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Abstract: The Quantum Amplitude Estimation (QAE) algorithm is a major quantum algorithm
designed to achieve a quadratic speed-up. Until fault-tolerant quantum computing is achieved,
being competitive over classical Monte Carlo (MC) remains elusive. Alternative methods have been
developed so as to require fewer resources while maintaining an advantageous theoretical scaling. We
compared the standard QAE algorithm with two Noisy Intermediate-Scale Quantum (NISQ)-friendly
versions of QAE on a numerical integration task, with the Monte Carlo technique of Metropolis–
Hastings as a classical benchmark. The algorithms were evaluated in terms of the estimation error as
a function of the number of samples, computational time, and length of the quantum circuits required
by the solutions, respectively. The effectiveness of the two QAE alternatives was tested on an 11-qubit
trapped-ion quantum computer in order to verify which solution can first provide a speed-up in the
integral estimation problems. We concluded that an alternative approach is preferable with respect to
employing the phase estimation routine. Indeed, the Maximum Likelihood estimation guaranteed the
best trade-off between the length of the quantum circuits and the precision in the integral estimation,
as well as greater resistance to noise.

Keywords: Quantum Amplitude Estimation; NISQ; benchmark

1. Introduction

We surveyed and implemented different versions of the Quantum Amplitude Estimation
(QAE) algorithm, and we found that the Maximum Likelihood QAE, which does not make
use of phase estimation, resulted in being the best candidate to demonstrate an advantage
over the classical Monte Carlo methods. Numerical integration is a fundamental problem in
many areas of science and engineering. Traditional numerical integration methods can be
computationally expensive and require significant computational resources. Monte Carlo
(MC) methods [1] are exploited for numerical integration problems, as they are flexible and
able to handle high-dimensional problems. However, Monte Carlo methods are limited
in terms of approximation accuracy, which depends on the number of samples used in
the simulation. Indeed, such a class of methods suffers from the difficulty of generating
good sampling by starting from an arbitrary probability density function. As a result,
Monte Carlo methods can be computationally expensive for high-precision integration,
making them less efficient for certain applications [2]. Quantum computing [3–9] provides
an alternative path to obtain faster integral estimation, with the same accuracy with
fewer samples. Such a speed-up was made possible by the introduction of the Quantum
Amplitude Estimation algorithm [10]. QAE is a quantum algorithm that can be used to
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estimate the amplitude of a specific state in a quantum system with quantum speed-up
compared to classical algorithms. Such a feature allows QAE to be used for the efficient
numerical integration of complex functions. In particular, QAE has been shown to be
able to beat the classical Monte Carlo methods for numerical integration, especially in
high-dimensional integration problems. By using QAE, it is possible to estimate the
integrals with the same precision by extracting fewer samples, thus significantly reducing
the computational resources required for numerical integration. Moreover, QAE can
be used to solve a wide range of numerical integration problems, including those in
finance [11], physics [12,13], and machine learning [14–17]. It has been shown that QAE
can be applied to estimate options pricing [18] in financial derivatives [19,20], to solve
differential equations [21], and to perform quantum simulation, among others. The QAE
algorithm carries a quadratic speed-up with respect to classic Monte Carlo techniques.
However, such an advantage is constrained by the existence of fault-tolerant quantum
hardware [22–28], which does not exist today. In currently available Noisy Intermediate-
Scale Quantum (NISQ) devices [29], the QAE algorithm has not yet shown an advantage in
practical cases [30] due to the insufficient coherence times of the physical qubits [31] and
because of the error carried by the gates. Indeed, the QAE circuit involves 2M applications
of controlled quantum queries and a quantum Fourier transform. Therefore, alternative
approaches have been proposed for QAE that involve a lower-depth circuit. Such quantum–
classical hybrid algorithms can be divided into two categories, namely the Maximum
Likelihood Quantum Amplitude Estimation (MLQAE) [32] approach and the Iterative QAE
(IQAE) [33] approach, respectively.

