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Abstract: The topics of climate change and pollutant emission reduction are dominating societal
discussions in many areas. In automotive development, with the introduction of real driving emis-
sions (RDE) testing and the upcoming EU7 legislation, there are endless boundary conditions and
potential scenarios that need to be evaluated. In terms of vehicle calibration, this is leading to a
strong focus on alternative approaches such as virtual calibration. Due to the flexibility of virtual test
environments and the variety of RDE scenarios, the amount of data collected is rapidly increasing.
Supporting the calibration engineers in using the available data and identifying relevant information
and test scenarios requires efficient approaches to data analysis. This paper therefore discusses the
potential of data clustering to support this process. Using a previously developed approach for
event detection in emission calibration, a methodology for the automatic categorization of events
is presented. Approaches to clustering algorithms (hierarchical, partitioning, and density-based)
are discussed and applied to data of interest. Their suitability for different signals is investigated
exemplarily, and the relevant inputs are analyzed for their usability in calibration procedures. It is
shown which clustering approaches have the potential to be implemented in the vehicle calibration
process to provide added value to data evaluation by calibration engineers.

Keywords: real driving emissions; cycle-generation; vehicle-specific test scenarios; emission calibration;
clustering; data analysis; emission testing; intelligent testing

1. Introduction

The constant need to optimize modern passenger cars in terms of sustainability,
price, emission reduction [1,2], and quality places high demands on the development
processes [3–5]. Constantly updated and intensified emission standards, such as the Euro
6d introduced in 2017 [6,7] or the upcoming Euro 7 regulations [8], set new framework
conditions specifically for the series calibration process of modern vehicles [9–11]. To ensure
legal compliance under all relevant conditions and to increase the efficiency in daily use,
topics such as base calibration, drivability calibration, emission calibration, or operating
strategy calibration are using new approaches in their daily processes in order to achieve
zero-impact emission vehicles [2,12–14].

Innovative approaches aim to reduce costs, shorten the time to market, and reduce
the number of prototype vehicles while maintaining or even increasing quality levels.
A central topic in this context is the virtualization and simulation of development tasks.
Conventional processes are partly replaced and supplemented by simulation-based en-
hancements [15]. The use of simulation-based approaches allows the speed of test execution
and data acquisition to increase. Initial boundary conditions and changes to setups can be
adapted more quickly and soaking phases, for example, can be shortened. However, the
resulting potential in data acquisition can only be effectively exploited if the data analysis
procedures are adapted at the same time.
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In the field of vehicle series calibration, this represents a major challenge. In the
conventional process, each discipline of series calibration (such as baseline, emissions,
drivability, hybrid operating strategy, or OBD calibration) currently performs its own tests,
including data acquisition and analysis. The data are usually analyzed manually. For
example, each emission test performed is examined by a calibration engineer. Due to lack
of time, usually only tests that show exceptional cumulative emissions results are examined
in more detail. In the case of an overall good result, no deeper analysis is performed, and
specific potentials that are found in all emission tests but may have only a minor impact on
a single test are rarely identified manually.

To support the data analysis, the goal is to develop a methodology for the series
calibration process of passenger cars that will assist the application engineer in analyz-
ing measurement data, summarizing results, and testing vehicles in specific use cases.
Implementing data analysis processes into the daily procedure of application can:

• Increase the overall amount of data that is evaluated, thus making use of all available
information;

• Increase the speed of measurement evaluations by handling large amounts of data,
thus taking full advantage of virtually based test execution;

• Standardize the calibration process;
• Increase the quality of vehicle calibration by considering the effects of events that have

little impact in a single test but may have a major impact in the daily use of the vehicle
over the course of its useful life.

To develop the individual parts of the proposed methodology, the example of emission
calibration is used here. While Section 2 first summarizes the overall approach of the
new methodology, in Section 3, the focus is on data analysis using clustering approaches.
Here, various methods for data clustering are presented and discussed in the context of
emission calibration. Hierarchical, partitioning, and density-based clustering approaches
have shown promising results in previous evaluations and are therefore discussed in
this context. The advantages, disadvantages, and the application of the approaches are
presented. Finally, the derived procedure to be implemented in the overall methodology is
summarized, and an outlook on its application and the advantages is provided. The paper
thus presents the fundamentals of clustering approaches that can be considered for the use
in the calibration process.

2. Materials and Methods
2.1. State of the Art

Within recent years, the virtualization of vehicle tests in the process of vehicle cal-
ibration has gained increasing interest [12,16–18]. Throughout the complete calibration,
different stages of virtualization from Model-in-the-Loop (MiL) [13] and Software-in-the-
Loop (SiL) via Hardware-in-the-Loop (HiL) [19–22] to Engine-in-the-Loop (EiL) [23–25]
and Powertrain-in-the-Loop (PiL) [26] are methods to support and/or substitute the con-
ventional prototype vehicle and test bench activities; they are summarized as X-in-the-Loop
(XiL). The advantage of these virtual test benches is the reduction in prototype costs and
their high flexibility for the exchange of components and ambient conditions. Test vehicle
soaking phases can be reduced, and the number of tests per day can be increased. In
addition, the automation of these processes can further increase the test-per-day frequency
and reduce costs in operation.

