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Abstract: Detection, attribution and projection of changes in tropical cyclone intensity statistics are
made difficult from the potentially decreasing overall storm frequency combined with increases in the
peak winds of the most intense storms as the climate warms. Multi-decadal simulations of stabilized
climate scenarios from a high-resolution tropical cyclone permitting atmospheric general circulation
model are used to examine simulated global changes from warmer temperatures, if any, in estimates
of tropical cyclone size, accumulated cyclonic energy and power dissipation index. Changes in these
metrics are found to be complicated functions of storm categorization and global averages of them
are unlikely to easily reveal the impact of climate change on future tropical cyclone intensity statistics.
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1. Introduction

With the development of the HighResMIP subproject of the 6th version of the Cou-
pled Model Intercomparison Project, the multi-decadal simulation of global and basin
scale tropical cyclone statistics has become mainstream [1]. These models, with horizontal
resolutions ranging from 50–20 km can be considered “tropical cyclone permitting” or at
least “tropical cyclone-like permitting” as storms are produced in these simulations that
bear some similarities to actual tropical cyclones, such as high radial winds, low central
pressures and warm central cores [2–7]. Observed patterns and seasonality of cyclogenesis
and resulting cyclone tracks can be reasonably reproduced using prescribed sea surface
temperatures as a lower boundary condition [5,8] with errors in these statistics manifested
by a variety of factors often traceable to subgrid parameterizations. Indeed, as high perfor-
mance computing platforms edge towards the exascale, some of these model deficiencies,
in particular parameterized deep cumulus convection processes, can be ameliorated by yet
further increases in horizontal resolution [9].

However, given current computational limitations, HighResMIP-class models are the
currently available tool to perform the multi-realization, multi-decadal simulations able
to inform about the effect of global warming on tropical cyclone statistics. A recent pair
of expert team studies notes that there remains much uncertainty about detectible and at-
tributable changes in observed tropical cyclone statistics [10], even in their projected future
changes under significantly more warming than has occurred to date [11]. The first report
finds that an observed poleward shift of tropical cyclones in the Northwestern Pacific is
“highly unusual compared to expected natural variability” but casts doubt on whether any
other observed tropical cyclone properties are detectible, much less attributable to anthro-
pogenic climate change. However, a number of other event attribution studies found that
precipitation in individual tropical cyclone has been increased due to warmer sea surface
temperatures with low estimates of scaling with temperature increases, according to the
Clausius–Clapeyron relationship and best estimates of significantly higher scaling [12–17].
While these studies are not formal detection and attribution studies, confidence that there
is a human influence on tropical cyclone precipitation is enhanced by the demonstration

Oceans 2021, 2, 688–699. https://doi.org/10.3390/oceans2040039 https://www.mdpi.com/journal/oceans

https://www.mdpi.com/journal/oceans
https://www.mdpi.com
https://orcid.org/0000-0001-5991-0082
https://doi.org/10.3390/oceans2040039
https://doi.org/10.3390/oceans2040039
https://doi.org/10.3390/oceans2040039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/oceans2040039
https://www.mdpi.com/journal/oceans
https://www.mdpi.com/article/10.3390/oceans2040039?type=check_update&version=4


Oceans 2021, 2 689

that eastern US hurricane precipitation patterns and magnitude can be well represented
by models at HighResMIP-class resolutions [18] and in general by previous detection and
attribution studies on extreme precipitation [19,20]. Event attribution changes have also
investigated anthropogenic changes in tropical cyclone wind speeds [17,21] with very
clear future increases but less conclusive findings about the influence at current warming
levels [22].

Projections from HighResMIP-class models suggest profound changes in tropical
cyclone statistics but with significant uncertainties. The intensity of the most powerful
storms, as measured by instantaneous maximum wind speed or minimum central pressure,
increases in nearly all of these models with warmer temperatures [5,23–25]. This is very
carefully stated in the expert team assessment by Knutson et al. (2019) [11]. As “For TC
intensity, 10 of 11 authors had at least medium-to-high confidence that the global average
will increase. The mechanism for such a change is straightforward. Intense tropical cyclones
occur when ambient wind shear is low and humidity and sea surface temperatures are
high. As there will be periods in future warmer climates where wind shear is favorably low,
a larger amount of latent and sensible heat energy is available for the storm’s kinetic energy.
However, this very carefully crafted statement reflects the uncertainty in the number of
future tropical storms. Most of the HighResMIP-class models project a decrease in the total
number of tropical storms with global warming. But there is substantial variability across
models and if the decrease in total number of storms is very large, the number of intense
storms may decrease. Hence, another way of stating the expert team assessment is that
the fraction of intense tropical cyclones across all tropical storms is expected to increase
whether or not the actual number of intense storms increases or decreases. However, the
fraction of storms deemed intense is not particularly relevant to impacts, thus motivating
this study to examine intensity metrics with nonlinear dependences on peak wind speed.