A major difference consists of the fact that, while the MLAE approach allows fixing
the number of quantum queries, in the iterative approach, such a number is classically
computed at each iteration from the result of the previous one. Therefore, the way errors
propagate during the runs is not trivial. For this reason, it is necessary to evaluate the
performance of such methods on noisy devices to determine which one best realizes its
purpose. The performance analysis of such methods has been, then, divided into two
steps. First, the analysis is carried out with the use of a quantum computing simulator.
Here, the standard QAE, the MLAE, the IQAE, and the classical Metropolis–Hastings
Monte Carlo (MHMC) algorithms were compared. The scaling on the estimation error, the
execution time, and the depth of the circuits were considered, respectively. A 1D integral
was used to exemplify and benchmark, providing a reasonable trade-off between being
representative and carrying an addressable circuit depth. All simulations were performed
on the quantum circuit simulator ‘aer_simulator’ of the Qiskit library, by involving three
qubits. The second part of the analysis instead involved the use of quantum hardware
with the specific aim of determining the degree of resilience of the methods with respect
to the noise of the hardware. For such an analysis, the trapped-ion device Harmony
from IonQ was used. The trapped-ion qubits are well-known for their superior coherence
and fidelity [34]. Such processors have already shown that they can support quantum
circuits with a depth greater than other technologies [35]. For this reason, it represents
an adequate candidate for benchmarking amplitude estimation solutions. The MLQAE
method appears to be a more-short-term alternative to the standard QAE for estimating
integrals. The iterative method, on the other hand, is more sensitive to the noise of the
quantum processing unit (QPU). Moreover, the iterative hybrid approach has a greater
depth of the circuits that implement it on average. Furthermore, it requires deeper circuits
than the MLAE approach in terms of scaling with respect to the estimation error. Instead,
the two approaches exhibit a comparable speed-up. The article is divided into Sections
as follows: The standard QAE and its application to the numerical integration problem
are defined in Section 2.1. Section 2.2 presents the NISQ-friendly alternatives of QAE.
The results are divided into a presentation of the noiseless simulations in Section 3 and
the execution on the real trapped-ion device used for the benchmarking—described in
Section 4.1—in Section 4.2.
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2. Quantum Amplitude Estimation Algorithms

Quantum Amplitude Estimation (QAE) [10] is a fundamental quantum algorithm
with the potential to achieve a quadratic speed-up for many applications that are classically
solved through Monte Carlo (MC) simulation [13]. QAE is of particular interest for its
exploitation in finance, including, for instance, risk analysis and options pricing, as well as
more-general tasks such as numerical integration. This Section is divided as follows: In
Section 2.1, the original QAE algorithm is summarized. Section 2.2 reports on state-of-the-
art alternative methods to the original version. The process is pictured in Figure 1.

Figure 1. Flowchart of amplitude algorithms for integrals’ estimation. All the inputs of the algorithms
are indicated in the green boxes, including the task of estimating the integral I = E[g(x)]. The blue
boxes, instead, represent the quantum routines, while the classic ones are in the orange boxes. The
first step consists of choosing the discretization, which means how many qubits with which to load
the probability distribution p. With n qubits, it is possible to encode 2n pi values. The function g(x)
can optionally be rescaled to obtain an integral I ∈ [0, 1] and, then, rescale the expectation value in
post-processing. The operators A and its inverse A†, defined in Equation (3), are generally built in
three steps: loading of the discretized distribution {pi}2n−1

i=0 for which n qubits are needed, encoding
of |arcsin g(x)⟩, for which d additional qubits are needed, via a routine for the necessary arithmetic
calculations, and, finally, the embedding of the function g(xi), with the discretized values of x, to
obtain the final state as in Equation (3). Once the Q operator has been obtained, it is possible to build
the circuits necessary for the three QAE algorithms tested. The algorithms return the estimations Ã
of the integral and the confidential interval

[
amax, amin

]
.
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2.1. Original Quantum Amplitude Estimation Algorithm

In this Section, the original version of the QAE, for numerical integration, is summarized.
In order to introduce it, let us first consider an integral:

I =
∫

X
f (x) dx (1)

over the integration domain X, and let us define a probability distribution p(x) such that
p(x) ̸= 0 for x ∈ X, then the integral can be rewritten as

I =
∫

p(x)g(x) dx = Ep[g(x)] (2)

where g(x) ≡ f (x)/p(x) in X and 0 otherwise. Classically, the Monte Carlo method
consists of a set of methods to estimate the integral in Equation (2). Such methods start
from the assumption of sampling M values (x0, . . . , xM−1) from p(x) and, then, estimating
I with the average estimator.