For RDE calibration testing activities, several methodologies have been developed,
focusing on ways to increase the system’s robustness and efficiency. Majorly, combinations
of virtual approaches and dedicated cycle generation are suggested, as on-road tests lack
reproducibility and a single cycle, such as the “Worldwide harmonized Light vehicles Test
Cycle” (WLTC), or a set of cycles do not offer a high enough variation of test scenarios
for real-world usage optimization [27]. A variation of test cycles may be generated with
different approaches. Research has been carried out on creating worst-case cycles by
maximizing dynamics or combining emission simulations or test bench data with design-
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of-experiments evaluations [28–30]. Thus, synthetical cycles are created that may have
high impact on emissions but do not necessarily represent real-world driving behavior.
For the representation of such, retracing real routes on a chassis dynamometer or in XiL
environments was investigated in [31–33]. Furthermore, mostly Markov-chain-based
methods are used to created cycles that represent the statistical driving behavior of a
mostly regional database. Generation procedures were described by Kondaru et al. in [34],
Balau et al. in [35], and Ashtari et al. in [36]. Förster et al. presented an approach that
intended to map a large number of driving scenarios on a statistical data basis [37]. The
database was first divided into micro-trips. Different driver types were defined by statistical
definition, and test environment conditions were clustered using a K-Means clustering
algorithm. With the help of an optimization algorithm, driving cycles were generated that
covered a wide test space of real-world conditions.

While the generation of cycles provides added value to testing activities, Wasser-
burger et al. presented a cycle generation methodology in [38] that they later used for an
automated calibration process in [27]. The proposed cycles were transformed into operating
points of an engine map and used as input values for an optimization algorithm that then
adjusted the calibration of specific functions for all identified load points. Millo et al. pre-
sented a methodology for frontloading base engine calibration using an offline powertrain
model in [39]. In this methodology, fully physical models were used and considered the
internal combustion engine as well as the exhaust–aftertreatment system. Using a K-Means
clustering algorithm, key points (KPs) for the calibration optimization were identified
by clustering engine operating points of different cycles. A set of features of calibration
control variables was defined, and the values were iteratively adjusted to optimize emission
behavior and fuel consumption. Furthermore, Meli et al. described a methodology for the
automated pre-calibration of ECU functions based on neuronal networks in [40,41]. In this
research, a combination of HiL measurements and neuronal network models were used to
optimize the base calibration of a lambda control, downstream exhaust temperature model,
and knock-control functionality.

For the extension of the test space, many different approaches exist in the literature for
generating test cycles and testing functions on virtual test benches. Cluster methods are
used for cycle generation as well as for targeted automated calibration. However, the new
methods for calibration are primarily concerned with automated calibration on virtual test
benches. However, this process does not yet meet the standard in series application, yet
approaches that describe data analysis for the manual calibration process or even as support
for virtual approaches are rarely represented in the literature. The approach presented here
is intended to close this gap and create a new basis for data analysis in the conventional
calibration process.

2.2. Context of the Proposed Methodology

The data-based methodology for vehicle calibration, especially in the context of real
driving emission (RDE) calibration, must support the entire calibration process and make
optimal use of the collected data. For this purpose, the data of different measurement types,
tests, and test environments must be collected and evaluated. The overall methodology
into which the clustering approach shall be implemented is initially described here. The
general process of the methodology is shown in Figure 1 and is described in detail in [42].

All test environments are used to acquire measurement data. Data analysis by means
of event detection and statistical evaluation then refers to the entire database content. The
use of the common database enables the continuous use of data from the early phases,
focusing on test benches, to the final phases in the vehicle. In addition to, e.g., emission
tests or simulations, measurements of daily driving operation (robustness measurements),
which represent the real usage behavior of the system, are also stored.
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Figure 1. Schematic overview of the RDE application and validation methodology.

Following the data acquisition and pre-processing for the database layout, an event
detection is applied to the data containing an emission measurement trace. The event
detection automatically identifies the sequences with increased emission intensities, as
described in [43,44]. The rule for the definition of critical intensities and the evaluation of
the relevant signals can be adjusted. Thus, the transferability to other topics of interest, such
as a hybrid operation strategy, is ensured. Measurements without an emission trace are
used for statistical analysis; they can help to prioritize the events with regard to statistical
relevance and to evaluate the variety of existing measurement data [42]. Finally, the results
of the data analysis are fed back into the testing iterations by means of dataset optimization.
They can be tested in dedicated, vehicle-specific test cycles which are built of the events
previously detected and statistically evaluated.