While the Saffir–Simpson category scale is routinely used to communicate to the public
the imminent danger posed by tropical cyclones, more comprehensive alternative scales
have been proposed but not widely adopted [26–28]. While interpreted by the impact of
selected damage types, the Saffir–Simpson scale is actually defined by 1 min average peak
near surface wind exceedances over fixed thresholds. From a detection and attribution
point of view, this selection of a pointwise peak from an effectively instantaneous and
pointwise quantity may be too noisy to readily ascertain any human influence on tropical
cyclone intensity until global warming levels are much larger than present.

In this paper, a selection of other metrics of tropical cyclone intensity are examined
with attention paid to their changes as temperatures increase, if any. Projections of future
responses to global warming levels larger than that currently realized in the real world can
inform us to what changes to expect or at least what to look for in the observations. For
these purposes, this study uses simulations from a tropical cyclone permitting model with
a strong negative response in global tropical cyclone frequency to warmer global tempera-
tures. These metrics, storm size, accumulated cyclone energy and power dissipation index,
are chosen to be more integrative of the entire storm lifecycle than simply counting annual
storms in each Saffir–Simpson category. The focus here is only on global quantities but it is
recognized that the Northwestern Pacific dominates the global average of most tropical
cyclone statistics. Indeed, there is no guarantee that tropical cyclone activity will respond
to warming by the same amount or direction across different ocean basins as not only is the
warming of the ocean non-uniform, the changes in other tropical cyclogenesis precursors
are also non-uniform as are the changes in large scale influences on subsequent tropical
cyclone paths and development.

2. The CAM5 Climate Model Setup and Its Tropical Storm Frequency Response on the
SAFFIR-Simpson Scale to Warming

The community atmospheric model, version 5.1 (CAM5.1) is a global atmospheric
general circulation model with prescribed sea surface temperatures and sea ice concentra-
tions (Neale et al., 2012). For this study, it has been run using a finite difference dynamics
scheme on a regular latitude–longitude mesh of approximately one quarter-degree or
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~25 km [29]. Its simulated global annual tropical cyclone frequency is remarkably close
to observations although substantial cyclogenesis biases are exhibited in the Northern
Pacific Basin [8]. Simulated global annual tropical cyclone frequency has previously been
shown in this model to decrease relative to that of the current climate when driven by
conditions approximating the stabilized 1.5 and 2C targets of the Paris Agreement [24].
Figure 1 extends these simulations to include a preindustrial global temperature level and a
stabilized 3C above preindustrial temperature target. The experimental protocols including
sea surface temperatures and sea ice concentrations for the preindustrial (here denoted
“Natural”) and a present day period 1996–2015 (here denoted “Historical”) come from the
Climate of the 20th Century (C20C+) Detection and Attribution Project (available online:
portal.nersc.gov/c20c (accessed on 6 September 2021)), designed for event attribution [30].
Experimental protocols for the 1.5 and 2C stabilized climates come from the the Half A
degree additional warming, Prognosis and Projected Impacts (HAPPI) project [31] denoted
here as HAPPI1.5 and HAPPI2.0 respectively. The sea surface temperature boundary
conditions and greenhouse gas concentrations for the 3C stabilized climate were calcu-
lated from the CMIP5 models in the same way as HAPPI but suitably adjusted for the
warmer temperatures. As all of the warmer climate simulations are stabilized against
future emissions, their aerosol concentrations are set at the preindustrial levels. Only the
present day simulations differ in this regard. All the tropical cyclone statistics presented
here are calculated from storm tracks obtained from TECA2, the toolkit for extreme climate
analysis [32].

