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Abstract: The Born probability measure describes the statistics of measurements in which observers
self-locate themselves in some region of reality. In ψ-ontic quantum theories, reality is directly
represented by the wavefunction. We show that quantum probabilities may be identified using
fractions of a universal multiple-time wavefunction containing both causal and retrocausal temporal
parts. This wavefunction is defined in an appropriately generalized history space on the Keldysh
time contour. Our deterministic formulation of quantum mechanics replaces the initial condition
of standard Schrödinger dynamics, with a network of ‘fixed points’ defining quantum histories on
the contour. The Born measure is derived by summing up the wavefunction along these histories.
We then apply the same technique to the derivation of the statistics of measurements with pre-
and postselection.
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1. Introduction

Textbook formulations of quantum mechanics contain the following:

(a) An ontological postulate—The state of a physical system is represented by a wavefunc-
tion |Ψ〉;

(b) A dynamical postulate—The state evolves deterministically according to the time-
dependent Schrödinger equation (TDSE);

(c) A composition postulate—The state space of a composite system is the tensor product
of the spaces of its subsystems;

(d) A statistical postulate—The probability of each measurement outcome is given by the
Born measure.

Perhaps the main obstacles to understanding quantum theory lie in explaining the
appearance of the probabilistic element in postulate (d) [1] and deriving the mathemati-
cal form of the Born rule. In ψ-ontic quantum theories, the universal wavefunction is in
direct correspondence with physical reality [2–4]. There have been several attempts to
derive and/or explain (d) from postulates (a–c) within a ψ-ontic framework [5–9], with no
reference to the physical ‘collapse’ of wavepackets, to thereby solve the hard part of the
measurement problem. Some derive the Born measure by placing ‘rationality’ constraints
on the beliefs of observers [5,8], but such theories have it backwards—rational beliefs do
not determine regularities in nature. Rather, the structure of nature grounds measurement
statistics and, therefore, determines what is rational to believe. Other derivations use sym-
metry arguments [6,7,9], but these rely on auxiliary formal assumptions and a separation of
the quantum state into the system plus the environment. Also, these approaches are based
upon vigorously-debated concepts of probability, rather than the ontology of the physical
theory itself. A new perspective on the problem of probability in quantum mechanics is
sorely needed.

The concept of the probability of self-location avoids the need for randomness in
quantum mechanics and enables the assignment of probabilities to branches of the wave-
function without recourse to genuine randomness in nature [9–11]. However, in the present
work we go further: since the self-location of an observer is carried out with respect to the
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wavefunction itself, the probability of being located in a region of the wavefunction should
be literally equated with its relative proportion of the total wavefunction and, therefore,
grounded in physical ontology alone, i.e., the probability measure must therefore emerge from
the internal structure of the wavefunction itself. This invites a ψ-ontic explanation of the
appearance of chance in quantum mechanics: an observer is localized to a region of the
wavefunction that is consistent with experiments. The Born rule quantifies the relative
amount of reality, or the‚ ‘measure of existence’, of that region [11,12].

The problem with treating time quantum mechanically is an apparently unrelated
foundational question, which, however, has recently attracted a great deal of attention.
In particular, time appears as a background parameter in postulate (b), but this way of
representing time is at odds with the geometric notion of time in general relativity [13,14].
Proposals for measurements of quantum time generally focus on the theoretical absolute
time of a quantum state and the introduction of a background ‘quantum clock’ degree of
freedom to measure ‘arrival times’ of particles at a detector arising from entanglement
between subsystems [15–17]. Traditionally, the problem of defining time in quantum me-
chanics is presented as the problem of defining an Hermitian operator with monotonically
increasing eigenvalues for a system with Hamiltonian bounded from below [18]. It can
be shown that such an operator always leads to finite amplitudes for the reverse-time
process [19].

Far from being a hindrance to the description of quantum time, however, we may
elevate reverse-time causal processes to a central feature of the theory implicit in the unitary
evolution of states with complex amplitudes. In 1964 [20], Aharonov et al. published the
time-symmetric two-state vector formalism (TSVF) [21,22], describing the probabilities of
measurements sandwiched between pre- and postselections with the Aharonov–Bergmann–
Lebowitz (ABL) rule. The TSVF was later generalized to a multiple-time formalism, as-
signing a Hilbert space Ht and its conjugate space H†

t (for backwards-directed states) to
each instant of time, i.e., the composition postulate (c) was applied to treat time instants
as distinct quantum subsystems [23,24]. The wavefunction is then a global time-extended
structure composed of temporal parts [25]. It was recently shown that this assignment
of two Hilbert spaces to each moment in time is necessary to capture all the correla-
tions in the quantum dynamical evolution of a particle with an equivalent multipartite
state [26]. The experimental success of the TSVF [27–29], various explicitly time-symmetric
formulations [30–35] and recent demonstrations of indefinite causal ordering [36–39] all
provide evidence for a more complex causal structure in nature than a single background
time parameter can offer.

