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Abstract: To judge the ability of convolutional neural networks (CNNs) to effectively and efficiently
transfer image representations learned on the ImageNet dataset to the task of recognizing COVID-19
in this work, we propose and analyze four approaches. For this purpose, we use VGG16, ResNetV2,
InceptionResNetV2, DenseNet121, and MobileNetV2 CNN models pre-trained on ImageNet dataset
to extract features from X-ray images of COVID and Non-COVID patients. Simulations study
performed by us reveal that these pre-trained models have a different level of ability to transfer image
representation. We find that in the approaches that we have proposed, if we use either ResNetV2 or
DenseNet121 to extract features, then the performance of these approaches to detect COVID-19 is
better. One of the important findings of our study is that the use of principal component analysis
for feature selection improves efficiency. The approach using the fusion of features outperforms all
the other approaches, and with this approach, we could achieve an accuracy of 0.94 for a three-class
classification problem. This work will not only be useful for COVID-19 detection but also for any
domain with small datasets.

Keywords: convolutional neural networks; transfer learning; K-means clustering; principal
component analysis

1. Introduction

COVID-19, a global pandemic, is still spreading in many parts of the world since its identification
in late December 2019. In these nine to ten months, this disease has become one of the most significant
public health emergencies requiring remedial measures and early diagnosis. In many countries till
recently, reverse transcription-polymerase chain reaction (RT-PCR) tests are the most popular diagnostic
method for detecting COVID-19. Although popular, this method suffers from limitations in its long
wait time and low sensitivity. Therefore, for the early diagnosis of COVID-19, many have started using
molecular tests to determine the coronavirus. For example, many existing machines like Genmark’s
ePlex Respiratory Pathogen instrument or Abbott’s ID, etc., have a COVID-19 feature for testing,
which takes much less time [1,2]. The other advantage is that the sensitivity of these molecular tests is
around 90% better than the RT-PCR method having a sensitivity of about 70%. However, both the
RT-PCR method or molecular testing approach need expensive equipment and trained professionals.
Further, the availability of these methods is limited in remote areas and low and middle-income

AI 2020, 1, 586–606; doi:10.3390/ai1040034 www.mdpi.com/journal/ai

http://www.mdpi.com/journal/ai
http://www.mdpi.com
http://www.mdpi.com/2673-2688/1/4/34?type=check_update&version=1
http://dx.doi.org/10.3390/ai1040034
http://www.mdpi.com/journal/ai


AI 2020, 1 587

countries. Thus, it necessitates developing useful diagnostic tools suitable for use in remote areas
and low and middle-income group countries. Studies suggest an association of coronavirus with a
dysregulation in blood investigations [3]. Apart from these methods, radiological imaging has utility in
COVID-19 detection [3]. Further, Rubin et al. [4] report the recommendations by a panel of radiologists
and pulmonologists for using CXR and computer tomography (CT) in the diagnosis, progression,
and management of COVID-19. CT, in comparison to CXR, has superior diagnostic accuracy, but
in terms of cost, ease of use, availability, and less cumbersome sanitization process CXR is a better
option. Furthermore, it is easy to install and operate portable units having a CXR facility in COVID
wards, intensive care units, COVID screening areas [5]. There are subtle changes in CXR due to
COVID-19. COVID creates septal thickening [6], peripheral airspace opacities, ground-glass opacity [7],
peribronchial consolidation, multifocal airspace opacities, and diffuse mid and lower zone consolidation
in CXR [5]. Moreover, CXR is abnormal in 9% of cases, even for patients having negative initial RT-PCR
results. For a detailed review of the role of CXR in COVID diagnosis and prognosis, see [5]. The use of
CXR is not new; its usage includes disease detection, evaluation of prognosis, forecasting the response
to treatment, and monitoring of disease status. It helps diagnose specific diseases such as tuberculosis,
interstitial lung diseases, and pulmonary nodules [8]. Automatic CXR analysis acts as an assistive tool
for radiologists and improves detection accuracy [8]. More recently, the inherent capability of deep
neural networks to capture hidden representations and extract features of the input images has led to
their remarkable success in the automatic analysis of medical images. Deep learning algorithms help
in identifying, classifying, and quantifying patterns in medical images [9]. Applications of deep neural
networks in medical image analysis have been highlighted by [9–16]. Among many different types of
deep neural networks, currently, convolutional neural networks (CNNs) are the most researched in the
medical image analysis [9,11,17–19]. CNNs show a more distinct resemblance to the biological system.
The connectivity patterns of CNNs in Convolutional layers resemble the connectivity pattern of the
mammalian visual system. The most noteworthy characteristic of CNNs is that, like the mammalian
visual system, these networks build the representation of input image hierarchically without prior
knowledge or human effort. CNN directly processes two or three-dimensional images; this keeps the
structural and configural information of the image intact making them the most suitable networks
for accomplishing different tasks in medical imaging [9]. CNNs have a large number of parameters;
for optimizing them; in general, there is a requirement of large scale annotated datasets. In the medical
field, the availability of such large scale datasets is rare. To overcome this limitation, researchers use
CNNs with transfer learning. In transfer learning, the image representations learned with CNNs on
large-scale datasets are effectively and efficiently transferred to the other tasks having an availability
of small-scale datasets, for example, to medical image analysis [20–22]. Li et al. [23] showed that
for diabetic retinopathy fundus image classification, CNN with a transfer learning approach for
classification outperformed other existing methods of classification. In another study, InceptionV3
pre-trained based model with transfer learning was successfully used to classify pulmonary images [24].
Mormont R et al. [25], in their work on digital pathology, compared VGG16, VGG19, InceptionV3,
ResNet50, InceptionResNetV2, DenseNet, MobileNet pre-trained models with transfer learning.
They found that the performance of VGG based model was worst while the performance of the model
based on ResNet and DenseNet was much better than the model based on other pre-trained models.
Shin et al. [19] used CifarNet, AlexNet, and GoogleNet pre-trained ImageNet models to transfer
knowledge for thoracoabdominal lymph node and interstitial lung disease detection. Their study
shows that the GoogleNet pre-trained based model performs poorly compared to either AlexNet or
CifarNet pre-trained based models.

