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Abstract: Detecting drivers’ cognitive states poses a substantial challenge. In this context, cognitive
driving anomalies have generally been regarded as stochastic disturbances. To the best of the
author’s knowledge, existing safety studies in the realm of human Driving Anomaly Detection (DAD)
utilizing vehicle trajectories have predominantly been conducted at an aggregate level, relying on
data aggregated from multiple drivers or vehicles. However, to gain a more nuanced understanding
of driving behavior at the individual level, a more detailed and granular approach is essential.
To bridge this gap, we developed a Data Anomaly Detection (DAD) model designed to assess a
driver’s cognitive abnormal driving status at the individual level, relying solely on Basic Safety
Message (BSM) data. Our DAD model comprises both online and offline components, each of which
analyzes historical and real-time Basic Safety Messages (BSMs) sourced from connected vehicles
(CVs). The training data for the DAD model consist of historical BSMs collected from a specific CV
over the course of a month, while the testing data comprise real-time BSMs collected at the scene. By
shifting our focus from aggregate-level analysis to individual-level analysis, we believe that the DAD
model can significantly contribute to a more comprehensive comprehension of driving behavior.
Furthermore, when combined with a Conflict Identification (CIM) model, the DAD model has the
potential to enhance the effectiveness of Advanced Driver Assistance Systems (ADAS), particularly
in terms of crash avoidance capabilities. It is important to note that this paper is part of our broader
research initiative titled “Automatic Safety Diagnosis in the Connected Vehicle Environment”, which
has received funding from the Southeastern Transportation Research, Innovation, Development, and
Education Center.
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1. Introduction

The realm of driving constitutes a complex and intricately interconnected system,
where the occurrence of a crash typically arises from a malfunction within one or more
of its constituent elements. In the context of safety analysis, Haddon [1] has classified
these elements into vehicle-related factors, road-related factors, and human-related factors.
Among these factors contributing to crashes, the human element emerges as the most
prevalent, responsible for over 90% of all recorded accidents [2].

The study of driver behavior has been the subject of extensive research within the
domains of traffic simulation and vehicle control systems. Some investigations have
portrayed the driver as an optimized feedback controller, actively pursuing specific control
objectives like maintaining a safe following distance [3], planning optimal routes [4], or
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optimizing an electric vehicle’s battery energy consumption. In the energy management
system of Plug-in Hybrid Electric Busses, the anticipation of travel patterns was predicted
for various factors, including the speed and acceleration of the buses as well as the type of
road [5]. This prediction aimed to align driving behavior with the current road conditions as
accurately as possible. Furthermore, a hardware-in-the-loop (HIL) platform was established
to facilitate an energy consumption strategy that takes into account the awareness of
driving behavior [6]. Conversely, alternative research approaches have portrayed drivers
as autonomous systems, often subjected to stochastic disturbances [7-10]. Nonetheless, a
noteworthy gap persists between predictive models of driving behavior and the reality
of human drivers on the road. Human driving is fundamentally steered by the conscious
and subconscious processes of the human brain, leading to instantaneous decision making
and actions within the dynamic driving environment. While it is feasible to simulate
undisturbed human driving using optimization techniques, the modeling of disturbed or
distracted human driving, which involves inherently random processes, poses significant
challenges and remains less amenable to accurate representation.

Distracted or impaired driving behavior significantly contributes to the occurrence
of accidents as it impairs a driver’s ability to perform effectively behind the wheel. Liang
introduced a classification system for driving distractions in 2010, categorizing them into
visual distractions and cognitive distractions [11]. Visual distractions involve the driver
taking their eyes off the road, a behavior that can be observed directly. Conversely, cognitive
distractions relate to a driver’s mental state and their lack of focus on driving, which are
more difficult to detect since the signs of cognitive distraction are not readily observable
and may vary among individuals.

The Second Strategic Highway Research Program (SHRP2) Naturalistic Driving Study
(NDS) stands out as the most extensive investigation into distracted driving. This study
collected a wealth of data, including information on vehicle speed, acceleration, braking,
all aspects of vehicle controls, lane positioning, forward radar, and video footage capturing
views both in front and behind a vehicle and of the driver’s face and hands [12]. In
2020, a distracted driving experiment was carried out in Baltimore, exposing drivers to
various distractions such as hands-free calling, hand-held calling, voice commands, texting,
adjusting clothing, and eating/drinking. Notably, among these distractions, only hands-
free calling was classified as a cognitive distraction [13]. While numerous studies have
utilized the NDS data to explore visual distractions, cognitive distraction has received
relatively less attention. Quantifying the intricate relationship between a driver’s cognitive
state and observable signs of distraction remains a significant challenge [14]. It is important
to highlight that a study focusing on investigating cognitive distraction was conducted
in a controlled environment designed to simulate cannabis intoxication and impaired
driving. The findings from this study revealed that the participants showed delayed speed
reduction when they encountered changes in traffic signals [15]. Nonetheless, it is essential
to recognize that even though driving decisions are made in the heat of the moment, there
are underlying psychological factors that precede a driver’s abnormal behavior before
reaching the scene of a crash [16].