By coincidence, the year 1964 saw publication of another time-symmetric formalism by
Keldysh [40]. The resulting Nonequilibrium Green’s function (NEGF) theory describes the
propagation of correlation functions along a time contour C composed of both forwards ( f )
and backwards (b) time branches [41,42]. Keldysh-based methods have been successfully
applied to a vast range of physical problems in fields as diverse as inflationary cosmology,
molecular electronics, quantum thermodynamics and photovoltaics [42–49]. Note that this
contour time structure itself does not logically presuppose the Born measure, although
propagating statistical averages on this contour is equivalent to weighting them with
Born probabilities.

In this paper we take advantage of this logical equivalence, showing that the derivation
of the Born measure is possible from unitary dynamics and wavefunction structure alone,
given a wavefunction-based definition of probability. We incorporate the full Keldysh
causal structure of quantum mechanics within the universal wavefunction and model
temporally local events in terms of ‘fixed point’ boundary conditions. We therefore refer to
this version of quantum mechanics as the fixed point formulation (FPF). We then introduce
a statistical postulate based on our probability definition and derive the correct probability
measure from ontological and dynamical postulates, describing unitary evolution in Hilbert
space without random collapse. Thus, we reduce the number of independent postulates in
the quantum theory—the Born measure follows from ontology, composition and dynamics.
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2. The Universal Wavefunction
2.1. General Considerations

We wish to focus on the global temporal structure of wavefunctions composed of both
macroscopic and microscopic parts, without approximation or tracing out environmental
degrees of freedom. Such a wavefunction represents the observer, the system being ob-
served and the environment in a typical quantum experiment, and it is in this sense that
we refer to it as ‘universal’. We start from a strong ψ-ontic standpoint, with the following
conceptual desiderata:

Completeness:The wavefunction is all that exists—it contains all physical properties
of nature at all moments in time;
Measurement Physicality: Measurements are physical processes occurring within
temporal regions of the universal wavefunction;
Event Symmetry: The local description of nature is independent of event location.
There are no ontologically privileged spacetime points;
Self-Location: Temporal boundary constraints provide the only information an ob-
server can use to locate themselves within the wavefunction.

The concept of probability developed here utilizes the principle of Self-Location.

Definition 1. (Quantum probability)
In a temporal region of the wavefunction defined by some set of constraints, process A has

probability p(A) = x if and only if A occurs in a fraction x of the total available wavefunction.

Given said constraints, an observer should set their subjective degree of belief that
they are located in a region of reality where A occurs corresponding to the fraction of reality,
i.e., to the quantum probability. This approach is logically minimal, physically maximal—it
grounds the mathematical theory of probability in physical ontology. A proponent of
Completeness must then answer the question:

Which structural feature of the wavefunction implies the Born measure?
To begin to answer this, we observe that recent works in quantum cosmology which

describe physical systems with sequences of time-indexed properties (described by projec-
tion operators) or ‘histories’ [50,51]. Given a time ordering of Nt times at which physical
properties are instantiated, tNt > tNt−1 > . . . > t1, reality can be described by a ‘universal’
wavefunction |ΨU〉 specifying the full set of histories defined on these times. In the histories
formalism, each value of the time ti labels a distinct subspace Hti of the history Hilbert
space [52,53]:

HH ≡ HtNt
⊗ . . .⊗Ht1 (1)

In this space, history states can be viewed as ’records’ of all the different stages in a
quantum process, indexed by time. Thus, the states at distinct times enter the wavefunction
in an atemporal fashion suited to a block universe point of view.

Parallel to the consistent histories approach, products of time-localized Hilbert spaces fea-
ture in the time-symmetric approach to quantum mechanics, pioneered by Aharonov et al. [20].
This approach, which became the two state vector formalism (TSVF) [21] and its multi-
ple time generalizations [24,26], treats quantum measurements which include dynamical
boundary conditions on past and future times symmetrically.

This is useful in the description of a system defined at time t occurring between
preselection and postselection measurements at the times t1 and t2, respectively. The
preselected state |ψ(t1)〉 then travels forwards in time across the interval [t1, t] in accordance
with the TDSE, and the postselected state is represented by a vector in the conjugate space
〈φ(t2)| which propagates backwards across the time interval [t, t2]. The two oppositely
orientated parts of the system can then be combined into a single ‘two state vector’:

〈φ(t2)| ⊗ |ψ(t1)〉, (2)
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which exists in the composite Hilbert space constructed from distinct time-localized ‘uni-
verses’ existing at single times [26]:

H†
t2
⊗Ht1 (3)

States in this Hilbert space are fundamentally (i) time non-local objects and (ii) built
out of parts with opposite time orientations, which immediately suggests that this is a
promising avenue to explore for the development of a quantum theory of events. On this
account, the solution to the apparent asymmetry under time reversal in quantum mechanics
is to revise the notion of a quantum state itself to include two time degrees of freedom.