To ensure maximum use of the collected data during the development and especially
the calibration process, automated analysis is required. In this way, the main advan-
tage of virtualized calibration tasks—increasing the speed of measurements and data
collection—can be exploited. The goal for automated data analysis is to deliver added
value to the calibration engineer. The data must be analyzed and visualized in a way that
is useful for further evaluation and interpretation by the engineer. Thus, all the benefits of
automated analysis should be usable without deep knowledge of data science.

The work packages presented in Figure 1 subdivide the process into Identification of
typical system behavior, Identification of significant signals & signal profiles, Evaluation of
statistical safety and Generation of dedicated test cycles.

The methodology focused on in this work describes a part of the methods used in the
first work package, Identification of typical system behavior. The subtopics of this work
package are shown in Figure 2. Following this requirement, the process of data analysis
should be largely automated within the methodology presented in [42].
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Figure 2. Schematic overview of data analysis steps.

Using emission calibration as an example, automatic event detection is applied to
the measurement data to identify sequences during tests that exhibit increased emission
intensity. To further reduce the individual evaluation effort, the events are then processed
into clusters. Here, similar events are categorized into groups, which then can be analyzed
by the engineer. In this way, not every single event requires evaluation: only reference
events of the cluster itself require evaluation. In addition, this allows for the calculation
of the overall impact of a weak spot by summarizing the intensity, amount, and statistical
relevance. The approach for clustering data will be discussed in its fundamentals in the
context of vehicle application within this paper.

In addition to the reduced evaluation effort, with the results of the Identification of
typical system behavior (Figure 1) an analysis of relevant signals and root causes becomes
possible by using clusters. Cluster comparisons can be used in the Identification of sig-
nificant signals & signal profiles (Figure 1) to specifically identify cluster occurrences of
patterns within critical versus not-critical data clusters, as described in [42]. Since the
validation process of cycle generation and emission verification is highly dependent on the
available data diversity as a source for critical behavior, an assessment of the data variation
quality is performed in the Evaluation of statistical safety (Figure 1). Finally, the data are
used for the generation of vehicle-specific test cycles, as further described in [45] and in [42]
with an updated approach.

As the events show a high diversity of duration and characteristics, a direct comparison
of signal traces is not possible. To overcome slight differences in the shapes and durations
of the signals, a dynamic-time-warping (DTW) [46,47] approach is used to compare signals
of different events. The distance between the reference signal of the event on which the
clustering shall be based is then compared with all other events. Thus, a distance matrix is
created, showing the distances for any event combination. The clustering approach shall
then group all events with similar traces.

To evaluate the clustering results, different measures are used. The first measure is the
Silhouette Score (1). As an intensive measure, it does not require any additional information
and is capable of judging the cluster results based only on the categorization. It describes
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the ratio of similarity within a single cluster and the difference towards the others. This is
achieved by using the cohesion a for similarity and the separation b for differences:

s(o) =
a− b

max(a, b)
(1)

The silhouette s is calculated for each element o. Finally, the Silhouette Score is the
average silhouette over all elements o within the cluster. It results in 0 in the case in which
there is only one element in the cluster. The cohesion a expresses the average distances of all
elements within a cluster; the smaller a is, the more compact the cluster is. The separation b
is understood as the average distance of all elements of the neighbor cluster to the element
o; high values of b express a high separation. [48]

3. Results

Depending on the type and size of the data as well as the specific goal to be achieved,
different methods for data clustering can be applied. The choice of method depends on
the existing knowledge of the available data and the parameters required for the method.
In the example of emission calibration, the signals of interest may have many different
and complex structures and characteristics. It is difficult to make assumptions in advance
about the number, size, or shape of clusters because the weak spots are highly dependent
on the vehicle and the dataset currently being used. To add value to the vehicle calibration
evaluation process, the clustering approach must be adaptable with little effort from project
to project or use case to use case given the wide variation in data.

In the context of investigating different clustering approaches, hierarchical, partition-
ing, and density-based clustering methods are evaluated. Fourier-transformation-based
methods [49–51] previously showed inadequate results due to the often small number of
data points within a single event. For usability in the calibration process, clustering results
are evaluated in terms of compactness and differentiability, as well as the required prior
knowledge of the data. During the investigation, different signals are used as a reference for
the calculation of event-to-event distances and thus the clustering itself. This methodology
shall be applicable on all kinds of signals to identify significant event groups based on any
signal. Later, investigations shall be carried out to identify the characteristic features of a
dataset or cluster and will be published in a separate paper. Here, each set of clusters is
based on the comparison of a single signal.

3.1. Hierarchical Clustering

Hierarchical clustering is often used for the categorization of time-based data. Empiri-
cal analyses show that the results of this methodology are usually of high quality [52–55].
One of the main advantages is the lack of a need for parameters to create the clusters. Fur-
thermore, a complete cluster structure is created by the algorithm. The resulting hierarchy
provides initial information about the dataset. For hierarchical cluster methodologies, there
are different approaches to create the clusters. Figure 3 shows an overview of different
approaches for hierarchical clustering.

