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Abstract: The present study aims to develop a risk-based approach to finding optimal solutions
for life extension management for offshore wind farms based on Markowitz’s modern portfolio
theory, adapted from finance. The developed risk-based approach assumes that the offshore wind
turbines (OWT) can be considered as cash-producing tangible assets providing a positive return
from the initial investment (capital) with a given risk attaining the targeted (expected) return. In this
regard, the present study performs a techno-economic life extension analysis within the scope of the
multi-objective optimisation problem. The first objective is to maximise the return from the overall
wind assets and the second objective is to minimise the risk associated with obtaining the return. In
formulating the multi-dimensional optimisation problem, the life extension assessment considers the
results of a detailed structural integrity analysis, a free-cash-flow analysis, the probability of project
failure, and local and global economic constraints. Further, the risk is identified as the variance from
the expected mean of return on investment. The risk–return diagram is utilised to classify the OWTs
of different classes using an unsupervised machine learning algorithm. The optimal portfolios for
the various required rates of return are recommended for different stages of life extension.

Keywords: offshore wind; life extension; modern portfolio theory; unsupervised machine learning;
monopile; risk management

1. Introduction

Offshore wind turbine (OWT) structures approaching the end of their service lives
are in a structural condition for extended use, mainly due to the conservative design
philosophies and operation policies adopted by the oil and gas offshore industry. In this
regard, the offshore wind industry is searching for a reliable guideline for certification
assuring a structural capacity above the permissible limit within the desired extended
service life at minimal operational cost. Such policies can only be achieved by compre-
hensive life extension assessment that encapsulates both technical and economic analysis.
The techno-economic analyses for life-cycle extension projects must incorporate structural
health monitoring data, detailed structural integrity assessment, condition-based mainte-
nance and detailed financial analysis. Furthermore, developing a guideline that helps the
life extension certification requires a multi-disciplinary approach involving state-of-the-
art modelling, analysis and prediction techniques using the experience gained from the
research centred on design and life-cycle optimisation of OWTs.

To tackle the challenges mentioned above and which contribute to the current state of
the art, the present work aims to develop a novel approach to finding optimal solutions
for life extension management for a multi-unit offshore wind farm based on Markowitz’s
modern portfolio theory, adapted from finance. This novel approach is developed based on
the assumption that offshore wind turbines can be considered a cash-producing tangible
asset that provides a positive return from the initial investment with a given risk attaining
the targeted return. In this regard, the present study performs a techno-economic life
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extension analysis within the scope of the multi-objective optimisation problem. The first
objective is to maximise the return from the overall wind assets, while the latter aims to
minimise the risk associated with obtaining the return.

The modern portfolio theory, MPT, was created by Markowitz [1] based on the premise
that investors are risk-averse. They aim to maximise the expected return from the selection
of the possible investment options. MPT pioneered the quantitative financial analysis
by suggesting the investment selection is a quadratic optimisation problem with linear
constraints to maximise the overall return and minimise the risk [2].

This multi-objective optimisation problem resulted in the construction of an efficient
frontier [3]. The MPT was later modified by Sharpe [4] and Treynor [5,6] to build a
generalised theory for the capital asset pricing model to assist investment decision-making.
The modern portfolio theory and capital asset pricing model provided a decent way of
looking at the equilibrium between risky assets with a different expected return and a tool
for measuring the performance of available investment strategies.

The modern portfolio theory is built on many assumptions. However, one assumption
draws more reaction than the others is that risk can be measured as the dispersion of dataset
of returns relative to its mean value, in other words, standard deviation. Maier-Paape and
Zhu [7,8] reviewed the definition of the risk within the context of modern portfolio theory,
its limitations, objections and some alternative risk measures.

The importance of risk in offshore wind projects and of risk mitigation by diversifica-
tion has been addressed in earlier studies. In this regard, Green and Vasilakos [9] suggested
that it might prove economic to build an international offshore grid connecting wind farms
belonging to different countries situated close to each other. Levitt et al. [10] highlighted
that these risk policies and finance structures also have a strong influence on wind power
prices, and that wind prices are justifiably scattered depending on the riskiness of the
project as they are categorised from high to low risk as first of a kind, global average, and
best recent values. Further, Blanco [11] stated that de-regularisation of the power market
would lead to risk exposure to the profitability of the investment. The studies mentioned
above identified some critical elements for financing and managing the life cycle that need
to be accounted for in the multi-disciplinary risk-based life extension analysis.