According to the TSVF, to obtain the probability of measuring the system in some state
|ai〉 at the intermediate time t ∈ [t1, t2], the system is propagated in both time directions,
from t1 → t and t2 → t, such that the amplitude of the i-th outcome is given by sandwiching
this state between the forwards and backwards-oriented parts of Equation (2):

〈φ(t2)|U(t2, t)|ai〉〈ai|U(t, t1)|ψ(t1)〉 (4)

Then, assuming the Born rule, the normalized modulus-square of this yields the
probability to obtain outcome ai:

Pai =
|〈φ(t2)|U(t2, t)|ai〉〈ai|U(t, t1)|ψ(t1)〉|2

∑
k
|〈φ(t2)|U(t2, t)|ak〉〈ak|U(t, t1)|ψ(t1)〉|2

(5)

This is the ABL probability rule. In the quantum theory, it thus appears that the
past and future affect each other symmetrically [28]. However the TSVF relies upon a
wavefunction with temporal parts whose behavior depends on time position. Specifically,
the preselected state at t1 is a source of physical processes occurring between t1 and t, and
the postselected state at t2 is a source for processes connecting t2 to t. However, the state
at time t serves as a unique sink for both types of processes. Clearly, this is a violation of
Event Symmetry—if, given two connected points in time, one is a source and the other a
sink, and the dynamics are allowed to be time symmetric, it must follow that both points
are sources and both are sinks for all time regions they are connected to.

2.2. The Universal Wavefunction on the Keldysh Contour

A wavefunction-based theory must contain a representation of the temporal processes
occurring in field theories defined on an appropriate time domain. For systems consisting
of particles obeying fermionic or bosonic statistics, that is, carried out using the NEGF
formalism, which is used to evaluate time-dependent expectation values of quantum
observables, O(t2) propagated from some initial time t1:

O(t2) = Tr
[
ρ1U(t1, t2)Ô(t2)U(t2, t1)

]
, (6)

where ρ1 is the density matrix at t1 and U(t2, t1) is the unitary evolution between times t1
and t2. The expression in Equation (6) can be evaluated via two separate propagations, the
first running forwards in time from t1 to t2, at which the operator Ô acts, before the system
is propagated backwards from t2 to t1. This can be visualized in terms of propagation along
the Keldysh time contour shown in Figure 1. The Keldysh contour consists of an ‘upper’
branch C f of times t f on which the wavefunction travels in the forwards direction, and a
‘lower’ branch Cb of times tb on which the dynamics is reversed.

We propose a similar physical state space toHH , with the caveat that temporal degrees
of freedom take values on both branches of the Keldysh time contour. Thus, given an
ordering of Nt times tNt > tNt−1 > . . . > t1, there are two corresponding causal orderings,
one on each branch of C ≡ Cb ⊕ C f :
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t f
Nt

>C t f
Nt−1 >C . . . >C t f

1 (7)

tb
Nt

<C tb
Nt−1 <C . . . <C tb

1 (8)

where the contour-ordering notation >C, <C is introduced as in Ref. [41]. This is the main
innovation of the Keldysh contour: ordering in time is distinct from causal ordering, since
causal influences propagate in the antichronological direction on the lower branch Cb.

Figure 1. The Keldysh time contour on the time interval [t1, t2].

Each of the Nt times in a history possesses two associated Hilbert spaces for the f and
b components. Hence, the universal wavefunction has 2Nt temporal degrees of freedom
and is a member of the contour Hilbert space:

HC = Hb
tNt
⊗H f

tNt
⊗ . . .⊗Hb

t1
⊗H f

t1
(9)

A wavefunction in this space is not defined at a single fixed ‘present’, but at a sequence
of moments with oppositely oriented temporal parts acting as ‘source’ or ‘sink’ states for
processes on the branches C f and Cb.

We make a corresponding first postulate:
Ontological postulate
The universal wavefunction |ΨU〉 ∈ HC is a ‘stack’ of 2Nt temporal parts with fixed ordering

on C, dividing time into 2(Nt − 1) separate regions:

|ΨU〉 =
Nt⊗

i=1

∣∣∣Ψb
(

tb
i

)〉
⊗
∣∣∣Ψ f

(
t f
i

)〉
(10)

Here,
∣∣Ψα

(
tα
i
)〉

is restricted to the Cα time branch, and, in general,
∣∣∣Ψ f

(
t f
i

)〉
6=∣∣∣Ψb

(
tb
i

)〉
. The inner product is defined on the Hilbert spaceHα

ti
in the usual way, such that

〈ΨU |ΨU〉 = 1, which implies
〈
Ψα
(
tα
i
)∣∣Ψα

(
tα
i
)〉

= 1 for any α. Oppositely-oriented parts of
the wavefunction are connected independently on C f and Cb. We note that Equation (10)
can be generalized to contain a summation over all possible tensor products of time-
localized states and thereby represent all multiple-time processes on the Keldysh contour,
but, for the purposes of the present work, we focus on the case of fixed sequence size Nt,
following the histories formulation [50]. We now introduce the second core postulate:

Dynamical postulate
The time derivative of the wavefunction at each point on C is given by the TDSE:

ih̄∂tα |Ψα(tα)〉 = Hα(tα)|Ψα(tα)〉 (11)

Note that in every case of physical interest the Hamiltonian operator is branch-
independent, i.e., it takes on values on the upper/lower branches which are equal for
the same physical time, Hb

(
tb
)
= H f

(
t f
)

. For simplicity, indices on time arguments are
dropped, |Ψα(tα)〉 ≡ |Ψα(t)〉.
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The TDSE in Equation (11) defines a unitary mapping Uα(t2, t1) : Hα
t1
7→ Hα

t2
between

the Hilbert spaces of different times on a single branch |Ψα(t2)〉 = Uα(t2, t1)|Ψα(t1)〉, where
Uα(t2, t1) ≡ Uα

(
tα
2 , tα

1
)

has the form [41]

Uα(t2, t1) = T̂C exp
[
− i

h̄

∫ tα
2

tα
1

dτHα(τ)

]
(12)

and T̂C orders operators chronologically (latest to the left) on C f and anti-chronologically
on Cb.

3. One Fixed Point

A sequence of events in time corresponds to a sequence of time-indexed projectors
in the consistent histories language, and we now construct a model of an event on the
Keldysh contour suitable for combination into similar history sequences.

We may isolate temporal parts of |ΨU〉 from the main tensor product of Equation (10).
A fixed point has identical parts on the two contour branches, corresponding to a ‘turning
point’ on the Keldysh contour at time t1, i.e., to a point at which the time propagation along
C switches from the upper to the lower branch [41]:

Definition 2. (Fixed Point)
A fixed point at time t is a temporal part of the wavefunction in theHb

t ⊗H
f
t subspace, with

equal f and b parts.

Given a specification (via a preparation measurement or theoretical description) of
the state |ψ〉 of a system at some time t1, all quantum histories in |ΨU〉 consistent with this
specification are constrained, regardless of the contour branch. As such, there is a fixed
point state at t1, which is denoted:

JψKt1
≡
∣∣∣ψb(t1)

〉
⊗
∣∣∣ψ f (t1)

〉
(13)

This corresponds to an event in which the state is specified with definite properties at
t1 (or a time-indexed projection, in the consistent histories language). We note that in the
context of the TSVF, the existence of a new boundary condition at each measurement event
was explicitly denied in Ref. [22], but in fact such boundary conditions are necessary for a
full specification of the quantum state at all times.

We may think of the ‘present’ time t as ‘pinched’ in between the upper-branch and
lower-branch times t f , tb. The fixed point state connects to other points on C in both
time directions, in accordance with Equation (11). It is represented on C in Figure 2: the
forward-directed part of the fixed point defined at t travels to times occurring ‘later’ than
t f on C f , and the backward-directed part travels to times occurring ‘later’ than tb on Cb.
Each fixed point is connected to four temporal regions: it acts as a ‘source’ of wavefunction
in both time directions (the thick black arrows on Figure 2), and a ‘sink’ for parts of the
wavefunction propagating from times lying ‘earlier’ on C (dashed lines on Figure 2). Thus,
for a full description of a measurement connecting times across the region [t1, t2], at least
two fixed points are required, i.e., Nt ≥ 2 in Equation (10). A quantum history sequence is
defined in these terms:

Figure 2. A single fixed point on the Keldysh contour.
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Definition 3. (Quantum history)
A quantum history |hk〉 extending across the time range [t1, t2] is a product state constructed

from a sequence k = 〈k1, . . . , kNt〉 of Nt ≥ 2 fixed points:

|hk〉 =
Nt⊗

i=1

q
ψki

y
ti

(14)

connected by unitary mappings and bounded by fixed points at t1 and t2.

In Equation (14), each ki in a history |hk〉 ranges over a complete basis set spanning
Hα

ti
. To allow us to apply the usual rules of probabilistic reasoning to quantum histories,

we define a family of quantum histories FH by imposing the consistency condition that any
pair of histories in a family {|hk〉}must be non-overlapping:

〈hl |hk〉 = δkl, (15)

where k 6= l if
q

ψki

y
ti
6=

q
ψli

y
ti

for at least one value of i ∈ [1, . . . , Nt]. Each set of quantum
histories provides distinct but complementary descriptions of the system over time, which
may or may not correspond to measurement events. Note that the consistency condition
Equation (15) prevents the overlap of histories composed of different numbers of times Nt.

Now, following the terminology of Vaidman [12], the measure of existence of a history
may be defined as the relative size of the wavefunction region occupied by that history.

Definition 4. (Measure of existence)
The measure of existence m(hk) of a quantum history |hk〉 containing Nt fixed points in the

time range [t1, t2] is the ratio of the integral of the wavefunction4Ψk along this history, to that of
all histories:

m(hk) =
4Ψk

∑
k′
4Ψk’

(16)

in a family FH consistent with the fixed point boundary conditions at t1 and t2.