Anomaly detection is a data-mining technique employed to identify events that di-
verge from the norm and do not adhere to a predefined standard behavior [17]. When
applied to the domain of driving, it is referred to as Driving Anomaly Detection (DAD),
which aims to pinpoint instances of driving anomalies (DAs). The methods used for DAD
can be categorized based on how DAs are defined, and there are three primary approaches
in this regard.

Firstly, DAs can be defined based on common sense, identifying specific states and
behaviors that are likely to lead to accidents, such as aggressiveness, drowsiness, and
impaired driving [18]. Secondly, since most drivers typically adhere to traffic regulations,
any driving maneuver that deviates from the statistical majority is considered abnormal.
Therefore, DAs are defined as departures from the statistical norm. Thirdly, each driver
has their own unique driving pattern or style. For most drivers, accidents are infrequent
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events, and they can drive safely for extended periods. Driving is a complex behavior, and
each driver develops their own habitual way of driving safely. In this context, not adhering
to one’s established driving pattern can also be regarded as a driving anomaly [19,20].

In the context of the first definition of DAs, DAD involves the monitoring of a driver’s
physical attributes, such as via breath analysis through in-vehicle alcohol sensors and the
observation of facial and body movements using cameras and image-processing technology.
These methods, while straightforward, come with several drawbacks, including high
device costs, technical limitations, and privacy concerns [21]. Conversely, based on the
second definition of DAs, many DAD systems utilize socio-economic (SE) data such as
age, gender, and income level, among others. SE factors have been presumed to have
psychological influences on driving behavior [22] and have been statistically linked to the
occurrence of accidents. These SE methods have found widespread adoption by automobile
manufacturers and insurance companies for identifying high-risk drivers due to the ease
and cost-effectiveness of obtaining such measurements [23].

Additionally, under the second DA definition, trajectory data, which represent patterns
in driving maneuvers, have been employed. For instance, highway patrol officers monitor
vehicle trajectories to identify traffic violations. The term “aggressive driving” was used by
the National Highway Traffic Safety Administration to categorize actions that significantly
exceeded the norms of safe driving behavior. However, the challenge lay in defining
these “norms” theoretically, primarily because individual driving patterns vary greatly [24].
What constituted the norm for a cautious driver might not align with that of an assertive
driver. Consequently, in non-administrative safety research, the term “driving volatility”
replaced “driving aggression”, as it offered a more objective and measurable descriptor for
instantaneous driving decisions [25].

Within the context of driver behavior analysis, researchers have explored various pa-
rameters embedded in driving trajectories, including speed, acceleration [25], and jerks [26],
which have been identified and chosen as key performance indicators (KPIs) for quanti-
fying driving volatility. However, employing speed as a direct KPI for Driving Anomaly
Detection (DAD) has been considered simplistic, as it is influenced by contextual factors
such as speed limits [27]. One straightforward approach to addressing this was to consider
higher maximum speeds, as they are linked to drivers with a higher number of recorded
accidents [25]. Acceleration also emerged as an indicator associated with risky driving
behavior. Threshold values for abnormal acceleration were established, with 1.47 m/s?
denoting aggressive acceleration and 2.28 m/s? signifying extremely aggressive acceler-
ation [28], while [29] defined the range of 0.85 to 1.10 m/ s? as aggressive acceleration.
Nevertheless, a consensus on these values remained elusive due to their sensitivity to
contextual factors [30].

In the pursuit of a comprehensive understanding of driver behavior, researchers
have conducted investigations into how acceleration patterns changed concerning both
speed [31] and time [32]. These examinations revealed that accelerations exhibited variabil-
ity depending on a vehicle’s speed, and alterations in acceleration did not consistently align
across different directional axes. Consequently, researchers introduced a set of multivariate
Key Performance Indicators (KPIs) designed to encompass both longitudinal and lateral
accelerations within various speed ranges [33].

While rule-based methods, as exemplified by Martinez [34], offer simplicity and
efficiency, they possess inherent limitations when it comes to accommodating the diverse
driving behaviors exhibited by individuals. This prompted the widespread adoption of
DAD at the individual level, also known as agent-based DAD, as defined in the third
DA definition. The rationale behind focusing on the individual level stemmed from the
expectation of increased accuracy compared to aggregate-level approaches. For instance, if
a typically fast driver were compelled to drive at a slower pace, they might become overly
relaxed and pay less attention to driving than necessary for ensuring safety. Conversely,
drivers are generally more skilled and safer when adhering to their own established driving
patterns. In contrast, aggregate-level analysis takes an average across all drivers, potentially
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smoothing out individual characteristics. The advantage of individual-level analysis over
aggregate-level analysis also lies in its ability to be tailored and fine-tuned to match the
specific characteristics of each driver.

A driver profile refers to a group of drivers who share similar driving behaviors and
traits, while a driving pattern relates to a specific driving behavior that is consistently
observed for one or more drivers [35]. However, there has been a lack of systematic
exploration into the characteristics, insights, and added value of various methods and
analysis scales for recognizing driver profiles and driving patterns [36]. The existing
literature primarily focuses on the collective level, with only a few studies employing
adaptive fuzzy algorithms to identify driving patterns for each individual driving instance
within a trip in order to construct a composite profile for an entire trip [37]. There is a
noticeable absence of individual-level recognition for driving anomalies.