The observed frequency of named tropical storms of all Saffir–Simpson intensities
from tropical storm to category 5 is about 86 storms per year with an interannual standard
deviation of 9.6. From Figure 1, the model under observed boundary conditions produces
about 73 storms per year with an interannual standard deviation of 9. Multiple realizations
of each temperature scenario were produced. Five simulations of the historical period
were concatenated resulting in 100 total simulated years, approximating a stable climate.
Ensemble sizes of all the configurations are shown as numbers within the bars of Figure 1.
The error bars shown in Figure 1 represent the standard errors calculated using these
ensemble sizes. Figure 1 shows that the CAM5.1 model exhibits a strong decrease in storm
frequency as the climate warms.

The left panel of Figure 2 reveals that this simulated change in storm frequency varies
with Saffir–Simpson categories and the bulk of the decrease in total storm frequency stems
from the weaker categories of tropical storm (here denoted as category 0) and category 1.
Category 5 storms are more frequent in the future warmer climates than in the preindustrial
and current climates despite the overall decrease in cyclogenesis. The same statement is
true for category 4 when comparing the future to present climates, but the preindustrial
climate actually produced more storms in all other categories than the present day climate.
This change in the distribution of peak storm intensities will influence changes in other
more integrative intensity metrics.

The right panel of Figure 2 shows the variation in the fraction of annual average
storm counts across Saffir-Simpson categories for the various global warming levels. This
reveals a somewhat clearer climate change signal, especially for intense tropical cyclones
and supports the conservative conclusions of the expert team assessment [11]. It is worth
mentioning here that the cleanest comparison is between the natural and the future warmer
simulations as they all have the same aerosol forcings. Neglecting the historical simulations
then, the fractional increase in intense tropical cyclones (Categories 4 and 5) is monotonic
with warming.

portal.nersc.gov/c20c
portal.nersc.gov/c20c
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Figure 1. Annual number of all tropical storms (TS-cat5) as simulated by CAM5.1 at various global
warming levels. Numbers in the centers are the number of simulated years for each numerical
experiment. Error bars indicate standard error.
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Figure 2. (Left) Annual number of tropical storms by category as simulated by CAM5.1 at various global warming levels.
(Right) Fraction of tropical storms by category as in the left panel. Error bars indicate standard error.

3. Storm Size

Chavas et al., 2015 [33] developed a theoretical model of the radial structure of the
low-level tropical cyclone wind field by numerically solving a Riccati equation that relates
the radial gradient of the absolute angular momentum and wind speed at a given radius.
The spatial distribution of observed storm size from this model using a wind speed of
12 m/s to represent maximum storm extent was shown to agree well with the QuikSCAT
Tropical Cyclone Radial Structure database [34]. While this definition of outer storm size
radius would provide a good model evaluation metric, here we make a different choice
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based on much higher wind speeds to define a metric more relevant to impacts. Table 1
shows the Chavas radius as simulated by the CAM5.1 under present day climate conditions
for wind speeds defined as the lower bounds of the Saffir–Simpson categories averaged
over all the storms in each of the categories. Averages are performed on the three hourly
TECA2 output and aggregated over category at that instant. The table is arranged so that
for storm of a given category, average wind speed radii are provided at its strongest rating
and for all lower categories. Comparison along the diagonal of Table 1 immediately reveals
a model of structural weakness. For all tropical cyclone categories greater than 1, the
Chavas radius at its rated wind category is only slightly larger than the climate model’s
horizontal grid resolution (~25 km). Maximum wind radius is then likely constrained to be
close to that resolution and hence any simulated tropical cyclone simply revolves around
an eye of a single grid cell. Similar tables for the other CAM5.1 simulations are shown in
the supplementary materials.

Table 1. Chavas radius (km) for wind speeds thresholds from the CAM5.1 present day (Historical)
simulations as a function of instantaneous Saffir–Simpson categorization. Wind speed thresholds are
shown in the second row (m/s). The large volume of data renders standard errors miniscule. The
radii (rn) denote the average radius at wind speeds corresponding to the category n threshold. For
instance, the average radius (r1) of category 4 storms at 33m/s is 62.7 km.

r0 r1 r2 r3 r4 r5

Wind Speed Threshold (m/s) 18 33 43 50 58 70

Category
TS (cat 0) 48.3 - - - - -

1 80.9 31.6 - - - -
2 103.1 41.0 27.7 - - -
3 119.8 51.4 34.1 28.6 - -
4 141.1 62.7 44.6 35.6 29.5 -
5 160.4 73.2 52.4 43.4 34.2 26.7