Fixed point boundary conditions are imposed by taking the inner product of the inte-
grated wavefunction with the ‘sink’ state defined at the upper limits of the 2(Nt − 1) segment
integrals. Definition 4 gives precise meaning to the fraction of wavefunction connecting
distinct events and, therefore (by Definition 1), a precise foundation for quantum probability:

Statistical postulate (Vaidman rule):
The quantum probability of a quantum history is equal to its measure of existence in the

universal wavefunction.
Note that no explicit formula has been assumed for the measure of existence. The

Vaidman rule is a conceptual postulate about the physical foundation of measurement
statistics. It remains to be proven that this postulate implies the correct mathematical
formalism in the case of a quantum measurement.

4. The Born Measure

By Measurement Physicality and Self-Location, the physical process of an experi-
ment occurs within a region of |ΨU〉 subject to the boundary constraints determined by the
preparation. The measure of existence is now evaluated for the simplest type of quantum
history—a two-time measurement—with Nt = 2.

Consider a measurement of |φ(t2)〉 following a preparation of the state |ψ(t1)〉. With-
out loss of generality, the prepared and measured states are taken to be members of
complete bases |ψ〉 = |ψ1〉 ∈ {|ψi〉}, |φ〉 = |φ1〉 ∈ {|φi〉}. The measurement then defines a
family of histories:

FH :
{

JφiKt2

}
⊗ JψKt1

(17)
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whose measure of existence in |ΨU〉 can be evaluated.
The ‘source’ term in this measurement process is the following state constructed from

two fixed points (using the notation from Equation (13)):

Ψ
(

tb
2, t f

2 , tb
1, t f

1

)
= JφKt2

⊗ JψKt1
(18)

The total change in this wavefunction across the time interval t ∈ [t1, t2] is computed
by ‘filling in’ the Keldysh contour branches connecting the two fixed points. The exact
differential of the wavefunction in Equation (18) constrained to this region is as follows:

dΨ =
∂Ψ
(

tb
2, t f

2 , tb
1, t f

1

)
∂t f

1

dt f
1 +

∂Ψ
(

tb
2, t f

2 , tb
1, t f

1

)
∂tb

2
dtb

2 (19)

i.e., one may consider time integrations in both the forwards direction originating at t f
1 and

in the backwards direction from tb
2. The total change in wavefunction is computed from the

line integral along C, taking the path
(

t f
1 , tb

2

)
→
(

t f
2 , tb

2

)
→
(

t f
2 , tb

1

)
:

DΨ =
∫ t f

2

t f
1

∂Ψ
(

tb
2, t f

2 , tb
1, x
)

∂x
dx +

∫ tb
1

tb
2

∂Ψ
(

y, t f
2 , tb

1, t f
2

)
∂y

dy (20)

Applying the branch TDSE in Equation (11) to the independent degrees of freedom in
Equation (18) and allowing for cancellations, this becomes the following:

DΨ =
(

Ub
(

tb
1, tb

2

)
U f
(

t f
2 , t f

1

)
− Î
)

Ψ
(

tb
2, t f

2 , tb
1, t f

1

)
(21)

where Î denotes the identity on the Hilbert spaceHb
t2
⊗H f

t2
⊗Hb

t1
⊗H f

t1
, and the compact

notation Ub
(

tb
1, tb

2

)
U f
(

t f
2 , t f

1

)
≡ Ub

(
tb
1, tb

2

)
⊗ Î

t f
2
⊗ Îtb

1
⊗U f

(
t f
2 , t f

1

)
is used.

Unitary evolution from any fixed point produces quantum superpositions represented
by a network structure connecting it to other fixed points in the future and past, as shown in
Figure 3. In this figure, the arrows indicate the temporal orientation of quantum processes.
Each fixed point in the expansion of the full wavefunction at a given time is a node where
processes begin and terminate in the network, similarly to Ref. [54].

The region of wavefunction constrained by two fixed points is represented by the
purple region in Figure 3. All the processes consistent with the preparation, defining
the family FH , are represented by black lines. Blue lines represent those processes not
connected to the fixed point state JψKt1

. From the birds-eye perspective of the universal
wavefunction, there is no difference between the black- and blue-line processes. However,
they provide a useful distinction for the observer, who thereby determines the region of
wavefunction corresponding to their experiment. Formally, if a single node is connected
to N others, then there will be N Keldysh contour regions and 2N separate time branches
connected to this node. Moreover, we can view each node as both the source and the sink
of all processes connected to it, in the following sense: if a fixed point at time t is connected
to Nt1 nodes at a time t1 < t and to Nt2 nodes at a time t2 > t, then it is the source of exactly
Nt1 + Nt2 branch lines which flow away from it, and is the sink for the same number of lines
which flow into it from other times. If Nt1 nodes at t1 are connected to Nt2 nodes at t2, then
there are 2Nt1 Nt2 branch lines connecting this pair of times, defining Nt1 Nt2 regions of the
wavefunction, or two-way channels, connecting pairs of fixed points at these times. Every
line is in one-to-one mapping with a directed process connecting a pair of fixed points in
the wavefunction. The amplitude for a process connecting state |β〉 at time ta to the state
|γ〉 at time tb following propagation along the Keldysh branch Cα is given as shown:

cα
γβ(tb, ta) ≡ 〈γα(tb)|Uα(tb, ta)|βα(ta)〉 (22)
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The integrated wavefunction (the purple region in Figure 3) connects the two fixed
points JψKt1

and JφKt2
, a constraint imposed by taking the inner product of (21) with the

‘sink’ state ∣∣∣ψb(t1)
〉∣∣∣φ f (t2)

〉∣∣∣ψb(t1)
〉∣∣∣φ f (t2)

〉
(23)

defined at the upper limits of the integration. This gives:

4Ψ[ψ(t1); φ(t2)] = cb
ψφ(t1, t2)c

f
φψ(t2, t1), (24)

where the overlap with the second term in Equation (21) vanishes since 〈γα(tb)| βα(ta)〉 = 0,
given |βα(ta)〉 ∈ Htα

a and |γα(tb)〉 ∈ Htα
b

with tα
a 6= tα

b . Equation (24) is just a scalar-valued
function, so contour branch labels can be dropped. We now divide by the normalization factor
across all measurement outcomes consistent with the preparation, ∑i4Ψ[ψ(t1); φi(t2)] = 1,
to give the measure of existence of this history:

m
(

h〈ψ,φ〉

)
=
4Ψ[ψ(t1); φ(t2)]

∑i4Ψ[ψ(t1); φi(t2)]

= |〈ψ(t1)|U(t1, t2)|φ(t2)〉|2 (25)

This gives the relative amount of wavefunction connecting the fixed point JψKt1
to

JφKt2
as a proportion of the total region of wavefunction at t2 connected to JψKt1

on the
Keldysh contour.

Figure 3. The purple region represents the measure of existence connecting the prepared fixed point
state JψKt1

to a measurement at t2 described by the fixed point JφKt2
. The black lines represent pro-

cesses connected to the prepared state. The blue lines represent regions of the universal wavefunction
that are incompatible with the preparation.

Equation (25) is the core result of this work: the measure of existence of a quantum
history describing a quantum measurement process equals the Born measure. The power of
two in this measure is a direct result of the two time branches in C. Instead of postulating the
mathematical form of the measure of existence [11], the Born measure has been derived from
the temporal structure of the multiple-Keldysh-time wavefunction and the Vaidman rule.
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5. Three Fixed Points

The ABL rule may be derived from the Born measure [21], but will now be derived
as the measure of existence of the quantum history connecting Nt = 3 fixed points. This
case is important to consider because it involves all four regions of the Keldysh contour
connected to the intermediate fixed point.

Suppose that pre- and postselection measurements at t1 and t2 yield the states |ψ〉 and
|φ〉, respectively. One is then interested in the probability of measuring a state in some basis,
|ai〉 ∈ {|ak〉}, at the measurement time t, where t1 < t < t2. This experiment corresponds
to the family of histories:

FH : JφKt2
⊗ {JaiKt} ⊗ JψKt1

(26)

as represented schematically in Figure 4, where the purple region represents the measure of
existence corresponding to the measurement of |ai〉 at time t, black lines define the history
family FH (processes consistent with the pre- and postselected boundary values) and blue
lines represent wavefunction regions that are incompatible with the preparation.

Figure 4. The purple region represents the measure of existence corresponding to the ABL measure
in an experiment connecting the pre- and postselection fixed points JψKt1

and JφKt2
to a measurement

at t corresponding to the fixed point JaiKt.

This experimental situation is described by the following ‘source’ wavefunction con-
structed from three fixed points:

Ψ
(

tb
2, t f

2 , tb, t f , tb
1, t f

1

)
= JφKt2

⊗ JaiKt ⊗ JψKt1
(27)

The fixed points in this state are connected via black lines in the shaded region of
Figure 4. By contrast, the TSVF divides the universe into ‘future’ times, described by a
state vector traveling backwards from the postselection, and ‘past’ times, described by
future-oriented propagation from the preselection. This restricts the dynamics to the upper
black arrow left of the measurement time (<C t f ) and the lower black arrow right of the
measurement time (<C tb) on Figure 4, effectively throwing away half of the wavefunction
by treating the fixed point at t as a sink only. The propagation between three boundary
constraints in the FPF is illustrated schematically in Figure 5a, where all sections of the
contour are covered. This is compared to the situation in the TSVF in Figure 5b, where
only half of the available contour is included, therefore violating Event Symmetry. For
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comparison, the standard Schrödinger dynamics used in the consistent histories framework
is illustrated in Figure 5c. We also note that the TSVF formalism allows oppositely-oriented
states to overlap at the intermediate measurement time (the backwards-travelling vector
from the future is represented as a ‘bra’ state in the conjugate Hilbert spaceH†

t2
) [21], which

is prevented by branch-independence in the FPF.