Figure 3. Overview of approaches for hierarchical clustering.
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For hierarchical clustering, a criterion that defines the distance between clusters
is required. In addition to the selection of the algorithm for merging events and sub-
clusters, the distance measure also has a major impact on the clustering results. As a
main principle, the methodologies categorize events with the closest distance from each
other into clusters. Neighboring events are combined into clusters at the first step. The
clusters are then successively merged as long as the distance between two clusters is below
a defined threshold.

For the clustering of emission data, four algorithms—Single Linkage, Complete Linkage,
Average Linkage, and Ward Linkage—are used. As a source, an event database consisting of
92 critical events for HC emissions (identified based on the approach described in [44]) is
used. The clustering is applied to the engine speed signal.

Single Linkage and Complete Linkage use only one element of each cluster to calculate
the distance between two clusters. In contrast, Average Linkage and Ward Linkage use all
the elements within the two clusters. To create hierarchical clusters, the distance of the
events must be known as a stopping rule. In this case, the distance and the number of
useful clusters is unknown. For this reason, the Silhouette Score for 2 to 15 clusters is
calculated to experimentally investigate an appropriate distance for the emission events.
Similar results were observed on further analyses with different signals and events. The
results—expressed by the Silhouette Score—are shown in Figure 4.

Figure 4. Silhouette Score results for hierarchical clustering approaches.

The results for Complete Linkage and Ward Linkage on the right (Figure 4) show similar
results, whereas Single Linkage shows very different results—even demonstrating negative
values as the number of clusters increases. The negative results on higher amounts of
clusters for Single Linkage indicate inconsistencies at the low levels of the created hierarchical
structure (the first steps of combining events into clusters).

The hierarchical creation of clusters does not allow for the later correction of the lower
levels. This leads to the phenomenon that mismatches on a low level have a continuous
impact on propagating cluster creation, which leads to inhomogeneous results. This effect
leads to a reduction in the distances between the clusters.

As it only considers single elements from a cluster for the calculation of distances
between two clusters, the Single Linkage approach tends to create large clusters with quite
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different signal traces inside. In contrast to the Single Linkage approach, the other approaches
show mainly good correlations toward each other and positive results in the Silhouette
Score. These results indicate homogeneous clusters with separation to neighboring clusters
at each level of the hierarchy. If the number of clusters is too small, the Silhouette Score
increases due to the lack of comparison partners. As the Complete Linkage approach tends
to form too many small clusters and Ward Linkage tends to form clusters with the same size,
Average Linkage is used for further analyses.

For the generation of hierarchical clusters, the use of stopping rules is required. The
stopping rules are used to define the point in the structure at which further clustering
should be stopped. As measures to define stopping rules and to identify the optimal number
of clusters for a dataset, the Elbow Rule, Silhouette Score, and Clustering Gain approaches
are evaluated.

The variance of the cluster content is considered with increasing numbers of clusters,
as shown in Figure 5. Using only one cluster results in the highest variance, as all datapoints
are included. In opposition to this, the variance is 0 if the number of events equals the
number of clusters as each cluster only contains one specific signal trace. The Elbow Rule
defines the optimum number of clusters by rating the resulting trace with respect to a
change in the gradient. In front of the bending point, the variance strongly decreases,
meaning that the clusters are becoming more compact. Beyond this point, the variance in
the clusters decreases only slightly, meaning that the compactness of the clusters is only
slightly optimized [56,57]. Figure 5 shows the results for cluster analyses with two different
signals based on 959 emission events. The comparison of the plots of the accelerator
pedal position (left) and the voltage of the downstream lambda sensor (right) shows the
difficulties in clearly identifying the results according to the Elbow Rule. The right profile
shows an obvious bending point at five clusters. The left profile shows a smoother trace
and does not allow for the clear identification of the point of the optimal number of clusters.
Since the bending point is not pronounced enough for some profiles, determining the ideal
point using the Elbow Rule is not always possible.

Figure 5. Definition of optimum cluster amounts using the Elbow Rule.

The Silhouette Score criterion is well-suited for the iterative assessment of the number
of clusters. No further information about the data is required, and it is independent of the
type of data used for clustering. The application of the Silhouette Score to analyze the cluster
quality is shown in Figure 6, using the example of clusters based on the vehicle speed of
92 critical events. While a low number of clusters is desired to best support data analysis, a
minimum number of clusters is required to build clusters that adequately represent the
characteristics of the signals. With a decreasing number of clusters, the degrees of freedom
for separating the data set decrease, resulting in inhomogeneous and large clusters. The
local maximum at three clusters is thus interpreted as an outlier.

