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Abstract: Teaching kinematic rotations is a daunting task for even some of the most advanced mathe-
matical minds. However, changing the paradigm can highly simplify envisioning and explaining the
three-dimensional rotations. This paradigm change allows a high school student with an understand-
ing of geometry to develop the matrix and explain the rotations at a collegiate level. The proposed
method includes the assumption of a point (P) within the initial three-dimensional frame with axes
(x̂i, ŷi, ẑi). The method then utilizes a two-dimensional rotation view (2DRV) to measure how the
coordinates of point P translate after a rotation around the initial axis. The equations are used in
matrix notation to develop a rotation matrix for follow-on direction cosine matrixes. The method
removes the requirement to use Euler’s formula, ultimately, providing a high school student with an
elementary and repeatable process to compose and explain kinematic rotations, which are critical to
attitude direction control systems commonly found in vehicles.
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1. Introduction 

Figure 1. (a) First images from the James Webb Space Telescope peering into deep space where the 

“inertial”, non-moving reference frame is often mathematically placed; credits: NASA, ESA, CSA, 

and STSc [1]. (b) NASA humor over the ubiquity of the difficulty of learning kinematics [2]. Image 
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Figure 1. (a) First images from the James Webb Space Telescope peering into deep space where the
“inertial”, non-moving reference frame is often mathematically placed; credits: NASA, ESA, CSA,
and STSc [1]. (b) NASA humor over the ubiquity of the difficulty of learning kinematics [2]. Image
usage is consistent with NASA policy, “NASA content (images, videos, audio, etc.) are generally not
copyrighted and may be used for educational or informational purposes without needing explicit
permissions” [3].
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When you can measure what you are speaking about and express it in numbers,
you know something about it, and when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meagre and unsatisfactory kind.
It may be the beginning of knowledge, but you have scarcely in your thought
advanced to the stage of a science. Lord Baron Kelvin of Largs [4]

This manuscript describes a step-by-step process to simply develop and understand a set
of equations to translate positioning and rotations from one perspective to another. The
direction cosine equations are essential to understand the automation of precision motion
expressions correctly in attitude direction control systems used in many vehicles. Teaching
the concept of an initial axis (x̂i, ŷi, ẑi) rotating to another axis (x̂′, ŷ′, ẑ′) becomes much
easier if the initial axis is viewed as a two-dimensional rotation view (2DRV). The new
viewpoint of the axis and the rotation makes the mathematics and visual comprehension
easier to grasp.

1.1. Educational Importance

Recently, Manurung [5] recommended new methods for teaching kinematics in a
journal on education (read by few if any researchers in scientific and mathematical fields).
In 2017, Ramma [6] published a public, scathing rebuke of kinematics pedagogy in a
popular online blog. The rebuke reported the results of a study of twenty-six physics
teachers from twenty-six of a country’s secondary schools who had been teaching for
an average of five years to students between 16 and 17 years old. Kinematics typically
depicts three-dimensional motion with two-dimensional graphics, while one kinematic
representation (the quaternion) involves depicting four-dimensional representations of
three-dimensional motion in two-dimensional graphics. The potential for confusion is
immediately evident. The Ramma study confirmed the well-known fact that kinematics is
challenging to learn, but additionally assessed a key issue laid at the feet of pedagogy and
limitations of the topic’s teaching.

Other researchers such as Ayop [7] evaluated the assessments and the resulting kine-
matics teaching strategies. Shodiqin [8] very recently elaborated on student difficulties in
understanding kinematics, while Núñez [9] shortly afterward elaborated on some difficul-
ties themselves, hinting at the relative importance of rethinking the topic’s pedagogical
methods. After these recommendations, Moyo [10] performed a focused case study for
high schools in Botswana validating the omnipresent sources of difficulties and potential
impacts.

To advance the human species’ understanding of the world and the ability to shape
future scientists, technicians, and engineers, academics must develop them earlier, faster,
and more efficiently. With that in mind, finding and developing more effective ways to
deliver academic subject matter to students is critical to future development. Due to the
mathematical requirements, rotational kinematics is often a topic that is broached after
calculus and linear algebra, if not even later in a student’s academic career. However, with
the right tools and perspective, students can be taught the basics of axes rotations at a much
earlier stage of educational development.

Laying this foundation at a younger age allows for a more significant expansion of
knowledge later. This manuscript’s proposal aims to outline how to efficiently develop this
foundational understanding, significantly accelerating students’ academic growth.

1.2. History of Kinematic and Directional Cosine Matrices

The theorems used to translate rigid bodies in Euclidean space date back to 1775 when
Euler wrote: “General formulas for the translation of arbitrary rigid bodies” [11]. Over the
decades and centuries, the mathematics of the translation of rigid bodies has been refined
and expanded, e.g., by Chasles [12] in the early 1800s, by Lord Kelvin in the late 1800s [13],
and by Whittaker [14] in the early 1900s.