Despite this resolution limitation of the model presented here (and likely HighResMIP-
class models in general), it is informative to examine if climate change introduces any
change in tropical cyclone average size. The left panel of Figure 3 reveals that there is
no consistent change in the average radii of hurricane force winds (category 1 or 33 m/s)
while the right panel reveals similarly for the average radii of major hurricane force winds
(category 3 or 50 m/s). A similar conclusion is obtained by examining the Chavas radius
tables for various global warming levels in the supplementary materials. Hence, at least
in this model, climate change does not alter the average wind speed radial distribution of
a simulated tropical cyclone of a specified Saffir–Simpson rating. Further evidence that
structure of storms at a specified intensity does not change with warming is provided by
examining the relationship between maximum surface wind speed and minimum central
pressure, which also was found to be similarly unaffected [24]. In plain language for
instance, a category 3 storm in a much warmer future world is not larger nor smaller than
a category 3 storm in a preindustrial world despite changes in atmospheric structure, such
as lapse rates.

This is not to say that the area impacted by hurricane or major hurricane force winds
during an entire season does not change with global warming as storm frequencies at
different categories will likely change as, for example, in Figure 2. Furthermore, although
high resolution event attribution modeling studies have revealed structural changes in
individual tropical cyclones as they are warmed [17], such storms are also intensified,
which is not inconsistent with the conclusion shown in Figure 3 or the conclusion drawn
above. Hence, while average Chavas radius may be a good model performance metric, it is
not by itself a good climate change metric.
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Figure 3. (Left) Average radii (km) of hurricane force winds (33 m/s) across Saffir–Simpson categories and global warming
levels as simulated by the CAM5.1. (Right) Similar but for major hurricane force winds (50 m/s).

4. Accumulated Cyclone Energy Index (ACE)

The accumulated cyclone energy index (ACE) is obtained by summing the square of
the peak near surface wind speeds every 6 h over the lifetime of a tropical cyclone. It is
commonly used to describe both individual storms as well as seasonal tropical cyclone
activity in individual basins or globally. Despite its name, ACE is an index of accumulated
pointwise quantities and not a measure of total storm kinetic energy. It is another useful
metric, together with storm count, to describe the variations in seasonal tropical cyclone
activity. Basin wide ACE statistics have been used as a model validation metric [35]
revealing that the CAM5.1 simulated distribution of ACE in North Pacific is skewed toward
excess in the eastern part of the basin similar to storm counts [8]. Globally, the present
day CAM5.1 simulation is about 20% higher than the observed average over 1995–2015 of
750 ACE units (104 knots2). The left panel of Figure 4 shows global ACE from the CAM5.1
simulations, revealing that present day simulated ACE is both less than in the cooler
preindustrial climate and in the warmer future climates amidst substantial uncertainty from
interannual variability. This CAM5.1 projection is consistent with similarly inconclusive
total global ACE projections [36].

1 

 

 

Figure 4. (Left) Average annual global accumulated cyclone energy index (ACE) as simulated by CAM5.1 at various global
warming levels. Error bars indicate standard error. (Center) Average ACE per storm across Saffir–Simpson categories
as simulated by CAM5.1 at various global warming levels. (Right) Average annual global ACE across Saffir–Simpson
categories as simulated in the center panel. Error bars indicate standard error.
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The reason for this non-uniform change in average global ACE from one warming
level to another is a result of the convolution of changes in tropical cyclone frequency
and their distribution across wind speed intensities (Figures 1 and 2). The center panel of
Figure 4 shows the average ACE for storms according to their assigned peak category. From
tropical storm intensity to category 4, average storm ACE does not change with global
warming amount. Similar to the conclusion about this model’s storm size from Figure 3
and related tables, climate change does not change the average ACE of storms within
these categories. This might be a bit surprising as this model was shown to exhibit longer
tropical storm lifetimes with an associated increased poleward track density as the climate
warms [24]. However, ACE depends on the square of the instantaneous peak wind speed
and the bulk of a storm’s ACE is accumulated during its time spent in or near its strongest
rated category. This may suggest that the intensification and subsequent decay of tropical
cyclones may be unaffected by global warming until late in their lifetimes. However,
confidence in this level of detail drawn from a HighResMIP-class model should be very
low as this aspect of tropical cyclone development is notoriously difficult to simulate [37].
Average storm ACE within category 5 generally increases with warming as that category is
open ended and reflects that the most intense storms become yet more intense with warmer
sea surface temperatures. While the UNHAPPI3.0 simulation appears to be an exception,
this is also the case with the fewest number of simulated years and the highest uncertainty.