Although Markowitz’s modern portfolio theory was initially developed for financial
assets, there has been quite an interest in applying the theory for non-financial assets
because it allows for an overall assessment of portfolios consisting of asset groups of
different risk levels instead of analysing each portfolio asset individually. Further, it allows
for a minimisation of risk through diversification, which is one of the main premises of
the MPT.

Chaves-Schwinteck [12] provided comprehensive research on the applicability of
modern portfolio theory to wind farm investments. The study was based on a critical
review of the already published works that mainly focused on risk mitigation through
geographical diversification (different wind farm locations) [13,14] and renewable energy
asset diversification (a portfolio of solar, wind and hydro) [15]. Chaves-Schwinteck [12]
underlined the difference in the definition of risk between a long-term infrastructure project
and a short-term financial investment. However, the research also acknowledged that
using appropriate diversification MPT can be a good tool for risk mitigation strategy for
wind farm investment by optimising the wind regime and technical risk details of the
operation of a wind farm. Besides, a number of studies have attempted the application of
the modern portfolio theory to take advantage of the power of diversification to mitigate
the overall project risk and optimise the portfolio of energy production assets [15–22].

In terms of the offshore wind industry, Cunha and Ferreira [22] presented a study in
which diversification can help reduce the variability in energy production, which aimed
to assist the decision-making process related to the geographic location of offshore wind
investments. Thomaidis et al. [23] also stated the advantages of power mixes compared
to single-site installation. The result of the study highlighted the benefits of diversifica-
tion by showing that the sites with high variability (risky assets) could add value to the
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portfolio. In addition, Schmidt et al. [24] contributed to arguments for diversification of
offshore wind assets since a premium feed-in tariff scheme incentivised the spatial diver-
sification. Delarue et al. [25] accounted for the variability of wind power in a portfolio
theory model, aiming to distinguish between installed energy, electricity generation and
actual instantaneous power. Further, deLlano-Paz et al. [26] gave an exhaustive review
of the literature concerning the application of MPT to the field of energy planning and
electricity production, explaining the limits to the MPT and to the concept of risk as well
as adjustability to the reality of the electricity market alongside its contribution from the
financial and energy standpoint.

The present study aimed to contribute to the literature by developing a risk-based
approach to deal with the life extension management of offshore wind assets. Markowitz’s
MPT obtains the optimal operational management strategy for targeted returns with min-
imal risk. To achieve this goal, firstly, a techno-economic life extension analysis was
conducted to attain the mean value of return and variance from the mean value, which is
denoted as risk. Afterwards, the resulting risk−return diagram was used to classify the
offshore wind assets using unsupervised machine learning, k-means clustering algorithm.
The appropriate weighting factor was estimated for a set of different offshore wind assets
through an optimisation process that minimised the risk for a targeted mean of return.
The study cases were generated for different stages of the life extension to give recommen-
dations regarding how to navigate during a life extension with the efficient portfolios of
offshore wind turbines.

2. Modern Portfolio Theory (MPT) and Portfolio Optimisation

Markowitz’s MPT acknowledges the trade-off between the expected return and cor-
responding risk. The theory argues that the expected return should be evaluated by an
investor concerning the risk an investor is willing to take to earn the expected return.
Within this context, MPT helps to build multiple assets that maximise the expected returns
for a given level of risk or minimise the risk for a given level of return.

The modern portfolio theory heavily relies on statistical time-series measures (mo-
ments). These statistical measures are mean value, standard deviation, covariance, cross-
correlation and auto-correlation. The mean value denotes the performance (arithmetic
mean for expected, geometric mean for achieved performance) and the standard devi-
ation denotes the riskiness of the asset. The covariance indicates the systematic risk,
which cannot be removed by diversifying the overall risk in the portfolio of assets. The
cross-correlation denotes how two given assets move together, and the auto-correlation
represents the informational efficiency of the asset that shows how it moves in time. The
present study performs portfolio optimisation for life extension management based on the
first four measures, assuming that the autocorrelation of all assets is zero, meaning that
return on investment would reflect all the information without any time lag.

The correlation between the assets is as significant as the mean value and standard
deviation because it defines to what extend the risk can be minimised within a diversified
portfolio. When the correlation between the two assets is −1, the total risk of the portfolio
of those two assets becomes minimum, whereas when two assets are fully correlated,
correlation is 1, the entire risk or standard deviation of the portfolio becomes the weighted
sum of the standard deviations of those two assets.