Several authors [15–19] from the U.S.A.’s National Aeronautics and Space Administra-
tion (NASA) and others have published updates. In the late 1960s, Meyer [15] proposed a
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method for expanding a matrix of direction cosines, while Jordan [16,17] evaluated com-
putation errors using direction cosines and proposed a novel direction cosine algorithm
(as proposed in this present manuscript). Kane [18] articulated many challenging aspects
of kinematics in the early 1970s. Meanwhile, Haley [19] described manifestations of ef-
fects due to the kinematics of integrated robotics. In the 1990s, King [20] illustrated the
deleterious effects on the accuracy of global position systems, while Dunn [21] extended
the conclusions to include satellite laser ranging. Following the turn of the century, in
2001, Xing [22] proposed alternate forms of attitude kinematics de-emphasizing matrices
of nine-direction cosines in favor of three-parameter kinematics (e.g., Euler angles) or
four-parameter kinematics (e.g., quaternions, Rodrigues–Gibbs vector, etc.).

Most recently, the significance of direction cosine matrices and their derivation resurged
in the 2018 publication by Smeresky [23] which sought to develop more accurate and effi-
cient calculations; and was later revisited by Cole [24] and Sandberg [25] just this year, who
tried to discern errors and the resulting deleterious effects in applications. Regardless of
which derivation is used, each requires the development of at least two rotational matrices.
Ultimately, understanding the development of the direction cosine matrix is critical to
understanding kinematics.

1.3. Present-Day Purpose and Innovations Presented

Direction cosine matrices are crucial to attitude direction control systems common
in many vehicles such as ships, planes, rockets, satellites, and robotics. While the usual
direction construction of cosine matrices equations is still as practical today as when
equations were developed, these examples are not immune to adaption or improvement.
This work evolves the current method, to provide tools to students to learn, and teachers to
instruct three-dimensional kinematic rotations without the without the need to understand
Euler’s formula. Simple geometric equations can be used instead of Euler’s formula to
develop the rotation matrix to calculate the direction cosine matrices.

Innovations proposed:
1. Two-dimensional rotation view (2DRV) about a third dimension;
2. Development of the rotation matrix equations without Euler’s formula.
Section two describes each rotation matrix’s development where each constructs a

direction cosine matrix. Section three outlines how direction cosine matrices work with
dynamics, 2DRV, and the proposed process of teaching direction cosine matrix development.
Sections four and five provide a conclusion and review other discussion points, respectively.

2. Methods and Results

The approach utilized in this manuscript is based on the rotation of a coordinate
system about a fixed point. Any point’s position in the rotated coordinate system can be
calculated based on three separate rotations about an axis. Breaking down a single rotation
about an axis is equitable to a two-dimensional plane of points rotating about a point.
Each rotation can be described and depicted in a 2DRV, as long as the axis and rotation
are defined correctly. In a 2DRV, any point in the initial plane can be described in the new
plane using the similarity of right triangles and equations of motion functions. The generic
rotation conversion equations can be transferred into a matrix format to develop a direction
cosine matrix. This method generates the same rotation matrices as the Euler equations but
is more straightforward.

2.1. Dynamics

Dynamics is a division of mechanics that deals with how rigid bodies propagate with
time in relation to force, mass, momentum, and energy. Dynamics can be dissected into two
components: kinetic (linear and rotational forces acting on bodies) and kinematic (motion
of bodies regardless of forces). This manuscript only represents a new calculation method
of kinematic equations (i.e., direction cosine matrix). However, without understanding
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some of the basic principles of kinetics, the purpose of the direction cosine matrix can be
missed.

The kinetic Equations (1) and (2) describe linear and rotation forces (disturbance and
control) on the rigid body. Table 1 outlines all the variables found in Equations (1) and (2).
Equations (1) and (2) consider all the linear and nonlinear motion in a fictional non-rotating
reference frame utilizing Michel Chasles and Giulio Mozzi’s theorem to combine Newton’s
and Euler’s theorems. 

Fx
Fy
Fz

 = [M]

 ..
x− .

yωz +
.
zωy..

y− .
zωx +

.
xωz..

z− .
xωy +

.
yωx

 (1)


Tx
Ty
Tz

 =

 Jxx
.

ωx + Jxy
.

ωy + Jxz
.

ωz − Jxyωxωz − Jyyωyωz − Jyzωz
2 + Jxzωxωy + Jzzωzωy + Jyzωy

2

Jyx
.

ωx + Jyy
.

ωy + Jyz
.

ωz − Jyzωxωy − Jzzωxωz − Jxzωx
2 + Jxxωxωz + Jxyωzωy + Jxzωz

2

Jzx
.

ωx + Jzy
.

ωy + Jzz
.

ωz − Jxxωxωy − Jxzωyωz − Jxyωy
2 + Jyyωxωy + Jyzωzωx + Jxyωx

2

 (2)

Table 1. Proximal variable and nomenclature definitions.