Despite its notable advantages, the utilization of vehicle trajectories for DAD at the
individual driver level has not been documented extensively in the existing literature.
One possible explanation for this scarcity could be the substantial computational power
required, which might not have been readily available. However, a more plausible reason
lies in the perceived complexity of modeling driving behavior. Driving necessitates the
coordinated functioning of four pairs of brain lobes—occipital, temporal, parietal, and
frontal—involving both conscious and subconscious cognitive processes [38]. Driving
represents a sequence of actions driven by spontaneous decisions originating from the
human brain, which continuously responds to instantaneous alterations in the surrounding
environment, including factors such as nearby vehicles, road conditions, geometry, and
weather [30]. A comprehensive study of DAD would inherently be multidisciplinary,
requiring the collaboration of experts not only in transportation and computer science but
also in fields like neurology and cognitive science [39]. Nonetheless, as a practical shortcut
to fully launching a comprehensive study, examining vehicle trajectories could serve as
an initial step. This approach involves transitioning from highway patrol officers visually
monitoring vehicle trajectories to identify traffic violations to implementing in-vehicle
computers equipped with computational models for detecting driving anomalies.

Essentially, a DAD system can be seen as a model for identifying anomalies or outliers,
a concept commonly used in data science. Outliers are data points that markedly deviate
from the majority of a set of data. In the realm of machine learning (ML) programs,
outlier detection (OD) serves as an initial step in the data-cleaning process. Interestingly,
OD has also evolved into a field of developing ML algorithms in its own right. OD
tasks typically fall under the umbrella of unsupervised ML because data often lack labels,
particularly since outliers are typically rare occurrences [40]. This absence of labels poses a
challenge in quantifying deviation through statistical and mathematical measures, leading
to significant research efforts and the development of numerous OD algorithms in various
programming languages.

Fundamentally, unsurprised OD algorithms can be categorized into several basic
types, including Angle-Based Outlier Detection (ABOD) [41], Cluster-based Local Outlier
Factor (CBLOF) [42], Histogram-based Outlier Detection (HBOS) [35], Isolation Forest [43],
and K-Nearest Neighbors (KNN) [44] algorithms. These diverse OD algorithms employ
distinct approaches to measure deviations, and the corresponding datasets vary in terms
of dimensions and features, while user interests also differ. Consequently, determining a
universally superior OD ML algorithm is challenging, and reaching a consensus is difficult.
Consequently, the selection of an appropriate algorithm becomes crucial for effective OD
processing. To enhance user convenience, packages have been developed to bundle various
OD algorithms together. For instance, the PyOD package aggregates more than forty
OD algorithms and has found widespread use in academia and industry, boasting over
10 million downloads [45]. The application domains of OD are extensive and encompass
areas such as finance (for credit card fraud detection), healthcare (for the identification of
malignant tumors) [46], astronomy (for spacecraft damage detection), cybersecurity (for
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intrusion detection) [17], and the connected vehicle (CV) environment (for signal intrusion
detection) [24].

In fact, the CV project stands out as a valuable data source for conducting OD analyses
of driving behavior. Extensive endeavors have been undertaken by both the USDOT
(United States Department of Transportation) and automotive manufacturers to drive the
development and advocacy of Connected Vehicles (CVs), and Connected and Autonomous
Vehicles (CAVs) will gradually be deployed in the coming years as the heart of ITS. The core
of the CV project revolves around the Basic Safety Message (BSM), which is alternatively
referred to as vehicle-to-everything communications (V2X) or “Here I Am” data messages.
As a CV operates on the road, it continuously generates and receives BSMs from nearby CVs
and any entities capable of communicating with BSMs. These BSMs are generated within
specialized onboard devices (OBDs) designed specifically for Connected Vehicles (CVs). In
the transmission phase, these BSMs are broadcasted through low-latency communication
devices, either operating on the dedicated 5.9 GHz spectrum at a frequency of 10 Hz [47]
or through a 5G network. Nearby CVs and roadside units (RSUs) have the capability
to receive these BSMs. The effective transmitting range of BSMs typically ranges from
300 m to 1000 m. The format of a BSM was standardized by the Society of Automotive
Engineers ]J2735, which is the Dedicated Short-Range Communications (DSRC) Message
Set Dictionary. A typical BSM contains information such as vehicle ID, epoch time, GPS
location, speed, acceleration, yaw rate, and supplementary details [47]. It is important to
note that BSMs are considered disposable and are not reused.

A notable barrier preventing the widespread acceptance of CAVs pertains to safety.
When it comes to assessing the traffic safety of a CAV, the majority of current studies
focus on quantifying driving risk using surrogate safety measures (SSMs) [48]. At the
moment, CAV safety heavily relies on the surveillance systems and motion detection
features embedded within a CAV. However, in the event of a malfunction in a CAV’s
surveillance system, safety concerns may arise. To address this safety issue, an alternative
method consists of transmitting notifications regarding potential near-crash scenarios to
drivers through an alternate communication channel. This can be effectively achieved by
analyzing the vehicle trajectories provided in BSMs within a CV environment [49].