(a) FPF

(b) TSVF

(c) Schrödinger

Figure 5. Schematic representation of the regions and direction of time propagation between three
consecutive boundary conditions considered within (a) the FPF, (b) the TSVF and (c) standard
Schrödinger dynamics.

The total wavefunction along segments of the Keldysh contour connecting the three
fixed points in Equation (27) is a line integral of the exact differential:

dΨ =
∂Ψ

∂t f
1

dt f
1 +

∂Ψ
∂t f dt f +

∂Ψ
∂tb

2
dtb

2 +
∂Ψ
∂tb dtb (28)

along the path
(

tb
2, tb, t f , t f

1

)
→

(
tb
2, tb, t f , t f

)
→

(
tb
2, tb, t f

2 , t f
)
→

(
tb, tb, t f

2 , t f
)
→(

tb, tb
1, t f

2 , t f
)

, which is the integral path along the horizontal black lines enclosed by the
purple shading in Figure 4. Since the four time degrees of freedom are independent, the
total wavefunction in the temporal region t ∈ [t1, t2] is as follows:

DΨ = Ub
(

tb, tb
2

)
JφKt2

(29)

⊗Ub
(

tb
1, tb

)
U f
(

t f
2 , t f

)
JaiKt ⊗U f

(
t f , t f

1

)
JψKt1

−Ψ

Taking the inner product of DΨ with the corresponding ‘sink state’∣∣∣ab
i (t)

〉∣∣∣φ f (t2)
〉∣∣∣ψb(t1)

〉∣∣∣φ f (t2)
〉∣∣∣ψb(t1)

〉∣∣∣a f
i (t)

〉
(30)

and then normalizing gives the measure of existence of a history connecting the fixed points
JψKt1

, JaiKt and JφKt2
(the region covered by black lines in Figure 4):
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m
(

h〈ψ,ai ,φ〉

)
=
4Ψ[ψ(t1); ai(t); φ(t2)]

∑
k
4Ψ[ψ(t1); ak(t); φ(t2)]

(31)

=
|〈φ(t2)|U(t2, t)|ai(t)〉〈ai(t)|U(t, t1)|ψ(t1)〉|2

∑
k
|〈φ(t2)|U(t2, t)|ak(t)〉〈ak(t)|U(t, t1)|ψ(t1)〉|2

Thus, we recover the ABL rule. It has been derived as a ratio of wavefunction regions
integrated over C. There is no stochastic ‘collapse’ process, only unitary evolution and the
imposition of constraints..

This analysis is easily extended to a sequence of measurements—each fixed point in-
creases the dimensionality of the line integral in Equation (20) by two, so the corresponding
change4Ψ in a Nt-time history is obtained from the 2(Nt − 1)-dimensional line integral
along the relevant Keldysh contour segments.

6. Conclusions

In this paper we have derived a direct connection between the temporal structure of
the wavefunction and the Born rule of quantum mechanics. Central to our thesis is the
concept of a ‘fixed point’, which replaces the initial condition of standard quantum theory
with a state that serves as both ‘source’ and ‘sink’ in both directions of time, defined on the
Keldysh contour. The FPF has many advantages:

• It is logically parsimonious. The statistical postulate supplies the meaning of probability.
However, the mathematical form of probability is not postulated, but derived from ontic
and dynamical structure.

• Unlike derivations which appeal to contingent initial or final conditions of the uni-
verse [22,55,56], it explains the ubiquity of the Born measure in nature from temporally
local constraints.

• It describes deterministic unitary quantum mechanics with a multiple-event structure
which may have implications for quantum gravity [14].

• It makes no theoretical distinction between past, present and future times. A fixed
point is simply a crossing point for quantum histories.

• It contains no genuine randomness, only integrals over temporal regions of the wave-
function.

• It is logically simpler than approaches to quantum probability which involve devia-
tions from unitarity [57,58] or the introduction of additional ontological types [56,59].

Hitherto, Zurek’s ‘envariance’-based approach to quantum probabilities was the lead-
ing candidate for a physical derivation [6,7]. This strategy relies upon (i) the Schmidt
decomposition into entangled system and environment states via decoherence, (ii) ‘envari-
ance’ symmetry-based probability assignments and (iii) the modification of the environment
with ancilla states satisfying certain ‘fine-graining’ properties. By contrast, the argument
in this paper (i) assumes nothing about the internal composition of states beyond the
ontological and dynamical postulates, (ii) assumes nothing about probabilities beyond the
statistical postulate and (iii) has no dependence on details of the environment.