Term Definition Term Definition Term Definition Term Definition

Fx

External resultant
force in inertial

x-direction
ωx

Angular velocity
about x-axis

.
ωx

Angular
acceleration about

x-axis
Jxx

Moment of
inertia along x

with respect to x

Fy

External resultant
force in inertial

y-direction
ωy

Angular velocity
about y-axis

.
ωy

Angular
acceleration about

y-axis
Jxy = Jyx

Product of
inertia along x

with respect to y

Fz

External resultant
force in inertial

z-direction
ωz

Angular velocity
about z-axis

.
ωz

Angular
acceleration about

z-axis
Jxz = Jzx

Product of
inertia along x

with respect to z

..
x Acceleration in

inertial x-direction
.
x Velocity in

x-direction M External resultant
moment Jyy

Moment of
inertia along y

with respect to y

..
y Acceleration in

inertial y-direction
.
y Velocity in

y-direction Jyz = Jzy

Product of
inertia along y

with respect to z

..
z Acceleration in

inertial z-direction
.
z Velocity in

z-direction Jzz

Moment of
inertia along z

with respect to z

The non-rotating reference frame or the inertial frame is a fictional construct that
describes a position that is not accelerating or subject to a gravitational field. An inertial
frame is developed as no known position in the universe is not accelerating or subject to a
gravitational field. As referenced in Figure 1 often deep space is where the fictional inertial
frame is placed. If Newton and Euler’s equations of motion were calculated not using an
inertial frame of reference, Newtonian laws of motion would not necessarily hold to be
true. Once the equations of motion are evaluated in the inertial frame, the equations of
motion can be expressed in the body frame and translated into other frames of reference.
The kinematics described in section two can translate position and motions into different
reference frames [26].

Kinematics is used to translate equations of motion, such as Equations (1) and (2)
that are calculated from the inertial frame (later expressed in the body frame) into other
reference systems [27]. The non-rotating perspective is required to correctly calculate the
disturbance and maneuvering forces, as described in section two for Newtonian and Euler
equations. Once the equations of motion are set, translation equations such as direction
cosine matrices or quaternions translate the motion into other frames of reference [28].
Quaternions have many beneficial features over classic direction cosine matrices [28].
However, the four-dimensional variables that comprise quaternions are not intuitive to the
typical three-dimensional human perspective. Ultimately converting the four-dimension



Vehicles 2023, 5 118

variables to Euler angles makes direction cosine matrix development critical for human–
machine interfaces (HMI) such as the ones in vehicles. Understanding the development of
the direction cosine matrix is foundational to understanding how the kinematic rotation is
calculated.

2.2. Direction Cosine Matrix

Direction cosine matrix equations are based on three separate one-dimensional rotation
matrices multiplied in sequence to equate to one three-dimensional rotation equation.
It is challenging to present the teaching of three-dimensional rotations, utilizing most
teachers’ available two-dimensional resources. Typical examples attempt to show all three
dimensions simultaneously and use Euler’s equation to create each rotation matrix, as seen
in Figures 2–5 and Equations (3)–(7).

x̂′

ŷ′

ẑ′

 =

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1


x̂i
ŷi
ẑi

 (3)


x̂”

ŷ”

ẑ”

 =

cos θ 0 −sinθ
0 1 0

sin θ 0 cos θ

 
x̂′

ŷ′

ẑ′

 (4)


x̂B
ŷB
ẑB

 =

 1 0 0
0 cosφ sinφ
0 −sinφ cosφ


x̂′′
ŷ′′
ẑ′′

 (5)


x̂B
ŷB
ẑB

 =

 1 0 0
0 cosφ sinφ
0 −sinφ cosφ

cos θ 0 −sinθ
0 1 0

sin θ 0 cos θ

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1

 
x̂i
ŷi
ẑi

 (6)


x̂B
ŷB
ẑB

 =

 cos θcosψ cos θsinψ − sin θ
sinφsinθcosψ− cosφsinψ sinφsinθsinψ + cosφcosψ sinφ cos θ
cosφsinθcosψ + sinφsinψ cosφsinθsinψ− sinφcosψ cosφ cos θ


x̂i
ŷi
ẑi

 (7)
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Figure 2. 3-rotation about the 𝑧�̂� and 𝑧′̂ axes [23]. 

{
𝑥′

�̂�′

�̂�′

} = [
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 0

−𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0
0 0 1

] {
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} (3) 

Figure 2. 3-rotation about the ẑi and ẑ′ axes [23].
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Figure 3. 2-rotation about the ŷ′ and ŷ′′ axes [23].
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Figure 5. Compiling the 3-, 2-, 1-rotations in one view with all equations [23].

This manuscript uses the 2DRV to help depict and write the translation equations. The
2DRV takes advantage of the fact that a reference frame can be viewed from any aspect.
Specifically, 2DRV takes a three-dimensional view and changes the perspective, so only
two dimensions are visible. Figure 6a–d depicts the change in perspective. It is important
to note that the positive axis being rotated about will face directly out of the page, and



Vehicles 2023, 5 120

the perpendicular positive axes will point up and to the right consistent with a right-hand
revolution.