Recently many of the researchers applied the approach of CNN with transfer learning for the
detection of COVID-19.

Training deep CNNs from scratch requires large scale annotated datasets, but the availability of the
COVID-19 image dataset is limited. Therefore, CNN models proposed so far for detecting COVID-19
made use of transfer learning. Some researchers made tailored CNNs to detect COVID-19 [26,27].
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In these tailormade models, to overcome the limited availability of the COVID image data set,
Wang et al. [26] first trained their proposed model on the ImageNet dataset and then on COVIDx
dataset. In contrast, Afshar et al. [27] pre-trained their proposed model on an external dataset consisting
of 94,323 frontal view chest X-ray images for common thorax diseases then fine-tuned the model on a
dataset containing COVID-19 images. Islam et al. [28] applied long short term memory (LSTM) for
COVID detection after the extraction of the feature using CNN. Rahimzadeh et al. [29] proposed a
concatenated CNN model made by using Xception and ResNet50V2 models to detect COVID-19 cases
using chest X-rays. Alqudah et al. [30] applied different machine learning approaches such as support
vector machine (SVM), CNN, and random forest (RF) for the detection of COVID-19. Ucar et al. [31]
applied probabilistic based deep Bayes-squeezeNet for the diagnosis of coronavirus. In another
approach, Kumar et al. [32] used nine pre-trained models for feature extraction and then support vector
machine for classification. Jain et al. [33] applied deep learning-based approach on PA view of chest
X-ray scans for COVID-19 affected patients as well as healthy patients for classification of COVID-19.
In their work after cleaning up the images and applying data augmentation, a comparison between
different deep learning-based CNN models is made. They collected 6432 chest X-ray scans samples from
the Kaggle repository, out of which 5467 were used for training and 965 for validation. Abbas et al. [34]
extracted the features using CNN and applied principal component analysis (PCA) for dimensionality
reduction. On these feature vectors, they applied a clustering technique to decompose original classes
into multiple classes. They again used a pre-trained CNN to classify features into original classes using
DeTraC deep neural network. Others have used the pre-trained CNN model-based transfer learning
approach to detect COVID-19 with reasonable accuracy [35–42].

These studies show that either a pre-trained or tailormade CNN model can successfully detect
COVID-19. Important implicit conclusions of these studies are that CNN is like a black box that
does not require any domain knowledge, and the features extracted by trained CNN are generic.
In other words, these studies implicitly reinforce the notion that the transferability is possible despite
the disparity between the training domain consisting of large scale annotated databases and the
classification task domain having small scale annotated datasets. Many of these studies perform
comparative studies to show that one of the pre-trained models with some conventional classifier
outperforms the other combinations of pre-trained models and classifiers. These studies compare the
performance of models based on the classification accuracy, sensitivity, etc., and do not comment either
on the feature extraction capabilities of these models or provide the justifications and the reasons for
the difference in the performance of various models.

In this work, we use CNN with transfer learning to detect COVID-19 using chest X-ray images.
During recognition using a visualization approach, we comment on the feature extraction capabilities
of different pre-trained CNN models. We show that after the extraction of features using pre-trained
CNNs, even the K-means algorithm, a simple unsupervised learning mechanism can be made to work
as a COVID-19 detector. Moreover, we compare the performance of the K-means detector with two
integrated models, namely, a simple integrated model (SIM) and a fused, integrated model (FIM).
Furthermore, we also compare the results of these models, as mentioned above, with a new CNN model
using shallow tuning. The new model is built by copying the feature extracting blocks of pre-trained
models and by adding classifier layers on top of it. In this work, we also analyze the role of principal
component analysis in feature selection from the extracted features in improving the classification
performance of the models. Like other studies that use CNN for COVID-19 detection, our work also
has limitations as studies show that since COVID-19 chest X-ray available on public domain include
unconfirmed cases, samples of pediatric patients etc., CNN based approach for COVID-19 detection is
giving biased results.