The estimation error bound of classical MC simulation scales as O(1/
√

M), where M
denotes the number of (classical) samples. Instead, the quantum algorithm called QAE
allows achieving a quadratic speed-up as explained below. The QAE problem can be stated
as follows: given an operator A acting on n + 1 qubits,

A|0⟩n|0⟩ =
√

1 − a|Ψ0⟩|0⟩+
√

a|Ψ1⟩|1⟩ (3)

where a ∈ [0, 1] is the probability to measure the ancilla qubit in 1 and it is unknown [10];
|Ψ0⟩ and |Ψ1⟩ are two normalized states, not necessarily orthogonal [33].

To relate the unknown value a to the integral in Equation (2), one can define

|Ψ1⟩ =
1√
a ∑

x

√
p(x)g(x)|x⟩n (4)

Therefore, a ∼ Ep[g(x)].
Let us define an operator Q = AS0A†SΨ0 , where S0 = I− 2|0⟩n+1⟨0|n+1, representing

reflection with respect to the state |0⟩, while SΨ0 = I− 2|Ψ0⟩n⟨Ψ0|n ⊗ |0⟩⟨0| the reflection
with respect to the state |Ψ0⟩n. Applications of Q are denoted as quantum samples or oracle
queries [33].

The canonical QAE follows the form of quantum phase estimation (QPE): (i) it uses m
ancilla qubits, initialized in equal superposition, to represent the final result; (ii) it defines
the number of quantum samples as M = 2m; (iii) it applies geometrically increasing powers
of Q controlled by the ancilla qubits. Eventually, it performs an inverse quantum Fourier
transform (QFT) on the ancilla qubits before they are measured. The measurement of m
ancilla qubits produces a bit string equivalent to an integer y ∈ {0, . . . , M − 1}, and an
estimation of a can be defined as ã = sin2 θa, where θa ≡ yπ/M. The algorithm produces
an estimation ã such that

|a − ã| ≤ δ ≡ 2π
√

a(a − 1)
M

+
π2

M2 ∼ O
(

1
M

)
(5)

with a probability

P[y||a − ã| ≤ δ] = P[y = ⌊Mθa/π⌋] + P[y = ⌈Mθa/π⌉]

=
sin2(M∆)
M2 sin(∆)

+
sin2(π − M∆)

M2 sin(π/M − ∆)
≥ 8

π2

(6)

where M ≤ 2, while ∆ is the minimal distance on the unit circle between the angles θa and
πy/M, therefore returning a scaling complexity of O(1/M) for M applications of quantum
samples Q.
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The success probability to obtain ã with the discrepancy shown in Equation (5) can
be quickly boosted to close to 100% by repeating the QAE circuit multiple times and by
using the median estimate. Since the success probability of QAE is greater than 8/π2 we
would, in principle, only need, for instance, 24 repetitions to achieve a success probability
of 99.75% [30]. However, current quantum hardware introduces additional errors. In the
work [30], the circuit was repeated 8192 times to obtain a reliable estimate of a.

2.2. Alternative Quantum Amplitude Estimation Methods

As discussed, current hardware limitations prevent the achievement of the theoretical
speed-up. For this reason, various algorithms have been developed involving both
classical and quantum devices in order to reduce the resources required for quantum
computation without denying a speed-up against Monte Carlo methods. The alternative
hybrid algorithms can be divided into two categories. The first category (I), which we will
refer to as a Maximum Likelihood Amplitude Estimation (MLAE) approach, consists of a
Grover-like circuit and a Maximum Likelihood estimation on a classical processor. Such an
approach has been discussed by different groups: in Ref. [32], the idea was introduced for
the first time, while two variants were proposed later [36,37].

The second category (II), under the name of iterative approaches, consists of an
alternating sequence of Grover-like circuits, where the oracle query Q is applied k times,
and a classical algorithm to compute the value k of Q applications for the next quantum
iteration. Such an iterative procedure leads to a decrease in the confidence interval of
the estimation ã up to the error ϵ with up to T = ⌈log2(π/8ϵ)⌉ iterations [33]. Such an
algorithm, in turn, is inspired by the variant of the quantum approximation counting
described by Aaronson and Rall [38].