Since we are here considering unitary wave mechanics only, the FPF supports an
Everettian interpretation of the quantum theory [60] with the caveat that branching of the
wavefunction is permitted in both time directions. The other candidate for a time-symmetric
quantum theory considered here—the TSVF—omits crucial information contained in the
full Keldysh time structure. It is this temporal structure which explains the emergence of
quantum probability.
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46. Hořava, P.; Mogni, C.J. String perturbation theory on the Schwinger-Keldysh time contour. Phys. Rev. Lett. 2020, 125, 261602.

[CrossRef]
47. Tuovinen, R.; Golež, D.; Eckstein, M.; Sentef, M.A. Comparing the generalized Kadanoff-Baym ansatz with the full Kadanoff-Baym

equations for an excitonic insulator out of equilibrium. Phys. Rev. B 2020, 102, 115157. [CrossRef]
48. Atanasova, H.; Lichtenstein, A.I.; Cohen, G. Correlated nonequilibrium steady states without energy flux. Phys. Rev. B 2020,

101, 174316. [CrossRef]
49. Ridley, M.; Talarico, N.W.; Karlsson, D.; Gullo, N.L.; Tuovinen, R. A many-body approach to transport in quantum systems: From

the transient regime to the stationary state. J. Phys. A Math. Theor. 2022, 55, 273001. [CrossRef]
50. Griffiths, R.B. What quantum measurements measure. Phys. Rev. A 2017, 96, 032110. [CrossRef]
51. Hartle, J.; Hertog, T. One bubble to rule them all. Phys. Rev. D 2017, 95, 123502. [CrossRef]
52. Isham, C.J.; Linden, N. Continuous histories and the history group in generalized quantum theory. J. Math. Phys. 1995, 36,

5392–5408. [CrossRef]
53. Isham, C.J.; Linden, N.; Savvidou, K.; Schreckenberg, S. Continuous time and consistent histories. J. Math. Phys. 1998, 39,

1818–1834. [CrossRef]
54. Oreshkov, O.; Cerf, N.J. Operational formulation of time reversal in quantum theory. Nat. Phys. 2015, 11, 853–858. [CrossRef]
55. Gell-Mann, M.; Hartle, J.B. Quantum mechanics in the light of quantum cosmology. In Foundations of Quantum Mechanics in

the Light of New Technology: Selected Papers from the Proceedings of the First through Fourth International Symposia on Foundations of
Quantum Mechanics; World Scientific Publishing: Singapore, 1996; pp. 347–369.

56. Dürr, D.; Goldstein, S.; Tumulka, R.; Zanghï, N. Bohmian mechanics and quantum field theory. Phys. Rev. Lett. 2004, 93, 090402.
[CrossRef] [PubMed]

57. Ghirardi, G.C.; Rimini, A.; Weber, T. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. B 1986, 34, 470.
[CrossRef] [PubMed]

58. Vinante, A.; Mezzena, R.; Falferi, P.; Carlesso, M.; Bassi, A. Improved noninterferometric test of collapse models using ultracold
cantilevers. Phys. Rev. Lett. 2017, 119, 110401. [CrossRef] [PubMed]

59. Bohm, D. A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 1952, 85, 166. [CrossRef]
60. Everett, H. “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 1957, 29, 454. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1098/rspa.2016.0607
http://www.ncbi.nlm.nih.gov/pubmed/28690401
http://dx.doi.org/10.1038/s41467-019-11579-x
http://www.ncbi.nlm.nih.gov/pubmed/31434883
http://dx.doi.org/10.1038/s41467-020-16013-1
http://dx.doi.org/10.1103/PhysRevResearch.2.033266
http://dx.doi.org/10.1007/s10909-018-1880-9
http://dx.doi.org/10.1103/PhysRevB.90.195422
http://dx.doi.org/10.1103/PhysRevLett.114.080602
http://www.ncbi.nlm.nih.gov/pubmed/25768745
http://dx.doi.org/10.1103/PhysRevLett.118.247702
http://dx.doi.org/10.1103/PhysRevLett.125.261602
http://dx.doi.org/10.1103/PhysRevB.102.115157
http://dx.doi.org/10.1103/PhysRevB.101.174316
http://dx.doi.org/10.1088/1751-8121/ac7119
http://dx.doi.org/10.1103/PhysRevA.96.032110
http://dx.doi.org/10.1103/PhysRevD.95.123502
http://dx.doi.org/10.1063/1.531267
http://dx.doi.org/10.1063/1.532265
http://dx.doi.org/10.1038/nphys3414
http://dx.doi.org/10.1103/PhysRevLett.93.090402
http://www.ncbi.nlm.nih.gov/pubmed/15447078
http://dx.doi.org/10.1103/PhysRevD.34.470
http://www.ncbi.nlm.nih.gov/pubmed/9957165
http://dx.doi.org/10.1103/PhysRevLett.119.110401
http://www.ncbi.nlm.nih.gov/pubmed/28949215
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1103/RevModPhys.29.454

	Introduction
	The Universal Wavefunction
	General Considerations
	The Universal Wavefunction on the Keldysh Contour

	One Fixed Point
	The Born Measure
	Three Fixed Points
	Conclusions
	References