The effect of the correlation on the success of the risk mitigation via diversification
becomes more relevant for life extension of offshore wind turbines than the beginning of
the life-cycle because the offshore wind assets are expected to be less correlated with each
other over the service life.

Following the description given above, Markowitz’s portfolio theory can be expressed
as follows:

µp =
N

∑
i=1

wiµi (1)
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where µp is the mean value of returns of the portfolio, wi is the weighting factor related
to each asset and µi is the mean value of returns of each asset. The variance of returns is
expressed as follows:

σ2
p =

N

∑
j=1

(
w2

j
σ2

j

)
+

N
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j=1
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∑
i = 1
i 6= j

(
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where σp is the standard deviation of return of the portfolio, which indicates the level of risk
of the overall portfolio and σij is the covariance between two assets which is calculated as:

σji = ρjiσjσi (3)

where ρij is the correlation between the two assets. For a large number of assets, the
standard deviation of return of the portfolio is as follows:

σ2
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∼=
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N
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i 6= j

(
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)
(4)

As the correlation approximates 1, the portfolio’s standard deviation approximates
the weighted product of the standard deviation of return of each asset, which means that
the portfolio selection does not reduce the risk caused by individual assets.

In essence, the modern portfolio theory constitutes a multi-objective (maximum return,
minimum risk) optimisation problem that leads to an efficient frontier. The efficient frontier
is built similar to the Pareto optimality front (frontier), which accepts the riskier asset as
long as the asset’s mean value is higher, or, accepts a lower return as long as the asset is
less risky. It is worth mentioning that the efficient frontier tends to be nonlinear, showing
behaviours such as diminishing marginal return to risk. This means that it requires more
risk-taking to get a unit increment of the expected return.

Another underlying assumption of the modern portfolio theory is that the asset return
follows a normal distribution, which might not represent the reality as the distribution
of the asset returns can be fat-tailed distribution and might have a tail and asymmetric
dependence and can show non-stationary (time-varying) time-series attributes. In failing
to comply with these normality assumptions, the investor is subjected to heavy downside
risk, and a risk-averse investor is intolerant to downside risk.

The critics of the modern portfolio theory suggest that there are significant flaws
regarding the underlying assumptions, such as normality assumptions, returns reflecting
complete information, and risk definition assumptions. To address these assumptions,
post-modern portfolio theory was introduced, focusing on the downside risk of returns.
The suspicious take on the modern portfolio theory and its place in the investment world
has its merit; nevertheless, the application of the modern portfolio theory to offshore
wind asset managements is still quite an interesting research topic as the underlying
assumptions regarding the return, volatility and correlation can be obtained through a
number of statistical analyses and confirmed before the use of the MPT, which is essentially
the case for the present work.

The line drawn from the risk-free asset rf tangent to the efficient frontier is called the
optimised risk/return relationship (Sharpe ratio) along the efficient frontier. The most
efficient portfolio is identified as the highest Sharpe ratio. An investor who does not define
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a preference function (utility function), which is a function of risk-averseness, should accept
the portfolio with the highest Sharpe ratio.

Sharpe Ratio =
(µp − r f )

µp
(5)

The optimised portfolio with the highest Sharpe ratio is a concept that can be utilised
for the diversified offshore wind asset portfolio. Nevertheless, it is also possible to attain
efficient portfolios as a function of the risk-averseness of the decision-makers. One can be
advised to accept more risk-tolerant preference at the beginning of the life extension. The
level of risk-averseness could be increased towards the end of the life extension, and this is
precisely the research question that was undertaken in the present work.

3. Life Extension Assessment and Offshore Wind Asset Classification

The prerequisite of the modern portfolio selection is to have the first two moments of
the sample offshore wind farm data, the mean value and standard deviation. The mean
value denotes the expected return, and the standard deviation indicates the risk associated
with the asset. To this end, a comprehensive life-cycle assessment covering both technical
and economic aspects is conducted in a Monte Carlo simulation. The techno-economic
life-cycle assessment results are used to classify different offshore wind assets based on a
risk−return diagram.