Vehicles 2022, 4, FOR PEER REVIEW 7 
 

 

 

Figure 5. Compiling the 3-, 2-, 1-rotations in one view with all equations [23]. 

{

𝑥𝐵

�̂�𝐵

�̂�𝐵

} = [
 1 0 0
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

] [
cos𝜃 0 −s𝑖𝑛𝜃

 0 1 0
sin𝜃 0 cos𝜃

] [
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 0

−𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0
0 0 1

]  {

𝑥𝑖

�̂�𝑖

�̂�𝑖

} (6) 

{

𝑥𝐵

�̂�𝐵

�̂�𝐵

} = [

cos𝜃𝑐𝑜𝑠𝜓 cos𝜃𝑠𝑖𝑛𝜓 −sin𝜃
𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 − 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜙cos𝜃
𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜙cos𝜃

] {

𝑥𝑖

�̂�𝑖

�̂�𝑖

}  (7) 

This manuscript uses the 2DRV to help depict and write the translation equations. 

The 2DRV takes advantage of the fact that a reference frame can be viewed from any as-
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only two dimensions are visible. Figure 6a–d depicts the change in perspective. It is im-

portant to note that the positive axis being rotated about will face directly out of the page, 

and the perpendicular positive axes will point up and to the right consistent with a right-
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(d) 

Figure 6. (a–c) Transformation from a three-dimensional view of a rotation to a two-dimensional
rotation view (2DRV); (d) the revolutions about the ẑ-axis, ŷ-axis, or x̂-axis are known as the “3-
rotation”, “2-rotation”, and “1-rotation “, respectively.

This depiction is helpful because the initial and final axis is colinear, and the only
changes happen to points and vectors, not on that axis. Figure 6d depicts what will be
referred to as 2DRV for each rotation. The 2DRV simplifies the dimensionality and makes
the development of the equations simpler to see and understand. Developing each rotation
creates a matrix and must be performed one revolution at a time. Each rotation is identified
by the axis it is rotated around. After each matrix is completed, they can be combined to
create an overarching direction cosine matrix.

The following direction cosine matrix creation uses the proposed method. Using the
3, 2, and 1 order of rotations, or the 3-, 2-, 1-direction cosine matrix, will take the inertial
frame to a body frame. In this description, the order of the rotation also follows the number
order. However, it is essential to note that any combination of rotations or translation types
can be performed similarly. While the order does not matter, the 3-rotation is the easiest
to conceptualize, because a horizontal x̂-axis and a vertical ŷ-axis is the most common
representation and makes for a solid foundation. First, any point P with coordinates (xi, yi,
zi) is placed in the inertial space with axes (x̂i, ŷi, ẑi), as seen in Figure 7a. Next, a rotation
about ẑi is rotated by ψ1 to ẑ′, as seen in Figure 7b. In Figure 7b, point P has different
coordinates after the rotation to the new frame of reference. The difference between the
coordinates can be calculated using simple equations. Table 2 outlines all the variables
found in Figures 7–12.
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Figure 7. (a) Point P is dropped within the inertial orientation to develop the direction cosine matrix;
(b) 3-rotation about the ẑi and ẑ′ axes to develop P’s coordinates in the new reference frame.

Table 2. Proximal variable and nomenclature definitions for Figures 7–12.

Term Definition Term Definition Term Definition Term Definition

x̂i

x-axis in the inertial
non-rotating

reference frame
xi

Point P’s location on
x-axis in the inertial

non-rotating
reference frame

x̂′

x-axis in the new
rotated reference

frame about the ẑi
axis to the ẑ′ axis

x′

Point P’s location
on the x̂′-axis after
the rotation about
the ẑi axis to the ẑ′

axis

ŷi

y-axis in the inertial
non-rotating

reference frame
yi

Point P’s location on
y-axis in the inertial

non-rotating
reference frame

ŷ′

y-axis in the new
rotated reference

frame about the ẑi
axis to the ẑ′ axis

y′

Point P’s location
on the ŷ′-axis after
the rotation about
the ẑi axis to the ẑ′

axis

ẑi

z-axis in the inertial
non-rotating

reference frame
zi

Point P’s location on
z-axis in the inertial

non-rotating
reference frame

ẑ′

z-axis in the new
rotated reference

frame about the ẑi
axis to the ẑ′ axis

z′

Point P’s location
on the ẑ′-axis after
the rotation about
the ẑi axis to the ẑ′

axis

x′xi

Line B segment
determined by angle

ψ1 and the
hypotenuse xi

x′yi.