The global maximum is reached at 18 clusters. However, the manual evaluation of the
resulting 18 clusters shows a number of clusters that is too high. The local maxima at five
and seven clusters (Figure 7) show the best results when evaluating the clusters manually.
Just as with the Elbow Rule, the Silhouette Score does not show a clear optimum in some
cases, which further complicates the use of the Silhouette Score as a decision measure in
automated approaches.
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Figure 6. Definition of optimum cluster amounts using the Silhouette Score for vehicle speed.

Figure 7. Hierarchical clustering with 7 (top) and 5 (bottom) target clusters.

Clustering Gain∆ [58] is a measure that evaluates the increase in similarity within the
clusters with a decreasing number of clusters compared to a decreasing inner homogeneity.
Using Equation (2), the Clustering Gain uses the average distance between all elements
within the dataset d0 and the average distance of all elements d(j)

0 within a cluster j. nj
describes the number of elements within the cluster, and j and k represent the total number
of clusters.

∆ = ∑k
j=1

(
nj − 1

)
‖d0 − d(j)

0 ‖
2
2

(2)
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Evaluating 10 different signals of the 92 events shows that the Clustering Gain approach
underestimates the number of clusters. A reasonable definition of the optimum number of
clusters has shown to work only for a bit signal, which is usually separated in only a small
number of clusters. Signal traces with a nearly constant value often represent the average
value of several other signal traces that show a higher dynamic within the signal. Such
clusters are then combined, leading to the mixing of dynamic and static signal traces. For
this reason, signal traces with a low variance and a nearly constant value are separated from
the dataset in advance and can then be applied to an individual clustering loop. Figure 8
shows the separation of the static traces of the engine speed. First, the standard deviation is
calculated for each signal trace from the 92 events. The percentile that shows a clear jump is
determined to define the maximum value of signal variance for static traces. Here, the 19th
percentile is used to separate 18 events with static engine speed traces (Figure 8, right).

Figure 8. Separating constant signals from the dataset (right) based on the standard deviation (left).

In general, the Clustering Gain approach offers a good base for the automatic judging of
the cluster hierarchy, although the result is highly dependent on the type and characteristics
of the signals used. Filtering is required to use the Clustering Gain approach as a measure of
the cluster number.

On one hand, hierarchical clustering can be easily applied to arbitrary signals since it
does not require signal-specific parameters. Furthermore, the method is applicable to large
datasets, and the computed hierarchy helps to explore the dataset structure. On the other
hand, the inflexible assignment and errors in low levels of the hierarchy cause the clusters
to become inhomogeneous and the distances between individual clusters to become smaller.
Another disadvantage is the complex extraction of the final clusters from the hierarchy
and the determination of the cluster number. Although approaches such as the Silhouette
Score and Clustering Gain can determine the optimal number of clusters, this must be done
manually and iteratively for most signals.

3.2. Partitioning Cluster Methodologies

The K-Means algorithm [59–61] is a widely used partitioning method. The algorithm
optimizes an initial partitioning of a dataset based on a cost function. The advantage of
K-Means is that elements can change their cluster, and an optimal partitioning of the dataset
is therefore possible.

The algorithm is scalable on large datasets and always converges, whereas the solution
can be a local minimum. The selection of the initial partitioning can be generated manually
or randomly. Since manual partitioning requires a large amount of effort, multiple partitions
are used in this analysis. Several random initializations of the algorithm are examined, and
the best result is considered. Only the determination of one parameter (cluster number)
is necessary for the K-Means algorithm. For the cluster centers, synthetic traces are used
which average all events in the cluster.

The calculation of the cluster center is essential for the optimal assignment of the
individual signal traces. The cluster center serves as a representation of the complete
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cluster and must therefore reflect as many characteristics of the cluster elements as possible.
Therefore, the average trace for the clustering is chosen to be the Barycenter, according
to [62]. The Barycenter is a synthetic progression that is calculated using DTW. Figure 9
shows the comparison of two mean trajectories for the same cluster. The cluster consists of
33 similar signal traces for the engine speed from critical emission events.

Figure 9. Calculation of a cluster’s mean trajectory.

In contrast to the simple averaging of the signals (Figure 9, left), the Barycenter of
the signals (Figure 9, right) can compensate the local temporal signal waveforms. Thus,
the Barycenter maps the entire cluster better than simple averaging and allows for a more
accurate mapping. The flexibility of DTW leads to a difference in length between the simple
averaging and the Barycenter. In addition to synchronization, the averaging of signals of
different lengths is another advantage of the Barycenter. Thus, the Barycenter reproduces
the core information of the cluster and is later able to represent the main characteristic of
the feature.

As a partitioning method, K-Means requires the specification of the number of clusters,
which is not known in advance for the signals from emission events. Therefore, two
methods for determining the cluster number are investigated. On one hand, an iterative
evaluation of the results is analyzed, and on the other hand, hierarchical clustering is used
to determine the cluster number.