The distribution of simulated annual global average ACE across the Saffir–Simpson
categories is shown in the right panel of Figure 4 and reveals that most of the total ACE
comes from category 4 storms with the second largest contribution coming from category
3 storms at any global warming level. Changes with warming level in this figure are largely
controlled by changes in the tropical cyclone categories counts of Figure 2.

5. Power Dissipation Index (PDI)

The power dissipation index (PDI) is similar to ACE in that it is a (partial) measure of
total storm intensity. Instead of accumulating the square of the peak surface wind speed,
PDI accumulates the cube of the peak wind speed. Analogous to friction energy applied by
flow to a surface, the cube of peak surface wind speed is more closely related to economic
damages than tropical cyclone frequency itself [38]. Moreover, similar to ACE, seasonal
accumulated PDI will be more influenced by the most intense storms only more so due to
the higher nonlinear dependence on peak surface wind speed. Similar to Figure 4, Figure 5
shows annual average global PDI (left), average PDI per storm (center) and average annual
global PDI (right) as simulated by the CAM5.1 at various global warming levels. Similar to
ACE, the largest contributor to total simulated PDI comes from category 4 storms. However.
in this case for the warmer climate conditions, category 5 storms can contribute as much
or more to total PDI as category 3 storms reflecting both the intensification of the largest
storms and PDI’s cubic dependence on peak wind speed.
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  Figure 5. (Left) Average annual global power dissipation index (PDI) as simulated by CAM5.1 at various global warming
levels. Error bars indicate standard error. (Center): Average PDI per storm across Saffir-Simpson categories as simulated by
CAM5.1 at various global warming levels. (Right) Average annual global PDI across Saffir–Simpson categories as simulated
in the center panel. Error bars indicate standard error.
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6. Discussion

This study explores global average storm size, accumulated cyclone energy (ACE) and
power dissipation index (PDI) as alternatives to simple counting by Saffir-Simpson scale for
the detection, attribution and projection of changes in tropical cyclone activity as the planet
warms due to anthropogenic influences. As observations are limited, a high resolution
(~25 km) global atmospheric general circulation model is used as a tool to examine what
changes, if any, might be robust and possibly contained in the actual climate system. While
convection permitting models (~4 km or finer) would be a preferable tool for analyzing
changes in storm structural statistics, computational constraints preclude the formation
of ensemble multi-decadal simulations necessary to extract climate change signals, if any,
from the underlying noise.

Simulated changes in the total global annual average ACE and PDI are not found
to be robust to global warming. This is largely a result of offsetting changes in overall
decreasing storm counts but increasing average intensity. However, it is entirely possible
that regional changes in these metrics may be robust if regional changes in storm frequency
are substantially different than what they are globally. Indeed, substantial ACE and PDI
increases in the North Atlantic have been observed [38,39] and the model exhibits North
Atlantic ACE increases but not in the North Pacific [24]. When sorted on the Saffir–Simpson
scale, only the highest unbounded category exhibits increased ACE and PDI with warming
for the average storm within a category despite an increase in simulated storm duration
across categories.

Average instantaneous storm size, as measured by the Chavas radius at surface wind
speeds at hurricane (33 m/s) and major hurricane force (50 m/s), is also found not to
change with global warming (Figure 3) as might be expected, although model resolution is
not high enough to adequately capture eye wall details. Previous studies have focused on
average outer storm size, typically measured at 12 m/s or slower [33,40]. Indeed, outer
storm size may be a more appropriate detection and attribution metric than the inner radii
of Figure 3 as it may be more readily observable and less affected by eyewall processes,
although it is less relevant for wind damage impacts. However, climate change projections
of average outer storm size are conflicting as Yamada et al. (2017) [41] found an increase
with global warming in a 14 km model but Knutson et al. (2015) [42] found no change
in the media outer storm size used downscaled CMIP5 models with a 6 km hurricane
forecast model. Comparison of r0 in the first column of Table 1 to that in the tables in the
supplementary materials also suggests no change in storm radii at 18 m/s.