Our research project, titled “Automated Safety Diagnosis in the CV Environment”,
was initiated with the goal of creating an individual-level near-crash warning system that
relies exclusively on Basic Safety Messages (BSMs). We define a near-crash as a conflict [49]
in which at least one of the vehicles involved exhibits abnormal driving behavior. As
shown in the conceptual architecture of our research, depicted in Figure 1, the system
comprises several components: a Driver Anomaly Detection (DAD) component, a Conflict
Identification Model (CIM) [49], a cloud subsystem, and the data pathways connecting
them. Within each Connected Vehicle (CV), the In-vehicle Computer (IVC) collects its own
historical BSMs and employs the DAD to establish thresholds that differentiate between
normal and abnormal driving behaviors. The IVC also gathers real-time BSMs from its own
vehicle and nearby CVs, utilizing the CIM to assess the presence of conflicts betweendthe
ego vehicle and other CVs as well as examining its own driving status. If an anomaly event
is detected, a notification is transmitted to the cloud. The cloud subsystem maintains a flag
list that contains information about all abnormal CVs within its region and continuously
shares this list with all CVs within the service area.

Our DAD system demonstrates adaptability by incorporating both historical BSMs
and real-time BSMs. It leverages historical BSMs to generate thresholds while using real-
time BSMs to evaluate whether the ego vehicle’s driving behavior deviates from the norm.
The adaptability of this system stems from the continuous updating of historical BSMs. The
system demonstrates its practicality by integrating into current driving warning systems an
near crash warning tool that using BSMs as exclusive data source; in contrast, the prevailing
warning tools depend on cameras and sensors. This paper provides an overview of our
DAD model. The conflict and CIM were introduced in detail in [49].
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Figure 1. The conceptual architecture of the near-crash warning system.

Some examples of this paper’s noteworthy contributions are as follows:

(a) Pioneering a method for the identification of a near-crash scenario based on TWO
specific conditions: a DA and conflict.

(b) Establishing a system to exam DAs at an individual level.

(c) Demonstrating the innovative use of the information within BSM by dividing it into
two modules: one harnessing time-related information in the DAD component and
the other making effective use of spatial attributes, particularly coordinates, within
the CIM component. This approach offers a fresh perspective on handling BSM data.

(d) Introducing an innovative systematic approach that integrates a cloud and the CV
environment for the exchange of anomaly CV lists.

The following sections are structured as follows: Section 2 provides an introduction

to the DAD methodology; Section 3 delves into the model’s evaluation; Section 4 offers a
presentation of the results and discussions; and Section 5 outlines the conclusions drawn.

2. Materials and Methods
2.1. Data Description

The data used for our study consisted of two datasets: the BSMs from the Safety Pilot
Model Deployment (SPMD) data served as our working dataset, and the BSMs from the
second Strategic Highway Research Program (SHRP2) of the Naturalistic Driving Study
(NDS) were chosen for evaluation data.

2.1.1. SPMD Data

The SPMD project was an integral component of the US Department of Transporta-
tion’s Connected Vehicle (CV) program. The SPMD dataset is accessible through the
Intelligent Transportation System (ITS) Data Hub, which can be found at its.dot.gov/data/
(accessed on 15 September 2022). For our project, we utilized working data obtained from
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the field BSM data collected during an SPMD test conducted in Ann Arbor, Michigan,
in October 2012. The BSM data were stored in a Comma-Separated Values (CSV) file,
denoted as BsmP1, which had a substantial size of 67 gigabytes and contained all the BSMs
generated by the 1527 test vehicles involved in the experiment. The original downloaded
data file included 19 attributes and encompassed over 500 million records. As part of our
data-preprocessing efforts, we filtered out irrelevant attributes, resulting in a refined data
file with 11 attributes. These attributes included DevID for vehicle identification, EpochT
for timestamp information, and attributes for latitude, longitude, accelerations, heading,
and yaw rate. One can find detailed descriptions of these attributes in Table 1. The SPMD
dataset does not include any records of incidents, and we did not discover any related
incidents elsewhere in our search.

Table 1. The selected attributes of BSM data.

Attributes’ Names Type Units Description
DevID Integer None Test vehicle ID assigned by the CV program
EpochT Integer s Epoch time, i.e., the number of seconds since
P 8 1 January 1970 Greenwich Mean Time (GMT)
Latitude Float Degrees Current latitude of the test vehicle
Longitude Float Degrees Current longitude of the test vehicle
Elevation Float m Current elevation of the test vehicle according to GPS
Speed Real m/s Test vehicle’s speed
Heading Real Degrees Test vehicle’s heading/direction
Ax Real m/s? Longitudinal acceleration
Ay Real m/s? Lateral acceleration
Az Real m/s? Vertical acceleration
Yaw rate Real Degree/s Vehicle yaw rate
R Real m Radius

2.1.2. SHRP2 Data

The Naturalistic Driving Study (NDS) conducted as part of the Second Strategic High-
way Research Program (SHRP2) is a research initiative aiming to investigate the influence
of driver performance and behavior on traffic safety. The Virginia Tech Transportation
Institute (VTTI) plays crucial roles as the technical coordinator and study design contractor
for the NDS, and it operates the InSight Data Access Website [50].