2.2.1. MLAE Approach

As mentioned earlier, such a quantum–classical hybrid class of algorithms involves
both a Grover-like circuit and a Maximum Likelihood Estimation (MLE) [39] on a classical
processor, respectively. In the following, the strategy of the algorithm is analyzed. Let A be
an operator such that

A|0⟩n|0⟩ = cos θa|Ψ0⟩|0⟩+ sin θa|Ψ1⟩|1⟩ (7)

The aim of the algorithm is to estimate a = sin2 θa. It is possible to replace the QPE with a
set of Grover iterations combined with a Maximum Likelihood Estimation (MLE) [32].

Let us perform Nk sampling from the circuit:

QkA|0⟩n|0⟩ =
= cos ((2k + 1)θa)|Ψ0⟩|0⟩+ sin ((2k + 1)θa)|Ψ1⟩|1⟩

(8)

From Equation (8), we are able to model the probability distribution of the measurements
of the ancilla qubit with P[|0⟩] = cos2 ((2k + 1)θa) and P[|1⟩] = sin2 ((2k + 1)θa).

The likelihood of such a model is

Lk(hk, θa) =
[
sin2 ((2k + 1)θa)

]hk
[
cos2 ((2k + 1)θa)

]Nk−hk
(9)

where hk is the number of measurements that have returned 1 and Nk is the total number
of measurements.

Next, let us perform the sampling M + 1 times with k = 0, . . . , M in order to compute
the total likelihood:

L(h, θa) =
M

∏
k=0

Lk(hk, θa) (10)
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Using the Maximum Likelihood procedure, we are able to compute the optimal θa such
that our model approximates the true distribution as closely as possible:

θ̂a := arg max
θa

L(h, θa) = arg max
θa

ln L(h, θa) (11)

Now, a and θa are uniquely related through a = sin2 θa in the range 0 ≤ θa ≤ π/2 so
â = sin2 θ̂a, as the function is invertible in such an interval. As shown in Ref. [36], a pure
MLAE method, as described above, provides less than a quadratic advantage compared to
classical Monte Carlo. The paper introduces an algorithm that utilizes the MLAE method,
but alternates it with a variational optimization step.

2.2.2. Iterative Approach

As in the previously discussed approach, the IQAE replaces the standard QAE circuit
with the low-complexity circuit defined in Equation (8). The difference between the two
approaches is that, while in the MLAE method, the k times with which Q is applied ranges
from 0 to M, in the iterative approach, k is computed by a classical routine, which takes as
the input a confidence interval [θl , θu] for the angle θa.

The algorithms described in Refs. [33,38,40] belong to the iterative approach class. In
the following, the most-representative IQAE is described in detail [33]. The IQAE uses
the quantum computer to approximate, with the Nshots measure, P[|1⟩] = sin2 ((2k + 1)θa)
for the last qubit in QkA|0⟩n|0⟩ for different powers k. The first step consists of setting a
confidence interval [θl , θu] ⊆ [0, π/2]. For convenience, we set [θl , θu] = [0, π/2].

After that, we must define a confidence level 1 − α ∈ (0, 1), a target accuracy ϵ > 0,
and a number of shots Nshots ∈ {1, . . . , Nmax(ϵ, α)}, where

Nmax(ϵ, α) =
32

(1 − 2 sin (π/14))2 log
(

2
α

log2

( π

4ϵ

))
(12)

From the definition of the inputs (ϵ, α, Nshots), one can calculate the maximum possible error:

Lmax(ϵ, α, Nshots) = arcsin
(

2
Nshots

log
(

2T(ϵ)
α

))1/4

(13)

For each iteration i, an integer ki must be defined. In Ref. [33], a routine called FindNextK
was defined, which takes the integer ki−1 (k0 = 0) and the interval [θl , θu] obtained from
the previous iteration. In such a core routine of the algorithm, the idea is to define
an integer ki such that [(4ki + 2)θl , (4ki + 2)θu]mod2π is fully contained either in [0, π] or
[π, 2π]. That choice follows the aim of estimating, instead of sin2 ((2k + 1)θa), the quantity
cos ((4k + 2)θa), which can be inverted only in [0, π] or [π, 2π].