As a standard criterion for the evaluation of cluster results, the Silhouette Score is
used for an iterative determination of the number of clusters. The optimal partitioning is
determined by evaluating the cluster results for different cluster numbers and selecting
the highest Silhouette Score result. The optimal partitioning is not always achieved at the
absolute maximum value of the Silhouette Score. Cluster numbers that do not show the
maximum in the trace of the Silhouette Score can provide better results than numbers that
show a maximum Silhouette Score. The Silhouette Score for different target cluster numbers
is shown in Figure 10, using the engine torque signal as reference.

Figure 10. Silhouette Score for partitioning clustering on engine torque with target number variation.

Figure 11 shows a comparison of the clustering results of 92 events, sorted into five
(top) and two clusters (bottom). The cluster number is usually underestimated, making the
clusters inhomogeneous.
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Figure 11. Comparison of cluster results for event torque using 5 clusters (top) versus
2 clusters (bottom).

Clustering Gain can automatically determine the number of clusters in the hierarchical
clustering. However, the rigid assignment of the data points leads to inhomogeneous
clusters. K-Means allows for a flexible assignment and can optimize the clusters. For this
purpose, the clusters determined using the Clustering Gain approach are used as initial
partitioning for the K-Means algorithm. However, the investigations using a combined
approach of K-Means and Clustering Gain generally do not achieve a significant improve-
ment in the generated clusters. K-Means is not able to perform the partitioning due to the
underestimation of the number of clusters by the Clustering Gain algorithm.

Due to the possibility of exchanging data points between the clusters and the minimiza-
tion of the average distance within the clusters, the K-Means algorithm forms homogeneous
clusters when the optimal cluster number is known. However, the determination of the clus-
ter number for emission events cannot be automated reliably for all signals. Furthermore,
K-Means tries to partition the complete dataset and has no possibility of detecting outliers.

3.3. Density-Based Clustering

The hierarchical density-based clustering methodology HDBSCAN combines the
advantages of hierarchical and partitioning approaches. First, a hierarchy is created. Then,
an optimization algorithm adjusts the clusters by judging the density of the different
branches of the hierarchy. This approach enables a hybrid cluster generation process that
does not require information about the desired number of clusters. One of the advantages
of this technology is its ability to automatically identify outliers in the data. This prevents
the mismatch of clusters when trying to sort outliers into the actual patterns. For control
of the HDBSCAN methodology, the two key parameters, minimal cluster size Nmin and
minimal density Cρ, need to be defined [63].

The minimal cluster size defines the number of samples (events) that at least need to be
assigned to a cluster. Thus, only dense areas with at least Nmin data points are considered
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for the creation of clusters. Small values for Nmin are favored to consider as many points as
possible, whereas values that are too small will lead to the overfitting of single clusters and
subsequently to the creation of many rather small clusters.

The minimal density Cρ describes the characteristic of the area that shall be considered
for clustering. A minimal number of samples in a specific area is required to consider this
area for the generation of clusters. An area that is not dense enough will not be considered
for the generation of clusters. The smaller the number, the more events will be considered
for the formation of clusters. A value that is too high will exclude a high number of events
and will cause only extremely dense areas to be considered, while a number that is too low
will enable the consideration of even outliers and thus might falsify or negatively influence
the compactness of the clusters.

To identify the influence of both parameters on the clustering of emission events,
further analyses are carried out. Test datasets built of critical emission events are created
for six different exhaust emission components, whereas different numbers of events are
used for each (Table 1).

Table 1. Number of events per dataset per emission component.

Emission
Component HC CH4 CO NOX NH3 PN

Number of events 92 172 986 959 1267 2427

Nine emission-relevant signals are selected as base for the clustering approach listed
in Table 2. These signals were selected as samples for signals with both a known influence
on the emission intensity and different characteristics. Here, signals with a bit characteristic
(bit fuel cut-off) and high (engine torque and downstream lambda sensor voltage) and low
(e.g., vehicle speed and temperature of catalytic converter) dynamics and ranges are used.
The HDBSCAN parameters Nmin and Cρ are varied to identify the best cluster setup with
the least number of outliers. Judgement is carried out by means of the Silhouette Score and
visual evaluation. An overview of the selected parameter combinations for the signals is
provided for each of the evaluated emission components in Table 3. The generation of
clusters is always based on one signal, creating a set of clusters for each of the listed signal
and emission component combinations.

Table 2. Overview of HDBSCAN parameter evaluation with averaged results.