The methodology used for the classification consists of five stages, as seen in Figure 1.
The procedure commences with preprocessing data collected by the structural health moni-
toring system, followed by a corrosion-induced crack growth simulation and structural
integrity analysis to estimate the maintenance interval and overall operational costs.

The structural health monitoring system processes the SCADA system’s wind-induced
load data. It removes the noise from the signal using the low-pass filter (frequency domain)
or Gaussian running-mean filter (time domain). The preprocessed time signal is then
analysed to obtain the wind-induced bending stress at the transition piece, where corrosion
affects the support structure the most. The corrosion-induced crack growth simulation is
conducted based on fracture mechanics in the time domain accounting for the nonlinear
corrosion growth, crack-corrosion interaction and load sequence effect, resulting in remain-
ing life. The next stage is to analyse and monitor the criticality of the crack growth based
on the failure-assessment diagram, which defines the preventive maintenance decision.
These decisions might alter depending on the confidence interval chosen for the limit state
function for failure.

The life extension assessment considers both the risk and returns associated with the
life extension decision. The return is evaluated based on the net present value using free
cash flow discounted at the interest rate. The appropriate interest rate is defined as the
likelihood of failing to obtain the predicted free cash flow along with the life extension.

The result of the life extension assessment of different offshore wind assets is presented
in a risk−return diagram. Using unsupervised machine learning techniques, k-means
clustering, offshore wind assets with different structural and economic characteristics are
classified. The offshore wind farm projects are represented as asset classes with different
expected returns and risk classes, which is the required input to apply modern portfolio
theory providing recommendations for further risk or return expectations.
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Figure 1. Flow chart for the development of life extension classification.

The net present value of a life extension project can be formulated as:

NPV =
N

∑
i=1

nOWT · FCFi

(1 + r)t (6)

where NPV is the net present value (intrinsic value), nOWT is the number of offshore wind
turbines in a wind farm, t is the duration of life extension, r is the discount rate and FCFi
is the free cash flow for a given year. The free cash flow is calculated by subtracting the
revenue from the operating income as:

FCF = E[P] · Cp · XOI · XME · XWH FiT − (CO + CM) (7)

where E[P] is the expected power of an offshore wind turbine, Cp is the capacity factor,
XOI is the operational intensity factor, XME is the management efficiency factor, XWH is
the working hours per year and FiT is the feed-in tariff. The annual maintenance cost is
estimated together with the fixed operational cost CO, which is assumed to be 40 €/MWh
for an expected wind speed of 8.5 m/s. The corrective maintenance cost CM of a fixed
support structure is considered to be 50 K€/MW.

The free cash flow is discounted at the interest rate based on the capital asset pricing
model as follows:

r = r f + β(rm + α− r f ) (8)
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where rf is the risk-free interest rate, β is the volatility measure of the equity, rm is the mean
value of the market return and α is the sector return relative to the market. The volatility
measure, β, represents the likelihood that the offshore wind asset cannot produce the
predicted free cash flow, covering the revenues from electricity sales and the operational
costs to keep the offshore wind structure above the permissible safety limits.

The monopile offshore wind turbines with a 5 MW power capacity are considered a
reference ageing offshore wind structure because the monopile support structures are the
most commonly used support structure type. A typical monopile OWT is illustrated in
Figure 2, and Table 1 shows the characteristics of the monopile OWT.
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Table 1. Characteristics of the monopile OWT [27–29].

Wind turbine 5 MW NREL
Rated wind speed 11.8 m/s

The expected value of wind speed 9 m/s
Hub height (from the MSL) 86 m
Water depth (from the MSL) 40 m

Turbulence intensity 0.12
Integral length scale 340 m

Thrust coefficient (N/(m/s)) 0.73
Structural and aerodynamic damping 4% and 1%

Natural frequency 0.281 Hz
Diameter of support structure 6 m
Thickness of support structure 50 mm

Material constant 5.21 × 10−13

Material exponent 3
Threshold stress intensity factor 2 MPa·ml/2
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Table 1. Cont.

Critical stress intensity factor 69 MPa·ml/2

Yield stress 355 MPa
Plate breadth 0.1 m
Sigmoid slope 0.2

Shift parameter 0.01

The techno-economic life extension assessment for offshore wind assets calculates the
mean return based on the assumption that the offshore wind asset is appreciated based
on the return on asset obtained annually. Because it is assumed that the offshore wind
asset does not require any debt to fund its investment, it is reasonable to take that the risk
premium is directly proportional to the variance from the mean value of returns, which
can be derived by reversing the capital asset pricing formula to estimate the standard beta
and, in turn, the standard deviation.