On the InSight Data Access Website, one can find a section called the Event Detail Table,
which contains a total of 41,530 records documenting various incidents of crashes and near
crashes. Each of these records is available online and includes comprehensive information
about the events. This information encompasses a video clip capturing the 25 s leading up
to an event, detailed data regarding the event itself, and a final narrative description.

From this extensive dataset, we specifically chose 46 crash events and extracted
12,500 trajectories related to both historical trips and those that resulted in crashes from
the SHRP2 (Strategic Highway Research Program 2) dataset. Notably, since crashes were
infrequent occurrences and the number of instrumented vehicles was limited, we did not
acquire any recorded crashes that occurred between these instrumented vehicles. Instead,
all the recorded crashes involved an instrumented vehicle colliding with a stationary object,
such as a tree, fence, or roadway curb.

To safeguard potentially sensitive or personally identificatory information within
the SHRP2 trajectory data, certain restrictions and privacy measures were applied. For
example, specific details like the exact GPS coordinates for crash trips, the precise timing of
events, and any data that could potentially lead to the identification of a driver were not
disclosed. The attributes of the time series data closely resemble those found in the BSM
(Basic Safety Message) data, as illustrated in Table 1.
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2.2. Methods

The DAD system is structured to allow for the utilization of recent historical BSM data
from a CV to establish thresholds. These thresholds are subsequently employed for the
purpose of identifying anomalies within real-time BSM data. The DAD process comprises
five distinct modules, each serving a specific function: Module 1—Data Preprocessing and
Key Performance Indicator (KPI) Selection; Module 2—Learning the Normal Behavior;
Module 3—Identifying Outliers; Module 4—Determining Abnormal Driving Events; and
Module 5—System Updates. These modules are depicted in Figure 2 for reference.

Module 1: Data Preprocessing (IVC)

Module 2: Learning What Is Normal (IVC)

Thresholds

Module 3: Detecting Outliers (IVC)

Module 4: Determine Abnormal Driving Event (IVC)

Abnormal Events Detected (IVC)

List of Abnormal Vehicles (Cloud)] Module 5: System Update (IVC)

Figure 2. Flowchart of the DAD model.

2.2.1. Module 1: Data Preprocessing and Selecting KPIs

The fundamental step in constructing a DAD system is gaining a deep understanding
of the characteristics of the data it operates on. In the case of BSMs, the data structure
resembles discontinuous time series (TS) data. This type of dataset falls under the category
of sequence data, where instances are linearly ordered, but it often contains numerous not-
available (NA) records. Typically, TS data comprise two main components: (a) Contextual
Attributes (CAs), such as timestamps and coordinates, which are essential for establishing
the context of each data instance, and (b) Behavioral Attributes (BAs), such as speed and
acceleration, which characterize the behavior being observed. Additionally, BSMs are
considered spatial data due to their inclusion of coordinates. When treating timestamps as
CAs and coordinates as BAs, BSMs exhibit high cardinality. Conversely, if we reverse this
perspective and consider coordinates as CAs and time as BAs, BSMs still maintain high
cardinality. Furthermore, if both time and coordinates are treated as CAs, the number of
potential contexts becomes nearly infinite.

To address this complexity and make the problem more manageable, we propose
a strategy of division and specialization, focusing on two distinct sub-problems: time-
related and space-related information. Time-related information is leveraged within the
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DAD component, while spatial attributes, specifically the coordinates, are utilized within
the Contextual Information Management (CIM) component. This approach allows us to
effectively tackle the challenges presented by the unique characteristics of BSM data.

In the process of visualizing data related to Key Performance Indicators (KPIs) over
time, we did not observe any discernible periodic patterns. Furthermore, when subjecting
the data to autocorrelation tests (ANOVA), we did not detect any indications of seasonality.

Building upon prior research that highlighted correlations between accelerations
and speed, we conducted a thorough analysis of the raw data derived from selected test
Connected Vehicles (CVs). Figure 3 illustrates our findings, indicating that the relationship
between Acceleration_Longitudinal and Speed, as well as Acceleration Lateral and Speed,
displayed a distribution that tended to cluster around a central axis. These observations
align with the conclusions drawn in previous studies conducted by Liu [33,51]. Given
that KPIs like longitudinal acceleration, lateral acceleration, longitudinal jerk, and lateral
jerk have been established to coincide with abnormal driving conditions according to
prior research [25,26,31], we opted to use speed as a contextual variable instead of time.
It is important to highlight that determining threshold values for differentiating between
normal and abnormal conditions is context-specific and lacks consensus in the existing
literature, as noted by [30]. Consequently, our approach involved treating these thresholds
as adjustable parameters rather than fixed values. This adaptation allowed us to address
the contextual variability and sensitivity associated with these threshold settings.