Furthermore, in the absence of validation of results on external datasets and verification of results
by clinicians reliability of the obtained results using a CNN based approach is questionable [43,44].
Interpretation of results requires a cautious approach as the data that we have used is in non-DICOM
format, and it may have resulted in the loss of quality of the images and lack of consistency. Therefore,
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in this work, we did not apply any interpretation methods for the CNN models. As, one of the main
aims of our study is to compare the feature extraction capabilities of different pre-trained networks.
Since the data used for comparison is same for all the pre-trained models, the effect of the type of data
or the absence of verification of results by clinicians does not alter our judgement on the comparative
analysis of the feature extraction capabilities of different pre-trained models. Many studies using
transfer learning have been proposed for COVID-19 detection. There is no consensus about which
pre-trained model is the best model for transferring the knowledge in some studies it has been shown
that VGG19 is the best in other studies DenseNet or Resnet have been shown to outperform the other
pre-trained models. However, in our study, we make use of PCA to show that DenseNet pre-trained
model has better feature extraction capability.

2. Preliminaries

2.1. Convolutional Neural Networks (CNNs)

In the mammalian visual system, the representations of visual input from simple to complex
are progressively built up hierarchically [45,46]. CNNs like the mammalian visual system, build the
representation of input image hierarchically. The term convolutional neural network was, for the
first time, formally introduced in LeCun et al. 1998 [47]. They called their CNN as LeNet-5 and
showed that LeNet-5 could outperform many other pattern recognition approaches for recognizing
handwritten characters. Since then, different researchers have proposed many variants of CNN that
have applications in different areas.

2.2. Architecture of Basic CNNs

Basic CNNs are composed of two main building blocks: trainable feature extraction block (TFEB)
and trainable classification block (TCB). Several convolutional subblocks are stacked together to form a
trainable feature extraction block (TFEB.). Each convolutional subblock has two processing stages.
In the first stage, a convolution operation is performed between the feature map (for the first subblock,
this is an input image) of the previous layer and a kernel(filter). The output of convolution operation is
processed by nonlinear processing units such as the Rectified Linear Unit (ReLU). The use of nonlinear
processing units helps to learn abstraction and to embed nonlinearity in the feature space. In the
second stage, by pooling operation, a downsampled feature map is obtained. The pooling operation
reduces spatial resolution and sensitivity to small shifts and distortions [47]. This downsampled
feature map represents many different same level representations obtained using many different
learnable filters in each subblock. At the end of the feature extraction block (TFEB), one or many fully
connected layers are connected, representing the trainable classifier block (TCB). Filter weights and the
weights of all the connections in the fully connected layers represent the parameters of the given CNN.
CNNs are specialized networks that can accomplish feature extraction, selection, and classification
using a general-purpose learning algorithm, thus eliminating the requirement of a human expert.
Furthermore, these networks are insensitive to variations in position, rotation, translation, scaling of
the input data [47]. There are many parameters to be optimized in CNNs, and therefore, in general,
these networks require large-scale annotated dataset to train them.

2.3. Transfer Learning Using CNNs

CNN’s acquire knowledge consisting of feature representations of the input image in a hierarchal
manner, decision boundaries, and regions. In the transfer learning, there is a transfer of the acquired
knowledge from one domain to another in complete or partial form, followed by supplemental learning.
In one approach of domain transfer, a tailormade model acquires knowledge using a domain having
a sufficient training dataset. As part of supplemental learning, this model is fine-tuned end to end
for the domain with insufficient datasets. In another approach of domain transfer, a new model is
made by copying the first n layers of a pre-trained model (knowledge transfer) and adding new layers
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on top of it. After that, as a part of supplemental learning, one of the following strategies is adopted
(a) Shallow tuning: The parameters of the copied layers are frozen, and the parameters of the newly
added layers are randomly initialized and then optimized. We call this approach to be a shallow tuning
approach. (b) Deep fine-tuning: Deep fine-tuning is the process of fine-tuning the parameters of the
new model in an end to end manner. In yet another approach called the feature extractor approach
of transfer learning, a pre-trained network acts as a feature extractor. Then these extracted features
are applied as input to the standard classifier, such as support vector machine, etc. This approach is
called an off-the-shelf feature method [48]. In this work, we apply shallow tuning and off the shelf
feature methods.

2.4. Pre-Trained Deep Networks

Several models have performed exceedingly well on the ImageNet data classification task [25].
In this study, we evaluate five such deep networks, namely VGG16, ResNet50V2, InceptionResNetV2,
DenseNet121, and MobileNetV2, and compare their performance when used in transfer learning
mode for detection of COVID-19. Out of the five models mentioned above, VGG16 belongs to six
VGG models developed by the Visual Geometry Group [49]. Models of this family secured first and
second position in classification plus localization category of the ILSVR2014 competition. VGG is
an example of stacked module architecture, with a 3 × 3 filter size in all the layers. VGG16 has
13 convolutional and three fully connected layers. ResNet50 belongs to the family of deep residual
learning framework [50]. Networks in this family also have a highly modular structure. One of the
highlights of the models belonging to this family is that they can be very deep (needed to extract more
complicated features of the image). They still do not face the problem of vanishing/exploding gradients
or degeneration [51]. These models could overcome the problems mentioned above by making use of
short cut connections. ResNet50, like its predecessors, is a two-branch network where one branch is the
identity mapping performed by the short cut connections which skip one or more layers. ResNet50 is
the first network to use 1 × 1 filters as a bottleneck to reduce the number of channels in the output
feature map. This network has performed exceedingly well on classification tasks of the ImageNet
dataset [50]. InceptionNet can address the problem of properly recognizing the objects covering a
different sized area in an image. For example, recognizing an object covering a large area in an image
requires spatial information at a coarse level. In contrast, for recognizing an object covering a small area,
fine-level spatial information is required [52]. InceptionNet networks contain an inception module
having parallel paths with different sized kernels (1 × 1, 3 × 3, 5 × 5) to capture spatial information at
different scales. InceptionResNetV2 is a network that embeds in it the properties of inception networks
and deep residual networks [53].