Line B segment
determined by the

angle ψ1 and
hypotenuse yi

ψ1

Angle of rotation
about the ẑi axis to

the ẑ′ axis
ψ2

Complementary
angle to ψ1

A

Line equivalent to
Point P’s

measurement along
the x̂′ axis

B

Line parallel and
equidistant to A
crossing through

(xi,0,0)

C

Line perpendicular
to A and

B equidistant to
crossing through

point P

D

Line perpendicular
to A and

B equidistant to
crossing through

the origin/rotation
point

ABCD
Rectangle

developed by lines
A, B, C, and D
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Figure 8. (a) 3-rotation about the 𝑧�̂� and 𝑧′̂ axes with the line �̅� equivalent to x’; (b) 3-rotation 

about the 𝑧�̂� and 𝑧′̂ axes with parallel lines �̅� 𝑎𝑛𝑑 �̅� equivalent to x’. 

To measure the length of parallel lines �̅� 𝑎𝑛𝑑 �̅�, a rectangle can be formed using two 

other perpendicular similar parallel lines �̅� 𝑎𝑛𝑑 �̅� to develop rectangle 𝐴𝐵𝐶𝐷̅̅ ̅̅ ̅̅ ̅̅  that starts 

at the origin, aligns with the new rotation frame, and bisects the point P and (𝑥𝑖,0,0), as 

seen in Figure 9a. Therefore, lengths of �̅�, �̅�, 𝑎𝑛𝑑 𝑥′ are all equal. 

By measuring line �̅� in segments, the summation can be used to calculate line �̅�. 

Segments can be identified by which dimension (𝑥�̂� or 𝑦�̂�) of the axis in the initial orienta-

tion results in the  𝑥′𝑥𝑖 and 𝑥′𝑦𝑖 as seen in Figure 9b. Therefore, 𝑥′ can be calculated by 

the sum of  𝑥′𝑥𝑖 and 𝑥′𝑦𝑖, giving Equation (8). 

Figure 8. (a) 3-rotation about the ẑi and ẑ′ axes with the line A equivalent to x’; (b) 3-rotation about
the ẑi and ẑ′ axes with parallel lines A and B equivalent to x’.
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Figure 9. (a) 3-rotation about the ẑi and ẑ′ axes adding parallel lines C and D to create rectangle
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A determination was made to calculate the equations for x

′
; first. Both equations of x

′
; and y

′
; will be

calculated eventually, and the order does not matter— x
′
; is easier to visualize in this case.
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Figure 12. 3-rotation about the ẑi and ẑ′ axes highlighting segments x′xi andx′yi equations.

Then, a line A can be established along the rotated axis that equates to x
′

as seen in
Figure 8a, and another similar parallel line B with the same length that runs through the
(xi,0,0) as seen in Figure 8b.

To measure the length of parallel lines A and B, a rectangle can be formed using two
other perpendicular similar parallel lines C and D to develop rectangle ABCD that starts at
the origin, aligns with the new rotation frame, and bisects the point P and (xi,0,0), as seen
in Figure 9a. Therefore, lengths of A, B, and x

′
are all equal.

By measuring line B in segments, the summation can be used to calculate line A.
Segments can be identified by which dimension (x̂i or ŷi) of the axis in the initial orientation
results in the x′xi and x′yi as seen in Figure 9b. Therefore, x

′
can be calculated by the sum

of x′xi and x′yi, giving Equation (8).

x′ = xx′xi + x′yi (8)

To calculate x′xi and x′yi, identify ψ2 is a complementary angle to ψ1. One can identify
corresponding angles of the transversal of xi across A and B. Further, an additional
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complementary angle (formed where yi and C intersect at point P) can be identified as
associated with the corresponding angles of where xi crosses B, as seen in Figure 10.

Now two triangles can be identified, as seen in Figure 11, with two defined angles
identified as ψ2 and ψ1 each with a defined side xi or yi.

It can be seen that point P’s location on the x′ axis is positive, and because xi and yi are
positive, y′ is a summation of each segment x′xi and x′yi. Therefore, both x′xi and x′yi are a
positive contribution. These conditions define x′xi and x′yi by ψ1 and xi or yi in Equations
(9) and (10) using the definitions of sine and cosine, as seen in Figure 12. Substituting
Equations (9) and (10) into Equation (8) provides Equation (11), the first equation of the
3-rotation matrix.

x′xi = xicos(ψ1) (9)

x′yi = yi sin(ψ1) (10)

x′xicos(ψ1) + yi sin(ψ1) + zi0 (11)

The Equation (12) of the 3-rotation matrix is for y
′
. To calculate y

′
the same rectangle

ABCD, the two triangles and the defined angles from previous Figures 7–12 will be used,
except focusing on lines C and D. Figure 13 shows that P is in the negative axis of y

′
;

and is only a portion of line C. As the rotation is about z′ and zi no additional length is
provided to x′ by zi, so zi can be multiplied by 0. Table 3 outlines all the variables found in
Figures 13–15.
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point P 

�̅� 

Line perpendicular to �̅�  

and �̅� equidistant to 

crossing through the 

origin/rotation point 

      𝐴𝐵𝐶𝐷̅̅ ̅̅ ̅̅ ̅̅  
rectangle developed by 

lines �̅�, �̅�, �̅�, 𝑎𝑛𝑑 �̅� 

Figure 13. 3-rotation about the ẑi and ẑ′ axes using the rectangle ABCD, the corresponding angles
ψ1 and ψ2, and the same similar triangles built-in Figures 7–12, except to measure y

′
; instead of x

′
;.
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Table 3. Proximal variable and nomenclature definitions for Figures 13–15.