_longitude
Acceleration_lateral
w

Acceleration_lon

0 s 10 15 20 25
M
Speed_M/S Speed_M/S

(@) (b)

Figure 3. Scatter plots of acceleration versus speed. (a) Acceleration_ longitudinal versus speed.
(b) Acceleration_ lateral versus speed.

In addition, we have categorized the Key Performance Indicators (KPIs) into posi-
tive and negative groups. For instance, we distinguish between Acceleration—Longitudi
nal_Positive and Acceleration—Longitudinal Negative, as they correspond to distinct
driver actions, such as accelerating or braking, and may exhibit distinct patterns. Conse-
quently, we established a total of eight KPIs Accordingly.

2.2.2. Module 2: Learning What Is Normal

It would be convenient if we could leverage existing Outlier Detection (OD) algorithms.
We conducted tests on our working data using typical unsupervised OD algorithms such
as ABOD, CBLOEF, HBOS, IF, and KNN. Our objective was to obtain thresholds from these
OD algorithms that could subsequently be applied in the following modules. The results of
these tests are presented in Table 2 and Figure 4.

The OD machine learning algorithms generated outlier counts, which amounted to
approximately 5 percent of the total instances. This outcome was achieved by setting the
“outlers_fraction” parameter to 0.05 during the testing process. However, for the subsequent
modules of our DAD system, we required thresholds that possessed meaningful physical
interpretations. Regrettably, none of these OD methods proved suitable for our DAD, as
their threshold outputs did not align with our specific requirements.
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Table 2. Output of selected existing OD algorithms.

Algorithm Total

Outliers Threshold
Name Instances
Longitudinal L;ngltudmal Lateral Lateral Percentage Longitudinal Lateral
ercentage

1 ABOD 3,166,950 0 0 nan nan 0 0
2 CBLOF  3,166950 158,345 158,344 ~0.11175434977913001 ~0.10919071757369557 158,345 158,344
3 HBOS 3,166,950 153,140 135,949 ~1.9078634333717992 0.2580508062387792 153,140 135,949
4 IF 3,166,950 158,348 158,335 —2.0801210125544493 x 10~ 0.0 158,348 158,335
5  KNN 3,166,950 142,490 142,490 0.0001503609022556196 0.000505561180569658 142,490 142,490

In order to establish thresholds that were contextually relevant and aligned with the
specific requirements of our Data Anomaly Detection (DAD) system, we first had to define
“what is normal.” Previous research has indicated that driving patterns exhibit variations
with changing speeds [33,51].

To address this, we organized the data into speed bins, each with a width of 1 mph, and
grouped instances accordingly. For each speed bin, we computed the mean and standard
deviations for each Key Performance Indicator (KPI). Consequently, we assembled a profile
of what constitutes normal behavior for an individual vehicle. This profile is crucial
information that needs to be extracted from historical BSMs, as detailed in Table 3.

Table 3. Data panel extracted from BSMs of an individual vehicle (partial).
Speed Bin 5 6 7 8
KPI Measure
Acceleration—longitudinal possitive Mean 1.192235 1.337538 1.32516 1.398614
& P Std 0.806321 0.839056 0.804345 0.804976
Acceleration—longitudinal_negative Mean ~1.04187 —1.14423 —1.1853 ~1.20188
- Std 0.753567 0.74688 0.771699 0.786363
Acceleration—lateral possitive Mean 0.069047 0.085095 0.096859 0.120503
-P Std 0.431809 0.085005 0.096859 0.120503
Acceleration—laterall nesative Mean —0.02688 ~0.03648 ~0.05113 ~0.06153
1 Std 0.040362 0.07236 0.132858 0.170901
Jerk_longitudinal_possitive Mean 0.824624 0.802729 0.692773 0.62276
& P Std 0.696375 0.680028 0.612652 0.605413
Jerklongitudinal_negative Mean —0.42201 —0.46223 ~0.39244 —0.40045
& 1e8 Std 0.433433 0.487027 0.401976 0.395484
Jerklateral_possitive Mean 0.035219 0.050722 0.043935 0.054583
P Std 0.286576 0.237766 0.083867 0.110184
erk _lateral_negative Mean —0.05251 —0.03598 —0.04478 —0.05237
18 Std 0.582464 0.064078 0.084626 0.126077
(1) ABOD ; Angle-based Outlier Detector (ABOD) - Angle-based Outlier Detector (ABOD)
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(5) KNN

K Nearest Neighbors (KNN) K Nearest Neighbors (KNN)

Figure 4. The output plots of selected OD ML algorithms (Red dots represent threshold boundary;
Black dots represent outliers).

2.2.3. Module 3: Detecting Outliers

Outliers or anomalies are data points that do not conform to the conditions established
for what is considered normal in Module 2. We assume that the BSMs follow a normal
distribution, where data falling within the 95% probability region are categorized as normal,
while the remaining 5% are designated as outliers. In statistical terms, the 95% cutoff
value corresponds to the condition of being two times the standard deviation away from
the mean.