MobileNetV2 is suited to work on devices having low computational capabilities and low memory.
These networks, based on MobileNetV1, also use depth-wise, separable convolution, and pointwise
convolution to reduce the computational complexity and model size. Additionally, they have inverted
residual blocks for channel expansion to overcome the limitation of depthwise separable convolution
with a limited fixed number of input channels [54]. Therefore, MobileNetV2 have better accuracy
than MobileNetV1 in multiple image classification and detection tasks for mobile application.
Dense Convolutional Network [55] contains short paths that form a direct connection between any
layer and its preceding layers. Like InceptionNet, in this network, the features are concatenated
at each layer. Such a connection scheme helps CNN to alleviate the vanishing gradient problem,
strengthening the propagation of features and narrowing of the net. DenseNet CNN performs at par
with another state of the art CNNs with a requirement of substantially fewer parameters, thus making
them computationally efficient. Table 1 compares the five models (used in our study) for classification
tasks on the ImageNet dataset.
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Table 1. ILSVRC Image Classification Results.

Model Top-1 val. Error (%) Top-5 val. Error (%) Reference

MobileNetV2 25.3 - [54]

VGG16 25.6 8.1 [49]

ResNet50V2 23.9 - [50]

InceptionResNetV2 19.9 4.9 [53]

DenseNet121 23.61 6.66 [55]

3. Material and Methods

3.1. X-ray Image-Dataset

In this study, we have used open public datasets developed in a project by Cohen J.P., [56]. This dataset
contains chest X-ray images of MERS, SARS, ARDS, and other respiratory diseases. The X-ray images
in this database are from various public sources, through the indirect collection from hospitals and
physicians. We have used this dataset to collect Chest X-rays of the patients which are positive or
suspected of COVID-19. Chest X-rays of healthy patients and pneumonia infected patients were taken
from Kaggle [57]. The images from Kaggle, have chest X-rays that were already initially screened for
quality control by removing all low quality or unreadable scans. Moreover, in the Kaggle dataset the
diagnoses for the images are graded by two expert physicians before being cleared for uploading them
on the website. For further use, two datasets, namely dataset1 containing 142 images of COVID-19 and
300 images of Normal chest X-rays and dataset2 that included 142 images of COVID-19, 300 images
each for Pneumonia and Normal chest X-rays, were created. All images were resized to 224 × 224 pixels
and normalized before using them as input. We did not apply any other preprocessing steps as many
other studies have been done without preprocessing, and adopting a similar approach helped us in
comparing our methods with other studies. The details of the dataset used are as given in Table 2.

Table 2. Dataset details.

Images/Dataset COVID Normal Pneumonia

Dataset1 142 300 -

Dataset2 142 300 300

3.2. New CNN Model with Shallow Tuning and Its Training Procedure

Rather than proposing our architecture, we make use of the transfer learning approach. We build
a CNN with a feature extraction block adapted from CNNs previously trained on ImageNet database
and adding fully connected layers on top of it, as shown in Figure 1. With feature extracting block of
VGG16, ResNetV2, InceptionResNetV2, DenseNet121, and MobileNetV2 respectively as the pre-trained
FEB, and a fully connected dense layer between the output of this FEB and the output layer resulted in
four CNN models. The feature extraction block of these deep networks, when inserted in the new
CNN, retains both its original architecture and optimized parameter of their training on the ImageNet
dataset. After that, we apply supplemental learning to this new CNN. The training steps followed
as follows:

Step 1: We choose one of the datasets (dataset1 or dataset2).
Step 2: We split this dataset randomly into two independent data subsets with 70% and 30% for

training and testing.
Step 3: We decide on either cross-entropy or class weighted cross-entropy loss function.
Step 4: The parameters of the trainable classifier block are initialized randomly to random values.

Many adaptive and non-adaptive optimizers are well suited for optimizing the Neural Networks [58].
These optimizers have shown to find quite different solutions with very different generalization
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properties [59]. We utilize the ADAM optimizer for supplemental training of newly formed CNNs.
ADAM optimizer [60] use the first and second moments of gradients to compute the individual learning
rate for different parameters.AI 2020, 12, x FOR  7 of 21 
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Figure 1. The new convolutional neural network (CNN) constructed by adapting feature extracting
block of any one of VGG16, ResNetV2, InceptionResNetV2, MobileNetV2, and DenseNet121 CNNs
trained on the ImageNet database consisting of 1000 classes. The trainable classifier block, consisting of
fully connected layers, is recreated in new CNN with initial randomized weights. After completing the
supplemental learning process with chest X-rays as input, the new CNN can classify Chest X-rays into
different classes.