Term Definition Term Definition Term Definition Term Definition

x̂i

x-axis in the inertial
non-rotating

reference frame
xi

Point P’s location on
x-axis in the inertial

non-rotating
reference frame

x̂′

x-axis in the new
rotated reference

frame about the ẑi
axis to the ẑ′ axis

x′

Point P’s location
on the x̂′-axis after
the rotation about
the ẑi axis to the ẑ′

axis

ŷi

y-axis in the inertial
non-rotating

reference frame
yi

Point P’s location on
y-axis in the inertial

non-rotating
reference frame

ŷ′

y-axis in the new
rotated reference

frame about the ẑi
axis to the ẑ′ axis

y′

Point P’s location
on the ŷ′-axis after
the rotation about
the ẑi axis to the ẑ′

axis

ẑi

z-axis in the inertial
non-rotating

reference frame
zi

Point P’s location on
z-axis in the inertial

non-rotating
reference frame

ẑ′

z-axis in the new
rotated reference

frame about the ẑi
axis to the ẑ′ axis

z′

Point P’s location
on the ẑ′-axis after
the rotation about
the ẑi axis to the ẑ′

axis

y′xi

Line D segment
determined by angle

ψ1 and the
hypotenuse xi

y′yi.

Line C segment
determined by the

angle ψ1 and
hypotenuse yi

ψ1

Angle of rotation
about the ẑi axis to

the ẑ′ axis
ψ2

Complementary
angle to ψ1

A

Line equivalent to
point P’s

measurement along
the x̂′ axis

B

Line parallel and
equidistant to A
crossing through

(xi,0,0)

C

Line perpendicular
to A and

B equidistant to
crossing through

point P

D

Line perpendicular
to A and

B equidistant to
crossing through

the origin/rotation
point

ABCD
rectangle

developed by lines
A, B, C, and D
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z′′z′ = z′cos(θ1) (18) 

z′′x′ = x′sin(θ1) (19) 
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y′′ = x′0 +y′ +z′0 (25) 

z” = x′sin(θ1) + y′0 + z′cos(θ1) (26) 

Figure 15. 3-rotation about the ẑi and ẑ′ axes and highlighting equations for segments y′xi and y′yi.

By segmenting line C into y
′

and y′yi, one can take the difference of line D or y′xi and
a segment of y′yi to calculate y

′
;. The segments are labeled by the dimension (xi or y) of

the initial orientation axis, results in the y′xi and y′yi as seen in Figure 14. Labeling the
pertinent sides of two triangles yxi and yyi in Figure 14, one can use a similar equation to
Equation (8) to calculate y

′
;, and obtain Equation (12).

y′ = y′xi + y′yi (12)

Term y′ must be the negative difference between y′xi and y′yi for three reasons: P lies
on the negative ŷ′ axis, xi and yi are positive, and because y′ is less than the summation
of y′xi and y′yi. Therefore, y′ will be a difference between the segments, and the longer
segment y′xi must be negative in this case. These conditions definey′xi and y′yi by ψ1 and xi
or yi in Equations (13) and (14) using the definitions of sine and cosine as seen in Figure 15.
Substituting Equations (13) and (14) into Equation (12) provides Equation (15), the second
equation of the 3-rotation matrix. As the rotation is about ẑi and ẑ′ no additional length is
provided to y′ by ẑi so can be multiplied by 0.

− y′xi = xi sin(ψ1) (13)

y′yi = yi cos(ψ1) (14)

y′ = −xi sin(ψ1) + yi cos(ψ1) + zi (15)

Equation (16) for z′ is the last equation for this rotation. It is straightforward because
the revolution is about ẑi to ẑ′, hence z′ equates to zi. As the rotation is about ẑi to ẑ′, no
additional length is provided to z′ by xi or yi, so both can be multiplied by 0.

z′ = xi0 + yi0 + zi (16)
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Finally, Equations (11), (15), and (16) can be translated into a matrix format, as seen in
Equation (17), the 3-rotation matrix.x′

y′

z′

=
 cos(ψ1) sin(ψ1) 0
− sin(ψ1) cos(ψ1) 0

0 0 1

xi
yi
zi

 (17)

Continuing to the 2-rotation in Figure 16, the ŷ′ axis is rotated by θ1 to ŷ′′ . Figure 6d
shows the view of the rotation is changed so that the positive axis of the rotating axis (ŷ′
and ŷ′′ ) is viewed as coming directly out of the page. Point P is now taken from (x′;,y′;,z′;) to
(x′′,y′′,z′′), similar to Figures 12 and 15. Then, similar equations can be developed using the
same mathematics Equations (18)–(27). Table 4 outlines all the variables found in Figure 16.