However, a valid question arises regarding our assumption: are the KPIs truly nor-
mally distributed? The answer is no, but there is a reasonably close approximation. For
instance, when examining the longitudinal acceleration of ID 6010, it is evident that it does
not strictly adhere to a normal distribution, but it does approximate one closely, as shown
in Figure 5. The sample data roughly conforms to a normal distribution, but there are
deviations at both extremes, which are guided with doted lines. Some researchers have
suggested that it can be simulated using a Negative Binomial distribution [33]. Never-
theless, we have opted for an approximation of the normal distribution because we are
addressing an engineering problem. Our primary concern is whether a vehicle has the
potential to cause a crash, and we can rely on engineering solutions to address complex
mathematical challenges. This philosophy aligns with our approach of handling the impact
of coordinates (environmental factors) by deferring them to the CIM component.

2.2.4. Module 4: Determine Abnormal Driving Event

In our assessments of Module 3, we observed the detection of numerous outliers,
ranging from a few to thousands, depending on the driver and the duration of a trip
file. This raised concerns about the potential for frequent alarms, which could irritate
a driver. While a single outlier might not necessarily indicate abnormal driving status,
the presence of multiple outliers occurring within a short time frame indeed signifies an
anomaly. Consequently, we introduced Module 4 into our DAD model to mitigate the
occurrence of false alarms. Given the absence of a labeled dataset, we turned to sensitivity
analysis (SA) to fine-tune the model parameters. SA is a commonly used tool in model
development that aids the determination of appropriate parameter values by observing
how a dynamic model responds to various parameter settings. For the SA process, we
established the following criteria: An abnormal event, capable of triggering an alarm for a
abnormal driving event will be deemed valid if any of the following conditions are met:
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(1) The number of KPIs identified as outliers in the same second is larger or equal to Ny.
(2) Within N, more than one KPI is identified as an outlier in a row,

where

Ny—the number of KPIs identified as outliers in the same second;
Ns—the number of successive seconds.

As we are interested in how the model would respond to how to define the in liners
and how many days of historical BSMs need to be kept, the Ny;; and N; were also included
as a testing parameter, where:

Ngtg—the number of times of standard deviation away from the mean to calculate the thresholds;
Ny—the number of days prior to the crash to calculate the threshold.

In our model, we work with a total of 8§ Key Performance Indicators (KPIs), namely,
acceleration—longitudinal, acceleration—Ilateral, jerk—longitudinal, and jerk—lateral.
Each of these KPIs has both positive and negative counterparts. Sensitivity 1 in Figure 6
illustrates how the system responds to a step increase in N, (the number of vehicle in-
stances). When N, is set to 1 or 2, we can observe that more than 15% of the trip seconds’
instances are identified as alarms, resulting in an excessive number of alarms. This is not
practical. Moreover, detailed data records indicate that in many cases, both acceleration
and jerk in the same direction are identified as outliers simultaneously, suggesting a degree
of correlation between these pairs. Consequently, we ruled out values 1 and 2. When
Ny exceeds 3, the curve becomes relatively flat, signifying that the number of identified
abnormal cases is very similar. Therefore, we settled on N, being equal to 3.

10

Sample Quantiles
0
1

-10
1

Standard Normal Quantiles

Figure 5. Q-Q plot of longitudinal acceleration of a sample vehicle.

Sensitivity 2 in Figure 6 demonstrates the system’s response to a step increase in
N; (the duration of the trip in seconds). We selected a value of 10 s for N; because this is
where the curve exhibits a noticeable change in slope and the ratio value approaches 5%.

Sensitivity 3 in Figure 6 reveals the system’s response to a step increase in Ny (the
standard deviation multiplier). Notably, the values of 2 and 2.5 do not induce significant
changes in the system’s response.

Moreover, Sensitivity 4 in Figure 6 indicates that after the value of 2.25, no alarms
(Zeros %) are generated for the testing file. This contradicts the purpose of the model, which
is to detect abnormalities related to potential crashes. Consequently, we opted for a value
of 2 for Ny as it is widely used and the difference between 2 and 2.25 is not substantial.
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Figure 6. Sensitivity analysis.

Sensitivity 5 in Figure 6 showcases the system’s response to a step increase in N; (the
number of days for calculating thresholds). We assumed that the DAD employs batch mode
for threshold calculation. The curve exhibits variations within a narrow range, indicating
that the system is not highly sensitive to changes in N;. We chose 30 days because this
period allows for the identification of the most anomaly events. In practice, determining
this parameter is more appropriate for considering the number of vehicles covered by a
cloud and a server’s computational capacity. Additionally, it is important to note that
auto-tuning is expected to replace the batch mode in the future, rendering this parameter
obsolete. The results of the sensitivity analysis are summarized in Table 4.

Table 4. Parameter settings for sensitivity analysis.

Parameter Test Value Initial Value Determined Value
Ny 1,2,3,4,5,6,7,8 2 3
Ns 3,5,10, 15, 20, 30 5 10
I\ 2,2.25,2.5,2.75,3 2 2
Ny 15, 30, 45, 60 30 30

2.2.5. Module 5: System Updating

As previously mentioned, the system operates in an adaptive manner. Periodically,
the system will perform a batch mode update for all the thresholds. The specific cycling
time for these updates needs to be determined based on local conditions. Once the BSMs
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for the next cycle have been collected, the procedures outlined earlier will be repeated, and
the thresholds will undergo an update accordingly.