During the entire course of training, parameters of the pre-trained FEB are kept frozen to their
initial values. After completion of training, we test the performance of the trained model on the training
and test dataset. To analyze the results, we obtain the confusion matrix for the training and test data
subsets. The models trained on dataset1 classify the images into COVID-19 and normal and on dataset2
classify images into COVID-19, normal, and pneumonia. For comparison purposes for all models,
training hyperparameters, the number of neurons in the trainable layers, and the value of dropout are
kept the same. After every training cycle, using the confusion matrix, the performance measures that
include accuracy, sensitivity, Positive predictive Value (PPV), and specificity is determined separately
for each model.

In the second stage, the sample-set obtained from the stage I is first labeled, and then we randomly
split it into two independent sample subsets, namely A and B, with 70% and 30%, respectively, for
clustering and testing. We now use the K-means algorithm [61] to cluster sample set A into three or
two clusters for a two class and three class classification problem respectively in an unsupervised
manner. The process of clustering results in providing a cluster center for each cluster and the samples
belonging to that cluster. To assign the class labels to each cluster and for detecting the class for any
sample from either sample subsets A or B, we adopt the following steps:

Step 1: We use the sample labels of subset A to label the cluster, and its center with the label of the
class having the maximum number of samples in that cluster.

Step 2: For detection, we pick any sample from subset A, or B, and determine the Euclidean
distance of this sample from each cluster center. We then assign this sample the label of the cluster
center with minimum Euclidean distance (ED) among the EDs from this sample.

We now obtain the confusion matrix for both subsets A and B. To compare with other methods
using this confusion matrix, we obtain the performance measures that include accuracy, sensitivity,
PPV, and specificity.
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3.3. Semi-Supervised K-Means Detector

K-means detector is composed of a two-stage process. The first stage comprises of creation of
samples. The sample-set includes feature vectors extracted with chest X-rays of dataset1 or dataset2
as input to any one of the CNNs namely VGG16, ResNetV2, InceptionResnetV2, DenseNet121,
and MobileNetV2 pre-trained on ImageNet dataset. The block diagram of the K-means detector is,
as shown in Figure 2.AI 2020, 12, x FOR  8 of 21 
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Figure 2. The Semi-supervised K-means Detector.

3.4. Simple Integrated Model (SIM)

We built a simple integrated model by integrating an additional feature selection block between
the feature extraction block and the classifier block of the conventional convolutional neural network.
The block diagram of the SIM is, as shown in Figure 3. SIM, in the first stage, extracts the feature
vector using one of the pre-trained CNN as already described in the previous sections. In the second
stage, after selecting the features using principal component analysis (PCA), these selected features act
as an input to the multilayer perceptron classifier. PCA is a standard statistical technique that helps
find patterns in the data of high dimension and has applications in fields such as face recognition
and image processing [62]. Suitable selection of the principal components helps in dimensionality
reduction, which helps in improving the computational efficiency of the classifier. We use the technique
described by Jolliffe, T. [62] for determining the principal components. The final block of SIM is a
multilayer perceptron (MLP) neural network. MLP is one of the prevalent artificial neural networks
with many applications that include solving classification and regression problems [63]. MLP is an
extension of the perceptron and contains hidden layers directly not connected with the outside world.
These networks are built by connecting many different processing units. In these network weights of the
interconnections are the adjustable parameters optimized by the error backpropagation algorithm [64].
MLPs perform better or equivalent to many conventional classifiers such as K-NN, quadratic Gaussian,
or Bayesian maximum likelihood classifiers [63].
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3.5. Fused Integrated Model (FIM)

The fused integrated model is an extension of a simple integrated model. The steps involved in
the processing of this model are as follows:

Step 1: In the first stage, we extract two feature vectors parallelly using ResNetV2 and DenseNet121
from the Chest X-ray image.

Step 2: In the second stage, we apply these extracted features as input to PCA, which works as a
feature selector.

Step 3: Next, we concatenate the selected features to form a concatenated vector.
Step 4: Finally, we apply the concatenated vector as input to the multilayer perceptron.
Figure 4 represents the block diagram of the fused integrated model. For both the SIM and FIM,

we first choose one of the datasets (dataset1 or dataset2) and split it randomly into two independent
data subsets with 70% and 30% for training and testing. In this work, we use MLP with two hidden
layers, input and output layer. We use an error backpropagation algorithm [64] to optimize the network
parameters with a learning rate of 0.3 on the training dataset. After completing the training of MLP,
we obtain the confusion matrix for both training and test datasets. To compare with other methods
using this confusion matrix, we obtain the performance measures that include accuracy, sensitivity, PPV,
and specificity. The next subsection provides the details about getting these performance measures.