The future earnings/cash flow of an offshore wind asset requires revenue and oper-
ational cost estimation. The revenue can be calculated by multiplying expected energy
production by the feed-in tariff. The operating cost can be estimated using empirical for-
mulae based on the operational intensity and wind turbine capacity. It is worth mentioning
that the estimates made for future earnings rely heavily on the assumption and the success
of empirical models used in the present study.

The present study considers the variables affecting the free cash flow within the scope
of a semi-quantitative risk-based analysis based on the likelihood of failing to obtain the
predicted future earnings.

These premiums are calibrated depending on the characteristics of the life exten-
sion project and the economic environment under which the project is consented. The
spread/corporate premium consists of equally-weighted premium components covering
possible risks concerning obtaining expected free cash flow such as life extension project,
project owner, microeconomics, macroeconomics, energy sector and financial market.

In the present study, the risk-free rate is assumed to be 1.5%, the market return is 8.7%,
and the volatility measure is 1.12. The variables considered in the free cash flow analysis
and the extent to which these variables affect the interest rate are given in Table 2. The
details of the techno-economic life extension assessment can be found in [30].

Table 2. Characteristic of variables involved in the intrinsic value analysis.

Variables E [] COV (%) Distribution

Expected wind speed (m/s) 10 10 Weibull
Operation intensity 0.75 10 Normal

Wind farm size (unit) 30 20 Uniform
Life extension (year) 20 40 Uniform

Management efficiency 0.85 10 Normal
Availability and capacity factor 0.95 and 0.44 10 Normal

Measured crack size (m) 0.010 20 Lognormal
Feed-in tariff (€/MWh) 120 20 Normal

Safety class 5 50 Uniform

Figure 3 presents the results of the techno-economic analysis for different life extension
projects over a risk (standard deviation of return on equity)—return (mean value of return
on equity) diagram. The analysis is conducted for 200 life extension projects uniquely
characterised based on the variables given in Table 2. The results show a pattern that
complies with the expected high-risk high-return model to a certain point, and beyond
that point, a higher risk cannot produce a higher return. This phenomenon is explained in
economics as “the law of diminishing marginal returns”, which implies that after some
certain level of capacity is reached, having an additional risk factor will indeed yield a
minor change in return. On the other hand, being too risk-averse could cause the project
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to not produce any viable return. An efficient frontier is established for the life extension
project to guide life extension management in light of these considerations.
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The results of the techno-economic analysis are used to classify the offshore wind tur-
bine. To this end, the k-means unsupervised machine learning (ML) algorithm is employed.
Unlike supervised machine learning, the success rate of the k-means algorithm cannot
be evaluated by training and testing errors. Instead, the k-means ML algorithm employs
quantitative and qualitative metrics to measure the performance of the ML algorithm. In
this regard, the elbow test, silhouette test and visual inspection are used to measure the
success of the classification concerning the number of clusters.

Figure 4a shows quantitative test results in which the minimum elbow test score and
the maximum silhouette score are targeted. At times when the quantitative tests result
in multiple candidates, a visual test might be helpful. It can be argued that k = 2 or k = 4
are a reasonable choice for the number of clusters; however, the visual test indicates a
classification with four groups would make a better choice (see Figure 4b).
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Figure 5 demonstrates the classified offshore wind assets on a risk−return diagram,
where the mean value of return denotes return on investment, and the standard deviation
indicates the risk. Four groups are identified as Group A, B, C and D. Asset class D is
associated with the highest expected return and the highest risk. In contrast, asset class A
is associated with the lowest risk and lowest expected return.
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A reasonable scenario would be starting in the region of high risk and high return as
Group D. Risk mitigation strategies can be applied to make the overall offshore wind farm
less risky asset group zones towards the end of the life extension.

4. Case Studies and Discussion

As a result of the techno-economic analysis followed by the k-means unsupervised
ML algorithm, the classified offshore wind assets on a risk−return diagram are obtained.
The present section uses the provided data to conduct the mean-variance optimisation
for offshore wind assets of different classes (classification). The modern portfolio theory
requires the covariance matrix between the offshore wind assets besides the mean value
and standard deviation. To this end, a time series of the mean value of returns is generated
based on the monthly expected return and standard deviation of each offshore wind asset
using sampling as white Gaussian noise. The generated time series are used to estimate
the covariance and correlation matrix.