z′′ z′ = z′ cos(θ1) (18)

z′′ x′ = x′ sin(θ1) (19)

x′′ z′ = − z′ sin(θ1) (20)

x′′ x′ = x′ cos(θ1) (21)

z′′ = z′′ z′ + z′′ x′ (22)

x′′ = x′′ x′ + x′′ x′ (23)

x′′ x′ cos(θ1) + y′0− z′ sin(θ1) (24)

y′′ = x′ 0 + y′′ + z′0 (25)

z′′ = x′ sin(θ1) + y′0 + z′ cos(θ1) (26)x′′
y′′
z′′

=
cos(θ1) 0 − sin(θ1)

0 1 0
sin(θ1) 0 cos(θ1)

x′

y′

z′

 (27)
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Figure 16. 2-rotation about the ŷ′ and ŷ′′ axes to develop P’s coordinates in the new reference frame
with all similar angles, shapes, and equations established in Figures 7–15.
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Table 4. Proximal variable and nomenclature definitions for Figure 16.

Term Definition Term Definition Term Definition Term Definition

x̂′

x-axis in the new
rotated reference

frame about the ẑi
axis to the ẑ′ axis

x′
Point P’s location on
the x̂′-axis after the
rotation about the ẑi

axis to the ẑ′ axis

x̂′

x-axis in the rotated
reference frame

about the ŷ′ axis to
the ŷ′′ axis

x′′
Point P’s location on
the, x”-axis after the
rotation about the y’.

axis to the ŷ′′ axis

ŷ′

y-axis in the new
rotated reference

frame about the ẑi
axis to the ẑ′ axis

y′
Point P’s location on
the ŷ′-axis after the
rotation about the ẑi

axis to the ẑ′ axis

ŷ′′

y-axis in the rotated
reference frame

about the ŷ′ axis to
the ŷ′′ axis

y′′
Point P’s location on
the y”.-axis after the
rotation about the y’.

axis to the ŷ′′ axis

ẑ′

z-axis in the new
rotated reference

frame about the ẑi
axis to the ẑ′ axis

z′
Point P’s location on
the ẑ′-axis after the

rotation about the ẑi
axis to the ẑ′ axis

ẑ′′

z-axis in the rotated
reference frame

about the ẑ′ axis to
the ŷ′′ axis

z′′
Point P’s location on
the z”.-axis after the
rotation about the y’.

axis to the ŷ′′ axis

x′′ z′
Determined using

the same techniques
as y′xi

x′′ z′ .
Determined using

the same techniques
as y′yi.

θ1

Angle of rotation
about the ŷ′ axis to

the ŷ′′ axis
θ2

Complementary
angle to θ1

z′′ z′

Determined using
the same techniques

as
x′xi

z′′ z′ .
Determined using

the same techniques
as x′yi.

Finally, the 1-rotation in Figure 17 is developed in the same manner as the 3-rotation
and 2-rotation. The x′′ axis is rotated by φ1 to xb thereby providing the final conversion
from (x′′, y′′, z′′) to (xb, yb, zb) coordinates; this provides Equations (28)–(37). Table 5
outlines all the variables found in Figure 17.

yby′′ = y′′ cos(φ1) (28)

ybz′′ = z′′ sin(φ1) (29)

zby′′ = − y′′ sin(φ1) (30)

zbz′′ = z′′cos(φ1) (31)

yb= yby′′ + ybz′′ (32)

zb= zby′′ + zbz′′ (33)

xb = x′′+y′′0 + z′′ (34)

yb = x′′ 0 + y′′ cos(φ1) + z′′ sin(φ1) (35)

zb = x′′0+− y′′ sin(φ1) + z′′ cos(φ1) (36)xb
yb
zb

=
1 0 0

0 cos(φ1) sin(φ1)
0 − sin(φ1) cos(φ1)

x′′

y′′

z′′

 (37)
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Figure 17. 1-rotation about the x̂′′ and x̂b axes to develop P’s coordinates in the new reference frame
with all similar angles, shapes and equations established in Figures 7–15.

Table 5. Proximal variable and nomenclature definitions for Figure 17.

Term Definition Term Definition Term Definition Term Definition

x̂′′

x-axis in the rotated
reference frame

about the ŷ′ axis to
the ŷ′′ axis

x′′
Point P’s location on
the, x”.-axis after the
rotation about the, y’.

axis to the ŷ′′ axis

x̂b

x-axis in the rotated
reference frame

about the ŷ′′ axis to
the x̂b axis

xb

Point P’s location on
the, x-b..-axis after
the rotation about

the, y”. axis to the x̂b
axis

ŷ′′

y-axis in the rotated
reference frame

about the ŷ′ axis to
the ŷ′′ axis

y′′
Point P’s location on
the, y”.-axis after the
rotation about the, y’.

axis to the ŷ′′ axis

ŷb

y-axis in the rotated
reference frame

about the ŷ′′ axis to
the x̂b axis

yb

Point P’s location on
the, y-b..-axis after
the rotation about

the, y”. axis to the x̂b
axis

ẑ′′

z-axis in the rotated
reference frame

about the ŷ′ axis to
the ŷ′′ axis

z′′
Point P’s location on
the, z”.-axis after the
rotation about the, y’.

axis to the ŷ′′ axis

ẑb

z-axis in the rotated
reference frame

about the ŷ′′ axis to
the x̂b axis

zb

Point P’s location on
the, z-b..-axis after
the rotation about

the, y”. axis to the x̂b
axis

zby′′
Determined using

the same techniques
as y′xi

zbz′′ .
Determined using

the same techniques
as y′yi.