3.6. Performance Measures

The metrics to analyze the performance of different models are accuracy-percentage of correct
predictions., specificity-percentage of an accurately predicted healthy individual sensitivity-percentage
of accurately predicted unhealthy individuals, and positive predictive value-percentage of correct
positive predictions.

The confusion matrix for dataset1 is as given in Table 2. We use Equations (1) to (4) to determine
the values of the metrics, as mentioned above, for a two-class classification problem. The confusion
matrix for dataset2 is as given in Table 3.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)
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Sensitivity(Recall) =
TP

TP + FN
(2)

Speci f icity =
TN

TN + FP
(3)

Positive Predictive Value (PPV) =
TP

TP + FP
(4)

AI 2020, 12, x FOR  10 of 21 

Chest X-Ray 
Image

FEB of 
DenseNet

PCA
Feature 
Selector

Output

Stage I

Stage II

FEB of ResNet

Multi Layer 
Perceptron

PCA
Feature 
Selector

Cascaded 
Features

 
Figure 4. The Fused Integrated Model. 

3.6. Performance Measures 

The metrics to analyze the performance of different models are accuracy-percentage of correct 
predictions., specificity-percentage of an accurately predicted healthy individual sensitivity-
percentage of accurately predicted unhealthy individuals, and positive predictive value-percentage 
of correct positive predictions.  

The confusion matrix for dataset1 is as given in Table 2. We use Equations (1) to (4) to determine 
the values of the metrics, as mentioned above, for a two-class classification problem. The confusion 
matrix for dataset2 is as given in Table 3.  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (1) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑅𝑒𝑐𝑎𝑙𝑙) =   (2) 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =   (3) 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉) =   (4) 

Table 3. Confusion Matrix for Dataset1. 

Actual 
 

Predicted 
COVID-19 Normal 

COVID-19 True Positive Values (TP) False Negative Values (FN) 
NORMAL False Positive Values (FP) True Negative Values (TN) 

True positive if COVID-19 detected as COVID-19, False Negative if COVID-19 detected as Normal, False positive if Normal 
detected as COVID-19 and True Negative if Normal detected as Normal. 

In the case of dataset2, we have three classes A(COVID-19), B(Normal), and C(Pneumonia); 
therefore, values of a false negative, false positive, and true negative are calculated for each of these 
class separately. Table 4 depicts Confusion Matrix for Dataset2. 

Figure 4. The Fused Integrated Model.

Table 3. Confusion Matrix for Dataset1.

Actual

Predicted

COVID-19 Normal

COVID-19 True Positive Values (TP) False Negative Values (FN)

NORMAL False Positive Values (FP) True Negative Values (TN)

True positive if COVID-19 detected as COVID-19, False Negative if COVID-19 detected as Normal, False positive if
Normal detected as COVID-19 and True Negative if Normal detected as Normal.

In the case of dataset2, we have three classes A(COVID-19), B(Normal), and C(Pneumonia);
therefore, values of a false negative, false positive, and true negative are calculated for each of these
class separately. Table 4 depicts Confusion Matrix for Dataset2.
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Table 4. Confusion Matrix for Dataset2

Actual

Predicted

CD-19 (A) NR (B) PN (C)

CD-19 TPA FAB FAC

NR FBA TPB FBC

PN FCA FCB TPC

TPA = number of COVID-19(A) cases detected as COVID-19(A), FAB = number of COVID-19 (A) cases identified as
Normal (B), and so on.CD-19, NR and PN are COVID-19, Normal, and Pneumonia.

As an example, the calculations for class A are as follows:
False Negative for class A is
FNA = Sum of all values in Row(A) − True Positive value of A (TPA), therefore, FNA = TPA + FAB

+ FAC − TPA = FAB + FAC.
Similarly, False Positive of class A is FPA = Sum of all values in Column(A) − True Positive value

of A (TPA), therefore, FPA = TPA + FBA + FCA − TPA = FBA + FCA.

True Negative TNA = (Sum of all columns (Except Column A) +Sum of all rows (Except Row
A)), or

TNA = TPB + FBC + FCB + TPC.
Equation (5) gives the accuracy of the models for dataset2.

Accuracy =
TPA + TPB + TPC

TPA + TPB + TPC + FAB + FAC + FBA + FBC + FCA + FCB
(5)

The sensitivity, selectivity, and positive predictive value for class A are as per Equations (6) to (8).

Sensitivity (A) =
TPA

TPA + FNA
(6)

Speci f icity (A) =
TNA

TNA + FPA
(7)

PPV(A) =
TPA

TPA + FPA
(8)

Similarly, the performance metrics for class B and class C.

4. Simulation Results

We carried out the simulations on the Google Colab Linux server, having an availability of a
high-end processor. The GPUs available in Colab often include Nvidia K80s, T4s, P4s, and P100s,
and there is no facility for choosing any one of them. The type of GPU available varies over time
and is automatically assigned. Simulations carried by us help us to analyze the feature extraction
capabilities of each of the pre-trained models. We obtain the performance metrics of all the pre-trained
models using the different modeling methods, namely the new CNN model with shallow tuning,
semi-supervised K-means detector, and simple integrated model. Once we identify the pre-trained
model with the best feature extracting capability, we compare different modeling strategies to determine
the best among them. In the first part of the simulation results, we show and compare the performance
of each pre-trained model for each modeling approach.