3. Model Evaluation

Our DAD system was built on the assumption that when a CV is in an abnormal state,
its trajectory will manifest a higher number of outliers compared to when it is in a normal
state. We established the outlier factor at 95%, indicating that in normal driving conditions,
outliers would constitute up to 5% of the data. To operationalize this, we derived the
threshold criteria for what is considered normal from the historical BSMs of a specific CV
and then applied these thresholds to real-time BSMs from the same CV.

To verify the validity of the DAD system, we designed the following test: We selected
42 accident trip files from the SHRP2 data and tested them using the thresholds calculated
based on each individual’s historical trajectories. If the number of detected anomaly
cases exceeded 5%, the DAD model would be validated. The test results revealed that
all 42 drivers exhibited more than 5% abnormal instances during the accident trips. This
outcome provides strong evidence of the DAD model’s validity, as illustrated in Figure 7.

1.2

1
0.8
0.6
04

0.2

Abnormals/Trip Duration(sce)

0005 *lll

I l
5

Figure 7. Evaluation of the DAD model.
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4. Discussion

Our development of the DAD system followed a series of standard TS analysis ap-
proaches, none of which revealed any discernible periodic patterns. This outcome was
not surprising given the complexity of driving behavior, as most TS data in this context
typically lack periodicity. Furthermore, our attempts to employ existing OD algorithms
proved fruitless, as none of them were suitable for our specific requirements.

In response to these challenges, we embarked on creating the DAD system from the
ground up, drawing upon insights from previous research. Our first significant contribution
was the definition of a near-crash scenario, which we characterized as when at least one of
the vehicles involved is in an abnormal driving state and a conflict is imminent.

While we assumed that the KPIs followed a normal distribution, it is worth noting
that, strictly speaking, they do not adhere to this distribution. However, we considered
this a reasonable relaxation because our primary objective was to determine whether the
KPI values fell within the abnormal range. Once an anomaly was identified, our focus was
on capturing it rather than predicting it using complex mathematical models. Another
objective of this study was to explore methods for the reuse of BSMs. Traditionally, BSMs
have been regarded as disposable data. However, with the widespread deployment of CVs,
the sheer volume of BSMs generated can become overwhelming, making it impractical to
store them all despite their valuable information. Nonetheless, it is feasible to extract and
retain valuable information from BSMs. In line with this, we suggest utilizing the threshold
criteria established for what is considered normal for an individual CV, which were derived
as a result of Module 2 in the DAD system.
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There are several limitations that provide avenues for future improvement in this
study. Firstly, human behavior is intricate, and attempting to determine behavior status
solely based on a vehicle’s footprint can pose a substantial challenge. In future research, it
is imperative to involve cognitive science to enhance the robustness of the model. Secondly,
although we conducted ANOVA tests and did not identify any statistical correlations
among the KPIs, it is worth exploring further the potential correlations that might exist
among these KPIs. Lastly, auto-tuning should have been implemented in Module 5 of
our DAD; however, we opted not to employ auto-tuning in this context primarily due to
constraints related to data availability. It is worth noting that detecting changes in driving
habits often necessitates a more extended observation period than the one-month duration
we had at our disposal.

5. Conclusions

In this paper, we share our experience in developing a Data Anomaly Detection
(DAD) model designed to assess a driver’s abnormal driving status at the individual
level, relying solely on Basic Safety Message (BSM) data. This represents a shift from the
traditional method of highway patrol officers visually inspecting vehicle trajectories to
identify traffic violations to a more automated approach where in-vehicle computers utilize
computational models to flag driving anomalies. Given the complexity of human driving
behavior, analyzing vehicle footprints can serve as an effective shortcut in this endeavor.

The main contribution of this paper lies in its pioneering approach to identifying near-
crash scenarios on two specific conditions: Driving Anomalies (DAs) and conflicts. The
paper establishes a system for scrutinizing driving anomalies at the individual level and
demonstrates an effective methodology for handling intricate data such as BSMs. Instead
of embarking on the development of intricate models to manage every attribute within a
dataset, our approach involves the categorization of data attributes into two distinct groups:
time-related and space-related. Subsequently, these attribute categories are addressed at
separate stages, utilizing dedicated models, namely, the DAD and conflict identification
model (CIM) modules.

It is worth emphasizing that our DAD system represents a preliminary exploration
and merely scratches the surface of its potential. Creating a comprehensive DAD system
of this nature could conceivably demand several years of work conducted by a team of
data engineers to achieve full realization. We anticipate that our research will generate
a systematic impact by reducing false traffic safety alarms, subsequently leading to a
decrease in the occurrence of crashes and their associated effects on traffic congestion.
Through this paper, our objective is to attract the attention of scholars and transportation
professionals to the potential of DAD using the analysis of BSMs within the Connected
Vehicle (CV) environment.
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