Signal Number Signal Number of Clusters Silhouette Score Outliers

1 Engine speed 14 0.65 36%

2 Vehicle speed 16 0.65 28%

3 Downstream lambda sensor voltage (bank 1) 6 0.61 32%

4 Downstream lambda sensor voltage (bank 2) 5 0.66 36%

5 Bit fuel cut-off 14 1 0.25%

6 Temperature of catalytic converter 4 0.64 8%

7 Engine torque 21 0.6 46%

8 Exhaust gas mass flow 16 0.62 43%

9 Relative air charge 28 0.55 41%

Silhouette Score values of > 0.5 represent good results of the HDBSCAN. Here, the
number of clusters is not underestimated, and a good fit is shown. For all investigated
signals, such a score could be achieved when evaluating the averaged results over all six
emission components. The values for Nmin and Cρ used to achieve the results are listed
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in Table 3. The quality of the results appears to be independent of the signal and the size
of the dataset (Table 1). For signals with low dynamics (e.g., temperature of the catalytic
converter), the share of outliers is rather low. Signals with a high share of detected outliers
are indicated mainly by those with different levels with respect to their absolute value. For
such signals, the algorithm could be re-applied to the events classified as outliers with an
adjusted parameter set to regroup events of different magnitudes.

Table 3. Overview of results of the HDBSCAN parameter variation.

Emission Component Signal 1 2 3 4 5 6 7 8 9

HC
Nmin 7 6 6 3 2 7 8 5 3

Cρ 7 6 2 3 2 7 8 5 3

CH4
Nmin 10 7 4 5 2 6 4 12 8

Cρ 10 4 4 5 2 6 4 12 8

CO
Nmin 11 7 12 12 2 10 7 11 4

Cρ 11 7 4 2 2 10 7 11 4

NOX
Nmin 13 8 13 13 2 15 8 13 5

Cρ 2 2 13 13 2 15 5 13 5

NH3
Nmin 12 9 14 14 2 5 6 15 11

Cρ 2 6 14 14 2 5 6 2 2

PN
Nmin 8 30 11 14 3 10 9 11 4

Cρ 8 7 11 14 3 10 2 2 4

The identified best-fitting values for Nmin range from 2 to 30, regardless of the size
of the dataset. Eight out of nine signals reach the optimum for Nmin ≤ 15. Exceptions are
only observed for signals with low noise in their profile and the presence of ideal clusters.

The parameter for the minimal density Cρ shows a good correlation with the minimal
cluster size. The absolute differences of Nmin and Cρ are shown in Figure 12 as a histogram
and boxplot. For 40 out of 54 sets, Cρ and Nmin result in the same value. For the majority
of differences, the value can be rather neglected. Here, the 75th percentile has a value
of 2.25, while the 25th percentile and median are both expressed by a difference of 0.
High differences can be considered as outliers (judging both the 97.5th percentile or the
interquartile range). In addition, further variations of Cρ with a constant Nmin around the
optimum value of Cρ are shown to have a neglectable effect.

Since the minimum density and minimum cluster size parameters are mostly the same,
the parameters are set as equal for further application. This allows for the reduction of the
input parameters for HDBSCAN to a single parameter.

The methodology used to create the resulting clusters is a further influencing factor
for the HDBSCAN procedure. Clustering can either be performed following the Excess of
Mass or the leaf rule. As the standard methodology, Excess of Mass shows a tendency to
create a smaller number of clusters with a large size. On the other hand, leaf generates
small, homogeneous clusters in larger numbers while also allowing for the formation of
large clusters if they are present in a homogeneous layout. Since signals for emission
events and for vehicle measurements generally have a high variation in their characteristics,
the generation of smaller clusters is preferred in this context. Following the leaf method,
a larger number of clusters is chosen for use in emission calibration, which can then
be concatenated.

With the combination of small values for Nmin and the leaf methodology, the process of
concatenating micro-clusters directly is supported by a limit of minimal distance between
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clusters. The εClusterSelection can be used to define the distance between two clusters. Single
clusters with a distance smaller than this will be automatically joined.

Figure 12. Evaluation of Nmin and Cρ differences.

In summary, HDBSCAN is a reliable method for categorizing emission critical events
into clusters of different sizes. The method identifies the typical traces of different signals.
As it is independent of the signal traces, the method can be applied to different signal
characteristics and can even categorize static traces into separate clusters. By being able to
reduce the control parameters to a single factor, its application in the context of a vehicle
application offers a promising base. A tendency to form micro-clusters can be observed,
but this can be countered by combining multiple micro-clusters using εClusterSelection.

4. Discussion

Section 3 demonstrates the applications of three different approaches to clustering data.
For hierarchical clustering, the Average Linkage procedure is the best compromise

between many small clusters and a few larger ones. An advantage of hierarchical clus-
tering is the small number of required settings. Only a threshold value for the distance
to combine neighboring clusters with each other as stopping rule is required, which is
challenging to define in the context of vehicle calibration with different signals of interest
as there can be a high variety of signals. During the investigation, different approaches are
evaluated to provide an automatic procedure to help the engineer to define this stopping
rule. Comparing the Elbow Rule, the Silhouette Score, and the Clustering Gain, all measures
show disadvantages in being applied to different signals.

As result, hierarchical clustering is an easy application for different signals and is a
reliable procedure even for large datasets. However, for daily use in the context of vehicle
calibration, the required pre-evaluation of the signals is a major challenge. The evaluation
of the data characteristics exceeds the typical analysis procedures of calibration engineers
and is therefore not easy to adopt.