For ease of representation, in the further discussion from now onwards, we use short forms,
namely VN, IN, RN, DN, and MN, denoting VGG16, ResNet50, InceptionResNetV2, DenseNet121,
and MobileNetV2 pre-trained models, respectively.



AI 2020, 1 597

4.1. Analysis of New CNN Models with Shallow Tuning on Dataset1 and Dataset2

As depicted in Figures 5 and 6, the performance of the new CNN model built using VGG16 is
better in comparison to the models built with other pre-trained models. This VGG16 based model with
shallow tuning achieves an accuracy of about 0.98 and 0.87 for two-class and three-class classification
problem. As can be seen from the same figures, the performance of the MobileNetV2 based model is
worst, and this model achieves an accuracy of 0.65 and 0.37 for two-class and three-class classification
problems, respectively. It is observed that the performance of all the developed models deteriorates
substantially for dataset2; see, for example, the value of sensitivity for COVID class is less than or
equal to 0.64 for all the five developed models. The performance of the ResNetV2 or DenseNet121
based model achieves an accuracy of about 0.85 and 0.7 for the two-class and three-class problem.
The other performance measures for model based on either ResNetV2 or DenseNet121 are also having
similar values. The performance of the InceptionResNetV2 based model is inferior to all the developed
models except the model based on MobileNetV2.
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4.2. Analysis of Semi-Supervised K-Means Detector

As shown in Figure 7 for the two-class classification problems, the performance of the
semi-supervised K-means approach is comparable for the features extracted using any of the five
pre-trained CNN models. All the pre-trained models used in our study extract the requisite features to
enable semi-supervised K-means technique to classify the X-ray images into normal and COVID with
an accuracy of almost 1. Close observations reveal that the performance of the VGG16 based pretrained
CNN model is slightly inferior in comparison to other pre-trained CNN models. Figure 8 shows the
performance measures of a semi-supervised K-means detector for a three-class classification problem.
We obtain these performance measures individually after extracting feature vectors using different
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pre-trained models. On comparing, we find that the performance of this semi-supervised K-means
detector is superior when the extraction of features is done using either DenseNet121 or ResNetV2
pre-trained CNN model. For these two cases, the detector achieves an accuracy of 0.91; when the features
are extracted using MobileNetV2, the detector achieves an accuracy of 0.89. The extraction of features
using either InceptionResNetV2 or VGG16 pre-trained CNN models results in poor performance of the
detector with an accuracy of around 0.7. Other performance measures also follow similar trends for all
three classes (see Figure 8).AI 2020, 12, x FOR 13 of 21 
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4.3. Analysis of Simple Integrated Model (SIM)

Simulation results shown in Figure 9 for the two-class classification problem show that the
extraction of features using the DenseNet121 pre-trained CNN model makes the simple integrated
model achieve an accuracy of 0.99. In comparison, when the SIM uses either MobileNetV2 or ResNetV2
pre-trained CNN models for extracting features, then it achieves an accuracy of 0.96. This model
achieves an accuracy of 0.92 and 0.33 when the model extracts features using InceptionResNetv2 and
VGG16 pre-trained CNN models. Other performance measures follow similar trends. These results
show that for two-class classification problems, SIM performs the best when it extracts features using
the DenseNet pre-trained model, and it performs the worst when it extracts the features using the
VGG16 pre-trained CNN model.
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represents this knowledge. Therefore, to analyze the pre-trained models' knowledge transfer 
capabilities, we plot the extracted feature vectors in two-dimensional space. To plot the feature 
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Figure 10 depicts the bar charts for the values of performance measures obtained for three-class
classification problems using a simple integrated model. The accuracy bar chart in Figure 10, compared with
that of Figure 9, reveals that the performance of the simple integrated model deteriorates for a three-class
classification problem (TCCP). For a TCCP, this model achieves an accuracy of 0.85, 0.82, 0.81, 0.66,
and 0.23 when it extracts features using the DenseNet121, ResNetV2, MobileNetV2, InceptionResNetV2
and VGG16 pre-trained models, respectively. Other performance measures follow similar trends. Like its
performance for the two-class classification problem for TCCP, this model performs the best when
extracting features using the DenseNet pre-trained CNN model. SIM performs the worst when it extracts
the features using the VGG16 pre-trained CNN model. During simulations, the hyperparameters were
kept the same for different pre-trained CNN models. Further, during simulations, we applied the two
most prominent principal components obtained using principal component analysis as input to the
multi-layered perceptron.
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4.4. Analysis of Knowledge Transfer Capability of Different Pre-Trained CNN Models

Simulation results for different approaches discussed in the previous sections use pre-trained CNN
models for knowledge transfer. In these approaches, performance largely depends upon the knowledge
transfer capabilities of the pre-trained models. The feature vector in abstract form represents this
knowledge. Therefore, to analyze the pre-trained models’ knowledge transfer capabilities, we plot the
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extracted feature vectors in two-dimensional space. To plot the feature vectors in two-dimensional
space, we utilize principal component analysis. After extracting feature vectors using different
pre-trained models, we obtain their two most prominent principal components (PC) and then plot these
prominent PCs in two-dimensional space. Figures 11–15 are showing representative extracted feature
vectors for VGG16, ResNetV2, InceptionResNetV2, DenseNet121 and MobileNetV2, respectively.
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As shown in these figures, the feature vectors for different classes (COVID, Normal, and Pneumonia)
occupy regions with minimal overlap among regions if extracted using DenseNet121 or ResnetV2
pre-trained CNNs (Figures 12 and 14).

