT are worse than FFS and GAMEOPT when the inflow rate is low (25 or
50 vehicles per minute). With 100 or 125 vehicles, the AWT and MWT with our method
are reduced.

In terms of efficiency, Table 7 shows the overall performance for our proposed ap-
proach with different overflow conditions. As the overflow rate increases, all of the
performance metrics gradually increase as well. For example, compared to the FFS and
GAMEOPT methods (Figure 12b,c), the fairness and maximum wait time and overall per-
formance are always good with different inflow rates (50, 75, 100, and 125). The average
wait time (Figure 12a of vehicles less good when the inflow rate is lower. As the inflow rate
increases (100, 125), the average wait time decreases. The throughput is similar to that of
FFC, and as the inflow rate increases (125), the throughput increases as well.
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Figure 12. Performance results for different inflow rates: (a) AWT, (b) MWT, (c) Fairness, (d) Throughput.
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6. Conclusions and Future Work

In this work, we propose an Autonomous Intersection Management system based on
Advantage Actor-Critic (A2C). In this system, we use the brake-safe control model to avoid
collisions and ensure the safety of vehicles as they travel through the intersection. We use
A2C to help the Intersection Controller to learn a fair and efficient intersection management
policy. In addition, we design a reward function to encourage the system to distribute
intersection resources fairly while maintaining high throughput. We experimented with
several different parameter configurations to train our model, ultimately using Simulation
of Urban Mobility (SUMO) to simulate the proposed method at an isolated intersection.
Our experimental results show that our method is able to improves the fairness index by
20% to 40% compared with FFS and GAMEOPT. The maximum wait time is reduced by
20% to 36% in high traffic flow, and at high inflow rates the average waiting time is reduced
and throughput is increased.

In the future, it would be possible to consider simulating different types of intersec-
tions, such as roundabouts or other more complex intersections. In addition, emergency
vehicles that must rush through intersections, such as police cars, ambulances, etc., could
be considered.
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