If FindNextK finds an integer ki that satisfies the constraints, then one performs the N
shots (which depend on Nshots) of the circuit QkA|0⟩n|0⟩ to estimate ai = P[|1⟩]. Otherwise,
the iteration i must be performed with ki = ki−1.

The next step consists of defining an interval [amin
i , amax

i ] using different techniques
such as the Chernoff–Hoeffding method, according to which amax

i = min(1, ai + ϵai ) and
amin

i = max(0, ai − ϵai ), where

ϵai =

√
1

2N
log

(
2T
α

)
(14)

The new confidence interval [θl , θu] is then calculated from [amin
i , amax

i ] reversing the formula
a = cos ((4k + 2)θa). Such an algorithm demonstrates a quadratic speed-up with respect to
Monte Carlo techniques up to a factor given by Nmax. The speed-up in such cases depends
on the confidence level, which can be arbitrarily set.
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3. Comparison of the Algorithms by Statistical Analysis
Benchmarking the Methods of Quantum Amplitude Estimation

In order to benchmark the effectiveness of the algorithms of Quantum Amplitude
Estimation, we considered an integral that is sufficiently representative despite a relatively
shallow depth of the quantum circuit required for the implementation on a gate model
quantum computer. More specifically, the selected function consists of sin2 x. We, therefore,
considered the following integral:

I =
1
∆

∫ ∆

0
sin2 x dx (15)

which is approximated by the following summation of 2n samples:

D =
2n−1

∑
x=0

1
2n sin2

(
(x + 1/2)∆

2n

)
n→∞−−−→ I . (16)

encoded by a qubit register q of n qubits.
The integral D can be interpreted as the expectation value of the function:

f (x) = sin2
(
(x + 1/2)∆

2n

)
(17)

with a uniform probability distribution p(x) = 1/2n.
The corresponding quantum circuits P to encode p(x) on the n + 1 qubit register

(consisting of q plus an ancilla qubit) and R to encode f (x) are

P|0⟩n|0⟩ = 1√
2n ∑x|x⟩n|0⟩

R|x⟩n|0⟩ = |x⟩n

(
sin

(
(x+1/2)∆

2n

)
|1⟩+ cos

(
(x+1/2)∆

2n

)
|0⟩

) (18)

respectively [32]. P can be realized with Hadamard gates and R with controlled-Y rotation
gates. The methods described in the previous Section aim to reduce the number of qubits
and the length of the circuits while maintaining an advantage over the classic Monte
Carlo method.

In Table 1, the QAE variants are classified on the basis of the relative NISQ readiness.
The number of qubits and the circuit depth are two parameters to evaluate the NISQ
readiness. The standard QAE algorithm results in low NISQ readiness. However, the
algorithm scaling does not depend only on the circuit depth, but also on the number of
shots Nshots and, potentially, on the number of calls to the QPU. Another parameter to
consider is the confidence level α, i.e., the probability of obtaining a result within the desired
target error ϵ. In the original QAE, the lowest α is 81%, but it can be increased by performing
more parallel circuit runs, which means a higher Nshots. Other algorithms, like IQAE, allow
one to arbitrarily choose the confidence level; therefore, there is a correlation between the
computational cost and α. All the algorithms described above succeed in estimating an
integral with an error that scales as O(x−η), where x is the number of samples and η is
positive, and it has been experimentally evaluated as follows.
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Table 1. Comparison between QAE algorithms. Here, n + 1 is the number of qubits on which the
oracle query Q is applied, d is the depth of Q, while ϵ is the target accuracy, and α is the confidence
level. In the last two algorithms, β ∈ (0, 1], k ≤ 2, and q ∈ [1, . . . , k − 1]. The types column indicates
to which approach the algorithm belongs, based on the classification in Section 2.2: O corresponds to
the original QAE, I to the MLAE approach, and II to the iterative approach, respectively.

QAE Methods List

Algorithm NISQ Readiness Qubits Depth Nshots vs. α Speed-Up over MC Ref. Type

QAE Low n + 1 + log 1/ϵ d · 1/ϵ + log log 1/ϵ
B(p = 0, 81, k = 1,
n = Nshots) ** 1/ϵ [10] O

QAE NO-PE * Medium n + 1 d · 1/ϵ – ϵ−4/3 [32,41] I
VarQAE * High n + 1 < d · 1/ϵ – > ϵ−4/3 [36] I
Power-law
QAE * High n + 1 d · (1/ϵ)1−β – – [37] I

IQAE Medium n + 1 d · 1/ϵ Nmax Equation (12) Nmax · 1/ϵ [33] II
SQAE Medium n + 1 – – – [38] II
FAE Medium n + 1 d · 1/ϵ – (1/ϵ) · ln log(π/ϵ) [40] II

* Classical optimization required; ** binomial distribution.