Using partitioning clustering with the K-Means approach shows a similar disadvan-
tage to what is observed for hierarchical clustering. As a control value, the number of
clusters to be created must be defined. Due to the wide variety of signal types and traces
within the calibration process, a standard target cannot be assigned easily.

Similar to hierarchical clustering, the high variance of signals of interest during the
calibration process leads to a necessary pre-evaluation of the data. Finding the optimal
number of clusters as a control value for the algorithm proves to be signal-dependent
and challenging.

The HDBSCAN approach is evaluated as a density-based clustering methodology.
Here, the variance of the two control parameters, minimal cluster size and minimal density,
shows that equal values can be set for both parameters.



Vehicles 2023, 5 419

Using the leaf method as a clustering algorithm shows that smaller clusters are created
in greater numbers. In contrast, the Excess of Mass methodology creates only fewer but
larger clusters. During the analysis and evaluation process, it is observed that a larger
number of smaller clusters is preferable. Here, the combination of individual clusters can
be easily performed during their visual examination. In addition, εClusterSelection is used to
define the distance between two clusters as a threshold value below which two clusters are
to be combined automatically. An iteration of this threshold can be used after a brief visual
examination to reduce the number of clusters automatically if required and if reasonable.

The HDBSCAN shows reliable results for different types of signals with different
characteristics. The combination of hierarchy-based clustering and the optimization of the
results similar to the partitioning approach proves to be the most flexible of the investigated
approaches. In contrast to pure hierarchical clustering, the distance used as a stopping rule
is not applied globally but only locally. Each combination of clusters within the hierarchy
is evaluated regarding the change in density of the clusters and their surrounding area.
As long as a combination of clusters leads to a higher separation of clusters from their
environment, the combination is performed. The stopping rule is adjusted for each branch.

The ability to consider outliers provides the advantage of not falsifying clusters by
trying to sort in all the events. Especially in emission testing, outliers can be caused by
the behavior of measurement equipment, environmental impacts, or even signal synchro-
nization. Comparing the effort of parameter identification, HDBSCAN has an acceptable
scope in the calibration process. For the most part, the evaluation of reasonable param-
eters can be performed in an iterative, automatic manner. Only a small amount of data
science knowledge and experience with the approaches is required to evaluate the resulting
cluster characteristics.

5. Conclusions

New technologies and approaches are being integrated into the vehicle development
process to reduce exhaust emissions and address climate change. The use of virtual
calibration approaches in RDE optimization and validation can offer major benefits in
terms of the safety of different scenarios and speed of testing. However, to make the most
of these approaches, the data processing and analysis itself must also be optimized.

In order to better utilize the large amount of data required for RDE testing, a method-
ology for the automatic pre-analysis of data is introduced. Using the results of previously
developed event-detection procedures [43,44], clustering algorithms are utilized to cate-
gorize and presort events. This paper discusses the fundamentals of various clustering
approaches in the vehicle calibration process.

Hierarchical, partitioning, and density-based clustering methods are evaluated. For
a sustainable implementation in the calibration process, the appropriate method must be
reliable for different signal types, have a high degree of automation, and require little
knowledge about the data and control values.

Both the hierarchical and partitioning approaches show good results in terms of
clustering when the database is well-known. However, with highly varying signal types
and unknown populations of events, neither the desired number of clusters nor a maximum
spacing of signals to form the clusters is known. Intensive manual data analyses are
required to identify the necessary control parameters. As a combination, the density-based
clustering approach shows the greatest potential.

As a density-based approach, the HDBSCAN algorithm is used. The analysis shows
that the two control parameters, minimum cluster size and minimum density, can be set to
the same value, reducing the required inputs. Combining this with the leaf method allows
for the creation of a higher number of compact clusters of a rather small size.

Clustering data with this approach can significantly reduce the manual effort required
for data analysis. As there is no need to evaluate all events, the automatic categorization of
events provides added value for the calibration engineer. The focus can be on the central
events of a cluster. In addition, having numerous events with similar signal characteristics
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simplifies a root cause analysis. Further, the impact of a single weak spot can be quanti-
fied. The quantification of the weak spots themselves provides a tool for benchmarking
calibrations of different datasets or vehicles.

While this paper presents the basic principles for identifying suitable clustering meth-
ods, further research will discuss the application of the clustering methods within the
calibration process itself. Implementation of density-based clustering in the calibration
process will allow for further validation of the methodology with additional data. For fu-
ture application, the approach can be transferred to other technologies. Events and clusters
regarding consumption optimization or thermal management and derating can be imple-
mented for electrified vehicles. For fuel cell vehicles, automated analyses regarding cold
start behavior and humidity management as well as aging behavior are feasible. Data will
be automatically accounted for so that even minor anomalies are assessed for their overall
impact, whereas the current manual approach tends to focus on high-intensity outliers.
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