In comparison, the amount of overlap among regions representing different classes for features
extracted using either VGG16 or InceptionResNetV2 pre-trained CNNs is quite large (Figures 10 and 12).
The overlap between the regions representing different classes for feature vectors extracted using
MobileNetV2 pre-trained CNN is between the above two cases (Figure 14). These results suggest that
DenseNet121 and ResNetV2 pre-trained CNNs transfer adequate knowledge, whereas VGG16 and
InceptionResNetV2 transfer coarse knowledge requiring further processing. It also helps us to build
the notion that VGG16 and InceptionResNetV2 can extract low-level features, whereas DenseNet121
and ResNetV2 can extract high-level features making the images quite distinctive.

4.5. Analysis of Fused Integrated Model

To access the impact of combining features extracted using different pre-trained CNN models,
we in this work framed the fused integrated model wherein the feature vectors extracted with the
help of DenseNet121 and ResNetV2 were concatenated before applying to MLP. Figure 16 shows the
bar chart for different performance measures for all three classes. This model achieves an accuracy
of 0.94 for a three-class classification problem TCCP. This accuracy is better than the best that we
could achieve in all the other three approaches signifying the usefulness of fusing the feature vectors
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extracted using different pre-trained models. The other performance measures also show the same
trends, i.e., an improvement in values compared to all other approaches for all classes.
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5. Comparison of Results with other Modeling Studies

The comparison of our proposed models with other modeling studies reveal that we also obtain
similar kind of results. The comparison is depicted in Table 5. As can be seen from this table that
accuracy for three-class classification problem is always less than accuracy for two-class classification
problem. Our results are consistent with the other similar studies.

Table 5. Comparison of Accuracy for different modeling studies

Study Type Model Accuracy

Ioannis et al. [36] Chest X-ray VGG19 (3-Class)
VGG19 (2-Class)

93.48
98.75

Sethy and Behera [42] Chest X-ray ResNet +SVM
(3-Class) 95.38

Hemdan et al [35] Chest X-ray COVIDX-Net
(2-Class) 90

Narin et al. [37] Chest X-ray Deep CNN ResNet- 50
(2-Class) 98

Afshar et al. [27] Chest X-ray COVID-CAPS
(3-Class) 95.7

Eduardo et al. [39] Chest X-ray Efficient Net
(3-Class) 91.4

Tulin et al. [38] Chest X-ray
Darknet
(3-Class)
(2-Class)

87.02
98.08

Proposed:

Chest X-ray
Shallow Tuning
VGG (3-Class)
VGG (2-Class)

87
98

Chest X-ray
SIM

DenseNet (3-Class)
DenseNet (2-Class)

85
99

Chest X-ray
FIM

DenseNet+ResNet
(3-Class)

94

Chest X-ray
K-Means

DenseNet (3-Class)
DenseNet (2-Class)

91
99
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6. Conclusions

In this work, we proposed four different approaches for the detection of COVID-19. For the
extraction of features using CNN we used Python. For K-means approach, principal component
analysis, visualization, plotting of figures etc., we made use of Matlab. The number of epoch and
batch size for different approaches is 15 epochs and batch size 5. All these approaches are based on
the concept of transfer learning using pre-trained convolutional neural networks. We used VGG16,
ResNetV2, InceptionResNetV2, DenseNet121, and MobileNetV2 CNNs pre-trained on the ImageNet
dataset individually in the three approaches and used ResNetV2 with DenseNet in fused integrated
model approach. It is interesting to find that even though there is a little resemblance between the
ImageNet dataset and X-ray images dataset, these pre-trained models possess sufficient knowledge
transfer capabilities to make them suitable and useful for classification purposes. We could show that
even a straightforward unsupervised K-means clustering algorithm clusters the extracted features into
three clusters. Another important conclusion is that the application of the concept of feature selection
not only reduces the computational time but also helps in improving the performance of the classifiers.
Surprisingly we found that the performance of VGG16 based model was better than other pre-trained
based models in case of a shallow tuning approach. This result indicates that if the pre-trained model
extracts low-level features, then the chance of getting improved performance while using shallow
tuning gets enhanced. Of all the approaches fused integral model approach achieves better values
for different performance measures. These results suggest that different pre-trained CNN models
have different feature extraction capabilities, and the fusion of these extracted features enhances the
classifier performance. Although we have used these approaches to classify X-ray images, our results
indicate that these approaches will prove useful to classify data of any domain with a limited dataset.
Finally, it is essential to mention that since in this study we did not apply any interpretation method
we recommend that present study and the results obtained in this study should not be directly used in
clinical cases.
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