4. Experimental Test on a Trapped-Ion Quantum Computer
4.1. Trapped-Ion Quantum Computer Used for the Experimental Test

Trapped-ion technology is a promising approach for realizing quantum computing
due to its long coherence times and the ability to establish full connectivity between qubits.
Among the various trapped-ion platforms, IonQ has developed a scalable architecture for
building quantum processors with sufficient fidelity and low error rates for the purposes
of this study. The technology relies on trapping individual ytterbium ions in a linear
array and using laser pulses to manipulate their quantum states. The ions are cooled and
trapped in a high-vacuum chamber to minimize decoherence. The qubits are encoded in
the hyperfine states of the electron and nuclear spins of the ion, which have long coherence
times and are immune to certain types of noise. IonQ has made their 11-qubit device called
Harmony available on the AWS Braket platform [42]. Harmony has an average single-qubit
gate fidelity of 99.35%, a two-qubit gate fidelityof 96.02%, and a state preparation and
measurement of 99.3–99.8%. The coherence times, instead, are of the order of seconds:
T1 > 107 µs and T2 = 2 × 105 µs. The device also features reconfigurable connectivity,
allowing for flexible qubit connectivity for various quantum algorithms. Such properties
make it one of the highest-performing quantum processors currently available to the public
at the time of this study.

4.2. Assessing the Performances on a Trapped-Ion Device

The Maximum Likelihood Quantum Amplitude Estimation and the Iterative Quantum
Amplitude Estimation are algorithms specially designed for noisy quantum computers.
Although it is possible to use a simulator for a first evaluation of the performance of these
algorithms, as shown in Figure 2, some characteristics of these algorithms can make the
solutions more or less effective when in the presence of noise. Both being hybrid solutions,
the noise present in quantum devices affects the final result in a non-trivial way. Figure 3
shows some estimates of the integrals performed with two such hybrid techniques. The
performance in the presence of noise is specially executed in several cases. It consists of an
integral function F(x) at different values of x, as the value of the integral to be estimated
affects the noise resilience of these techniques.

Such benchmarking was performed on an 11-qubit trapped-ion device (IonQ Harmony).
The results were obtained by using two qubits (there was, therefore, a large discretization of
the integral since n = 1) and without exploiting any error suppression or error-mitigation
technique. The number of qubits was necessarily reduced because, in the case of n = 1,
whatever the number of oracle calls, the length of the circuit remained unchanged. With
two qubits, it is always possible to compile a circuit into one with a fixed depth. For this
reason, such a benchmarking scheme is not influenced by the length of the circuits (which
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are equal for each run), but only by how resilient the hybrid strategy exploited by the two
algorithms is to the noise. To perform the correct benchmark, it is essential to choose the
algorithm’s parameters to prevent overloading the device. For such reasons, the confidence
level set for the IQAE should be less than 90%. Otherwise, it achieved an estimation of
ã ∼ 0.5 almost always independently by ∆. However, since the focus was to evaluate
effective alternative solutions to the QAE, a level of confidence no lower than that of the
standard QAE (81%) was chosen. This was necessary also to increase the number of shots
as, even if the confidence level parameter was fixed to 85% in our case, the noise in the
hardware reduced the effective confidence level. If, by using a simulator with a confidence
level set to 90%, Nshots = 100 was a good choice, for the runs on the trapped-ion device
Nshots = 512. Also, for the MLQAE runs, the effective confidence level was affected by the
hardware noise; therefore, Nshots = 512.