Although the techno-economic analysis resulted in 200 data points, the correlation
matrix of 50 offshore wind assets is shown in Figure 6a for better visibility. Figure 6b
demonstrates the correlation matrix of four offshore wind turbines deemed representative
of four asset groups (A, B, C and D), as identified in the previous section. The correlation
value of +1 refers to fully correlated offshore wind assets, and the correlation value of
−1 refers to negatively correlated offshore wind assets.
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In the choice of the representative offshore wind turbines, it is aimed to have assets
with different correlations, assuming that the offshore wind turbines might differ consider-
ably from the wind turbine efficiency and structural condition standpoint after 25 years of
service life.

As far as the case studies are concerned, the life extension is considered to have three
phases. The first phase is the beginning of the life extension, where the investor can be
more risk-tolerant and prefer the portfolio that would bring higher returns.

This phase can be investigated in two expected rates of return as 15% and 14%, as in
Figures 7 and 8, respectively. The resulting portfolios must be along the efficient frontier.
The results indicate that the offshore wind farms must have a significant portion of their
offshore wind turbines operating conditions at asset class D (OWT4) to achieve such
expected returns.
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For the second phase, the offshore wind farm is considered to be halfway through
the complete life extension. It is reasonable to argue that investors would prefer a less
risky operation of the offshore wind farm as the structural conditions are worsening and
the capacity factor of the offshore wind farm are decreased. The optimal portfolios on the
efficient frontier are demonstrated for 12% and 10% mean value of the return on investment
(ROI) in Figures 9 and 10, respectively.
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The results show that if the offshore wind turbines of different asset groups were
equally weighted, the expected return would be lower than the mean-variance optimi-
sation suggested. For this phase, asset classes B and C outweigh the other asset groups.
Nevertheless, it is beneficial to have other asset groups with smaller portions to take ad-
vantage of the diversification effect on risk mitigation. It should also be expected that as
the correlation between the asset groups increases, the efficient portfolio curve gets closer
to the assets, meaning that the overall portfolio risk becomes higher than the portfolio with
less correlated asset groups.

The investors’ expectations would be different towards the end of the life extension.
As a result of an intensive operation, the offshore wind assets should expect to have
more structural integrity issues that need to be attended to by maintenance or even repair.
A proactive management approach would be reducing the targeted rate of return, thus
the risk.

Figure 11 shows the portfolio on the efficient frontier, which happens to be somewhere
between an equally weighted portfolio and the market return in terms of return. Figure 12
shows the portfolio selection that minimises the risk for the available asset groups. Al-
though the low-risk asset class has the largest position in the optimal portfolio, the total
risk of the offshore wind farm is less than the asset class A (OWT1), which demonstrates
the power of diversification on the offshore wind farm consisting of multiple offshore wind
turbines with varying features.

In addition to the portfolios optimised for the different phases of the life extension,
decision-makers responsible for the life extension operational management might be
interested in acquiring a portfolio of offshore wind assets that will maximise how much
excess return is gained for having a risky asset, in other words, risk-adjusted return. The
modern portfolio theory introduces this concept through the Sharpe [4] ratio.

Figure 13 shows the portfolio that maximises the Sharpe ratio and the portfolios
generated for the portfolio at the market risk, the equally weighted portfolio and the
portfolio targeting 12% return. The Sharpe ratio on the efficient frontier is also the point
that intersects with a tangential line connecting to the risk-free asset type. This line is called
the capital allocation line for investors who allocate the capital between the Sharpe ratio
and risk-free assets in finance, which does not have any place in the present study.
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The Sharpe ratio is calculated based on the residual return (mean value of the rate of
return—risk-free rate) divided by the standard deviation of the selected portfolio. This cal-
culation is done for every portfolio on the efficient frontier and the portfolio that maximises
the Sharpe ratio, therefore the most risk-adjusted return. The result of the optimisation
that maximises the Sharpe ratio is presented in Figure 14. The Sharp ratio decreases as
the standard deviation of the return or the mean value of return increases because of the
marginal diminishing return concept. The marginal diminishing return concept suggests
that an investor needs to take higher risks to obtain excess return after the Sharpe ratio.
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From the corporate finance point of view, the project’s profitability measures such
as the return on an asset, return on equity, return on investment (capital) and return
on sales needs to be such a rate that compensates for the appropriate hurdle rate. The
hurdle rate reflects the price for taking the risk to earn a given expected return. The
generic investment concept is valid for financial, non-financial, corporate funding or project
funding. The undeniable principle is to assess the added value (future earnings) brought
to the investment (capital), accounting for the opportunity cost (weighted average cost
of capital). Depending on the financial activities decided for the project, the performance
measure can differ. However, ultimately the decision-makers seek projects/investments
that will bring higher returns on the capital than the corresponding cost of capital.