φ1

Angle of rotation
about the ŷ′′ axis to

the x̂b axis
φ2

Complementary
angle to φ1

yby′′

Determined using
the same techniques

as
x′xi

ybz′′ .
Determined using

the same techniques
as x′yi.

Finally, taking each rotation matrix from Equations (17), (27), and (37), the matrices can
be multiplied to move from the inertial to the body frame seen in Equation (38). However,
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the three matrices can be multiplied to develop one overarching direction cosine matrix in
a simplified Equation (39), the 3-, 2-, 1-direction cosine matrix.xb

yb
zb

 =

 1 0 0
0 cosφ1 sinφ1
0 −sinφ cosφ1

cos θ1 0 −sinθ1
0 1 0

sin θ1 0 cos θ1

 cosψ1 sinψ1 0
−sinψ1 cosψ1 0

0 0 1

xi
yi
zi

 (38)

xb
yb
zb

 =

 cos θcosψ cos θsinψ − sin θ
sinφsinθcosψ− cosφsinψ sinφsinθsinψ + cosφcosψ sinφ cos θ
cosφsinθcosψ + sinφsinψ cosφsinθsinψ− sinφcosψ cosφ cos θ

xi
yi
zi

 (39)

3. Discussion

The two-dimensional rotation view coupled with the proposed method of creating a di-
rection cosine matrix provides a simplified and repeatable development process. However,
there are a couple of recommendations to keep the process simple. Simple decisions on
the order of axis rotation, point P’s location, and the rotation angle can present significant
difficulty if not adequately thought through.

The 3-rotation is the easiest to conceptualize, since a horizontal x̂-axis and a vertical
ŷ-axis is the most common representation. This makes the 3-rotation the best to start with,
where another rotation may be more challenging to visualize initially. Deciding which axis
rotation to start with is not highly consequential to the overall difficulty, but beginning
with the 3-rotation may help a new student grasp the concept.

Placing point P at the origin will break the process, so it cannot be recommended.
Further it is recommended to use a point P that lies in the positive x̂, ŷ, or ẑ axis. A negative
point P, while not insurmountable, can add unrequired difficulty to the problem. If point P
lies in either the negative x̂, ŷ, or ẑ axis before the rotation, the calculations become more
confusing to maintain perspective because it is easy to overlook which variable is negative
and how the negative variable affects the equations. Ultimately, if xi, yi, or zi of point P
(xi, yi, zi) is negative, that negative factor must be maintained through the equations to
obtain the proper matrix.

It is recommended to use an acute rotation angle. Using an obtuse rotation angle can
further complicate the process; however, similar rectangles, triangles, and their correspond-
ing angles can be found. A remaining question is which angle to utilize for the triangle.
The most straightforward method found was to take the cosine and sine of the obtuse angle
and find the corresponding acute angles that equate to it, but which may be its opposite
sign. When using those equations, the sign of the obtuse angle must be carried throughout
the rotation. It is recommended for ease of calculation to start with the 3-rotation, maintain
point P in the positive x̂, ŷ, and ẑ axis, and use an acute angle.

While helpful, using direction cosine matrix for attitude and direction control of
vehicles can lead to failure of computations to express specific movements. Specifically,
direction cosine matrix fails when kinematic singularities come into play. A kinematic
singularity is when the cosine of the rotational angles used for the direction cosine matrix
equals zero. It is a regular practice to divide by the cosine of the rotation angle to calculate
the Euler-angles rate, so when the cosine of rotation is zero, singularities become an issue.
This division by the cosine of the rotation angle when the cosine of the rotation angle is
zero causes a calculation error when the systems try to calculate infinity. For these reasons,
the quaternions do much of the heavy lifting of the rotations.

4. Conclusions

The method discussed in this paper is very generic and works for all direction cosine
matrices. The development of a direction cosine matrix, while a foundational portion of
kinematics, is a small part of understanding kinematic engineering. As for most formulae,
once the direction cosine matrix is created, the equation does not need to be recreated to be
utilized. The process utilization does not negate the importance of the method as it is more
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about teaching and understanding the process in which a direction cosine matrix operates
and is developed.

However, the process could be considered lengthy or confusing compared with other
methods. The 2DRV does not allow a member to see all three rotations simultaneously. The
2DRV simplifies a single rotation but does not always help visualize all three rotations. It is
recommended that this method be used in tandem with a three-dimensional view to help
link the equations to the movement.
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