Figure 2. Performance of the amplitude estimation algorithms to estimate a 1D integral with
n = 3 qubits. All results of the quantum algorithms were obtained with the local Qiskit simulator
‘aer_simulator’, and each plot shows the average of 10 executions with different simulator seeds. All
simulations of the IQAE [33] algorithm were performed with a 90% confidence interval. (a) The top-
left plot shows how much the error in estimating the integral decreases as a function of the number of
samples/oracle queries. The data are fit with a function x−η in the log–log scale. For the algorithms
MLQAE [32], standard QAE, IQAE, and classical Metropolis–Hastings Monte Carlo (MHMC), the
slopes are, respectively, −0.974 ± 0.058, −1.267 ± 0.206, −0.971 ± 0.092, and −0.485 ± 0.051 (a result
obtained without considering the case with 10 samples). MLQAE and IQAE were performed with
100 shots per quantum circuit, while the QAE was executed as a standalone. The data showed a
quadratic speed-up for the QAE (orange) and a slightly less-than-quadratic speed-up for the MLQAE
and IQAE algorithms (blue and green, respectively) compared to the estimation using a classic
sampling Monte Carlo method (red). (b) The top-right plot shows the estimation error as a function
of the higher circuit depth (we must consider the highest one because MLQAE and IQAE require
the simulation of more than one quantum circuit). The two lower plots, (c,d), show, instead, the
execution time (for the quantum algorithms, it is the execution time of the QisKit local simulator) as a
function of the estimation error (left) and the number of samples/oracle queries (right). In plot (d),
the linear trends of the simulation times can be explained as follows: with the same number of qubits,
the depth depends on the concatenated oracle queries Q, so the computing time linearly increases
with the number of oracle queries.
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Figure 3. Performances of MLQAE and IQAE on the 11-qubit IonQ Harmony device. (a) Estimation
of the integral function of Equation (15) at different values of ∆, respectively set at π/3, π/4, π/5,
and π/6. The blue dots represent the estimations obtained using the IQAE, while the green stars the
MLQAE. The IQAE runs were performed at a confidence level of 85% and Nshots = 512. The size of
the dots increases as the target error ϵ decreases. In the same way, the size of the stars increases as M
increases in the MLQAE runs. Also, for the MLQAE runs, each circuit was repeated 512 times. Each
dot and star represents the average of 5 different runs. The upper plot shows the fit of the results on
the target function, and the lower plot shows the estimation errors reached by the two algorithms in
different settings. (b) The two plots in this panel show how the estimation changes as the settings of
the algorithms change for the four values of ∆. The dotted lines represent the target values of the
integrals I(∆). The right plot is for the MLQAE, and the left one is for the IQAE. For the MLQAE,
the settings correspond to the number of samples represented on the x-axis. For the IQAE case, the
results have an uncertainty on the number of samples, and the different settings are represented by
the dot size. (c) The scaling of the estimation error with respect to the number of samples of both
algorithms. Each dot is the average of all the runs (5 runs for 4 values of ∆ for a total of 20 runs). For
the IQAE case, only the standard deviation of the estimation errors is shown.

5. Discussion

Let us first consider the results from the simulator. The aim was both to evaluate
the scaling of the algorithms, i.e., how the estimation error decreases with the number of
samples, and to evaluate how the length of the circuits scales. From the latter, it is possible
to forecast when the two methods will start to provide a benefit over the Monte Carlo
method. The simulations were performed using ‘aer_simulator’ of the Qiskit library. From
the fit on the data in Figure 2, we estimated the theoretically predicted trends within 1.3σ.
For the standard QAE algorithm (theoretical η = 1), we estimated η = 1.267 ± 0.206, while
for the IQAE and MLAE algorithms, we estimated a value compatible with η = 1 and,
thus, with the QAE algorithm (a trend with η < 1 or at least slightly less performance
than is expected forthe standard QAE). However, to evaluate the performance, one should
consider, at the same time, the average circuit depth, since it impacts the viability of modern
quantum devices in the NISQ era.