There is evidence from event attribution studies that the radial structure of tropical
storm precipitation may be affected by global warming [12,17]. However, Figure 3 and the
tables show that average radii for each wind speed considered within the Saffir–Simpson
categories is not sensitive to global warming. Consistent with previous analyses showing
no change with warming in the peak wind speed to pressure minima relationship [24,43,44],
this null result suggests that because the wind speed category bounds are relatively narrow,
storms for any specified peak wind speed are structurally similar regardless of global
warming level. The structural changes seen in event attribution studies are then simply
the result in shifts in wind speeds rather than some fundamental structural change. One
then might expect a change in the wind speed radii for the unbounded category 5, as
only for that category does the average wind speed change with warming. However, the
present model’s limitations in simulating eyewall processes is especially important when
considering such intense storms and the present null result in this case should not be
considered definitive.

Dividing global annual average ACE and PDI according to Saffir–Simpson categories
yields results very similar to simple counting by categories with general decreases at the
lower categories and increases in the highest one. This suggests then that a more robust
climate change metric might be exceedances over a high threshold rather than averages.
Figure 6 shows the exceedances of each climate scenario over a threshold selected from
the historical simulation and reveals little difference between ACE (middle) and PDI
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(right). The left panel of Figure 6 shows exceedances of storm peak wind speed. However,
this panel is not directly comparable to the other two as is calculated from the storm
maximum wind speed over entire storm lifetime and as such is far more extreme than the
storm integrated quantities of ACE and PDI. It does not appear that accumulating tropical
cyclone intensity metrics over the course of storms and seasons adds significant clarity to
disentangling the issue of decreasing storm frequency but increases in the tail of the wind
speed distribution. 
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Figure 6. Exceedance over 95, 97.5 and 99th thresholds selected from the Historical CAM5.1 simulation. (Left) Maximum
storm peak wind. (Middle) Storm total ACE. (Right) Storm total PDI.

This attempt to find a better metric than global tropical cyclone frequency for climate
change detection, attribution and projection produces mixed results. The 6th Assessment
Report of the Intergovernmental Panel on Climate Change [45] concluded with high
confidence that the fraction of tropical cyclones that achieve category 4 wind speeds
or higher would increase with further global warming but made no statement about
the number of such intense tropical cyclones. Consistent with Knutson et al. (2019), the
assessment recognized that available model projections, including the HighResMIP models,
vary greatly in projected decreased global total tropical storm frequency with warming, if
any. Hence, if the actual decrease in total tropical storm frequency were to be small and
intensification large enough, there would be more intense tropical storms. However, if the
decrease in total frequency is large enough, there would be fewer intense tropical storms.
Indeed, the trend in intense storm frequency might not even be monotonic with increases at
low levels of global warming but decreases at higher levels due to this contention between
increased intensification and decreased cyclogenesis. In the context of the current study,
this structural uncertainty in future projections of the distribution of tropical storm intensity
carries over to future projections of both global ACE and PDI.

While storm size, ACE and PDI are important climate model performance evaluation
metrics [16], this combined effect of global warming of decreasing storm count but increas-
ing the intensities of the strongest storms complicates constructing a robust global metric
that might exhibit a change given enough data to reduce internal variability. While this
study used a climate model that produced between 50 and 100 years of tropical cyclones
under stabilized climate scenarios, the real world is a more complex transient system with
smaller available data set sizes. Present day exceedance of a contemporary 95th percentile
global intensity threshold would result in about four storms annually. Due to the large
natural variability of peak tropical storm intensities, confident detection and attribution
of the effect of global warming on tropical cyclone intensity statistics relevant to impacts
may not be realized with the simple global statistics considered here until far into the
future. However, regional versions of these metrics or other even more complex metrics,
such as the distribution of storm tracks, storm duration and translational speed, may be
more promising.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/oceans2040039/s1: Table S1. Chavas radius (km) for wind speeds thresholds from the
CAM5.1 preindustrial simulation (NATURAL) as a function of instantaneous Saffir–Simpson catego-
rization; Table S2. Chavas radius (km) for wind speeds thresholds from the CAM5.1 1.5 ◦C above
preindustrial simulation (HAPPI1.5) as a function of instantaneous Saffir–Simpson categorization;
Table S3. Chavas radius (km) for wind speeds thresholds from the CAM5.1 2 ◦C above preindus-
trial simulation (HAPPI2.0) as a function of instantaneous Saffir–Simpson categorization; Table S4.
Chavas radius (km) for wind speeds thresholds from the CAM5.1 3 ◦C above preindustrial simulation
(UNHAPPI3.0) as a function of instantaneous Saffir–Simpson categorization.
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