Within the scope of the present work, the analysis is conducted based on the assump-
tions that the offshore wind farms analysed for the life extension have neither debt nor
retained cash from the previous operating period. Based upon this assumption, the cost
of capital associated with the offshore wind life extension is defined by the equity risk
premium. The performance measure is considered a return on equity, even though equity,
total asset, and initial capital would mean the same.

The equity risk premium is the price seen fit for taking the risk. The decision-makers’
view on the macroeconomics, microeconomics, long and short-term corporate strategy,
energy market, and competitors inside and outside of the sector would determine the
willingness to take the risk. The present study guides the decision-makers regarding the
life extension of offshore wind farms. The asset type categorised as “high-risk high-return”
is recommended for the beginning of the life extension; however, the decision-makers are
urged to minimise the risk towards the end of the life extension to preserve its asset and
avoid downside risk.

The present study analysed the riskiness of a life extension of an offshore wind farm
via the perspective of two schools of thought. The first school of thought takes the risk as
the variance of return around an expected return, which is caused by the variability of the
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factors affecting the operating income of the offshore wind farm. The latter denotes the
risk as any action taken other than having the well-diversified portfolio that maximises
the Sharpe ratio. The second definition of risk assumes that the operators would minimise
the risk of return by being well-diversified between the offshore wind assets; the well-
diversified portfolio of offshore wind turbines eliminates all the idiosyncratic risk associated
with the individual asset and the systematic risk associated with the overall offshore wind
farm and site remains. This means that for any chosen portfolio other than the well-
diversified portfolio, there must be compensation.

The scope of the present study can be extended in the future by incorporating the
capital asset pricing model, CAPM, within the modern portfolio theory to provide a relative
measure of the risk premium for a different combination of asset groups accounting for
macroeconomics, microeconomics, energy sector strength, and political and environmental
sentiment. Such studies would allow for a more comprehensive look at the life-extension
decisions related to operating, investing and financing and help to have better judgements
on the appropriate equity premium, the weighted average cost of capital and the hurdle
(discount) rate, which has utmost importance for project finance.

5. Conclusions

The present study developed a risk-based approach to finding optimal life extension
management strategies for offshore wind farms based on Markowitz’s modern portfolio
theory. The techno-economic life extension assessment was conducted considering the
offshore wind turbines as cash-producing tangible assets; consequently, the mean value of
return on investment and the deviation from the mean value were obtained to construct the
risk−return diagram. The K-means unsupervised machine learning algorithm classified
four different asset groups for which the mean-variance optimisation was conducted.
Finally, the case studies were generated considering different stages of the extended service
life and the investors’/decision-makers’ expectation.

The results of the mean-variance analysis indicated that a portfolio consisting of OWTs
of different asset classes provides lower risk-taking for a required rate of return than an
equally-weighted portfolio. This conclusion is valid for all the case studies except for
the required return of 15% and above and supports the argument that the diversification
between different offshore wind asset classes almost always helps with the risk mitigation
during the life extension. However, the contribution of each asset group to the overall
portfolio changes with the required return, which varies depending on the life extension
phase of the offshore wind farm.

In addition to case studies created for different phases of life extension, the present
study optimised a portfolio that maximises the ratio between the excess return gained for
taking risk (Sharpe ratio). The portfolio with the maximum Sharpe ratio was estimated
to be a 10% mean value of return on investment with a 24% standard deviation of return
on investment. The decision-makers/investors must consider the portfolio return and
risk and compare this with the defined hurdle rate before accepting the terms of the life
extension project.

Furthermore, the outcome of this study enables the creation of a roadmap for sustain-
able and efficient life-cycle and extension management decisions by tuning the control
parameters such as the operational intensity, the number of active offshore wind assets,
risk hedging options, repowering or decommissioning.
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