IQAE and MLAE are classical–quantum hybrid algorithms that are, therefore, compositions
of runs of multiple circuits interspersed with classical routines. Figure 2 shows the
maximum depths reached by the circuits to perform an estimation of the integral. We
note how the two hybrid algorithms, IQAE and MLAE—as expected—havea shallower
depth than the standard QAE. In particular, the IQAE algorithm needs very long circuits
to perform an estimation of the same quality as that of the MLAE. As shown in Figure 2,
the IQAE approach requires circuits that are also twice as long for an estimate with an
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error of 10−4. Indeed, even though the number of samples is similar between the two
algorithms at the same error ϵ, because of the structure of the IQAE, interactions with
multiple oracle calls (which are counted as samples) concatenated in the same circuit can
happen. Such a property is also reflected in the execution time of the algorithms by the
quantum simulator. It turns out that the MLQAE algorithm is the fastest at the same error
of integral estimation ϵ. Such a conclusion is general for any number of qubits. The iterative
method, as well as the MLQAE perform on the quantum processor the estimate of the
probability P[|1⟩] on the ancilla qubit, which will depend on the unknown value of the
integral and not on the number of qubits dedicated to encoding the integral. The two lower
plots in Figure 2 allow us to extrapolate the execution times on the simulator of quantum
solutions examined in this work. Generating a sample with the Monte Carlo method took
four orders of magnitude less time than the MLQAE. Around the interval

[
10−13, 10−11],

we could find an advantage in terms of the computational time of the MLQAE algorithm.
Approximately 1024 classical samples are required to achieve precision in such a range. Such
values are lower if we consider a physical implementation of a quantum computer. If we
assume the execution of the quantum gates 100-times faster than its simulated counterpart,
then the advantage can be obtained around the interval

[
10−9, 10−8] with a number of

classical samples required around 10−17. In the case of gate execution 1000-times faster
than the laptop simulation, then this advantage could be in the range

[
10−7, 10−6], where it

would take about 1011 classical samples. Further analysis of the resources required by QAE
algorithms is reported in Ref. [13], based on a practical example of a multidimensional
integral. To achieve a precision of the order of 10−3, 1000 qubits were estimated to be used,
combined with long consistency times and a high-fidelity gate.

We now turn our attention to the experimental results obtained from the runs on
a noisy quantum computer, in our case of a one-dimensional integral. For this analysis,
we specifically chose one of the devices with the highest coherence times and the highest
connectivity among those currently available. Both algorithms that should provide an
NISQ-friendly alternative to the standard QAE, however, turned out to have a workflow
that is very susceptible to noise. In fact, all the runs were performed with the same length
of the circuits, since at n = 1, such circuits have a very limited depth (∼10). Therefore, the
limits of the algorithms are not only linked to the length of the circuits, but also to how
they propagate the error. The IQAE depends on an iterative process, where the number of
oracle calls chained in a circuit of an iteration depends on the result of the estimation in
the previous iteration. This iterative process is, therefore, very sensitive to noise as errors
propagate from one iteration to another. Indeed, even at two qubits, it is not possible to
find a decreasing trend of the error on the estimates of the integers with the number of
quantum samples. At more than two qubits, the circuits begin to grow noticeably with
a trend, as represented in Figure 2. With the length of the circuits depending on the
results of the previous iteration, we can easily understand how, even with few qubits, this
process leads to random results (a random result corresponds to an estimate of ã ∼ 0.5,
which corresponds to a complete overlap of the ancilla qubit being measured). However,
from Figure 3, already using two qubits (therefore, n = 1), it is possible to achieve a
precision of 10−3. Especially with the MLQAE method, we obtained a decreasing trend,
which led to average estimates with an error lower than 10−3 exceeding 103 samples. In
general, the MLQAE method exceeded the performance of the IQAE in the presence of
noise, confirming the considerations that were followed by the ‘aer_simulator’ runs. As
a side consideration about the testing campaign, we noticed that this kind of algorithm
may involve significant (and, in some cases, where a target accuracy is set, unpredictable)
costs for those subscription mechanisms where a fixed fee is assigned to each query to the
quantum computer. For recursive methods, it appears more suitable to prioritize access
secured for a given time interval, where the number of queries to the hardware is ignored.
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6. Conclusions

Using a simulator, we assessed the scalability of various integral estimation methods,
quantum and classical, with respect to their performance improvements concerning
estimation error reduction, sample size, computational time, and quantum circuit length.
The execution on an NISQ device showed how such methods behave when noise is involved.
Among the Quantum Amplitude Estimation (QAE) variants, the Maximum Likelihood
QAE, which eschews phase estimation, emerged, compared to the iterative method, as the
prime contender for an advantage over classical Monte Carlo methods. Such an assertion
finds reinforcement in the observed trade-off between quantum circuit length and the
accuracy of integral estimation, especially in the presence of noise.
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